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eSriraam Natarajan, Prasad Tadepalli, and Alan FernS
hool of EECS,Oregon State UniversityAbstra
t. Building intelligent assistants has been a long-
herished goalof AI and many were built and �ne-tuned to spe
i�
 appli
ation do-mains. In re
ent work, a domain-independent de
ision-theoreti
 modelof assistan
e was proposed, where the task is to infer the user's goaland take a
tions that minimize the expe
ted 
ost of the user's poli
y.In this paper, we extend this work to domains where the user's poli
ieshave ri
h relational and hierar
hi
al stru
ture. Our results indi
ate thatrelational hierar
hies allow su

in
t en
oding of prior knowledge for theassistant, whi
h in turn enables the assistant to start helping the userafter a relatively small amount of experien
e.1 Introdu
tionThere has been a growing interest in developing intelligent assistant systems thathelp users in a variety of tasks ranging from washing hands to travel planning[2, 6, 3℄. The emphasis in these systems has been to provide a well-engineereddomain-spe
i�
 solution to the problem of redu
ing the users' 
ognitive load intheir daily tasks. A de
ision-theoreti
 model was proposed re
ently to formalizethe general problem of assistantship as a partially observable Markov de
isionpro
ess (POMDP). In this framework, the assistant and the user intera
t in theenvironment to 
hange its state. The goal of the assistant is to take a
tions thatminimize the expe
ted 
ost of 
ompleting the user's task [9℄. In most situations,however, the user's task or goal1 is not dire
tly observable to the assistant, whi
hmakes the problem of qui
kly inferring the user's goals from observed a
tions
riti
ally important. One approa
h to goal inferen
e [9℄ is to learn a probabilisti
model of the user's poli
y for a
hieving various goals and then to 
ompute aposterior distribution over goals given the 
urrent observation history. However,for this approa
h to be useful in pra
ti
e, it is important that the poli
y belearned as early in the lifetime of the assistant as possible. We 
all this theproblem of \early assistan
e", whi
h is the main motivation behind this work.One solution to the early assistan
e problem, advo
ated in [9℄, is to assumethat (a) the user's poli
y is optimal with respe
t to their goals and a
tions,the so 
alled \rationality assumption," and that (b) the optimal poli
y 
an be
omputed qui
kly by knowing the goals, the \tra
tability assumption." Under1 In this work, we use the words task and goal inter
hangeably.



these assumptions, the user's poli
y for ea
h goal 
an be approximated by anoptimal poli
y, whi
h may be qui
kly 
omputed. Unfortunately in many realworld domains, neither of these assumptions is realisti
. Real world domainsare too 
omplex to allow tra
table optimal solutions. The limited 
omputationalpower of the user renders the poli
ies to be lo
ally optimal at best.In this paper, we propose a di�erent solution to the early assistan
e prob-lem, namely 
onstraining the user's poli
ies using prior domain knowledge inthe form of hierar
hi
al and relational 
onstraints. Consider an example of adesktop assistant similar to CALO [4℄ that helps an a
ademi
 resear
her. Theresear
her 
ould have some high level tasks like writing a proposal, whi
h maybe divided into several subtasks su
h as preparing the 
over page, writing theproje
t des
ription, preparing the budget, 
ompleting the biography, et
. withsome ordering relationships between them. We expe
t that an assistant thatknows about this high level stru
ture would better help the user. For example,if the budget 
annot be prepared before the 
over page is done, the assistantwould not 
onsider that possibility and 
an determine the user's task faster. Inaddition to the hierar
hi
al stru
ture, the tasks, subtasks, and states have a 
lassand relational stru
ture. For example, the urgen
y of a proposal depends on the
loseness of the deadline. The deadline of the proposal is typi
ally mentioned onthe web page of the agen
y to whi
h the proposal is addressed. The 
ollaborationpotential of an individual on a proposal depends on their expertise in the areasrelated to the topi
 of the proposal. Knowing these relationships and how theyin
uen
e ea
h other 
ould make the assistant more e�e
tive.The 
urrent paper extends the assistantship model to hierar
hi
al and rela-tional settings, building on the work in hierar
hi
al reinfor
ement learning[10℄and statisti
al relational learning (SRL).We extend the assistantship frameworkof [9℄ by in
luding parameterized task hierar
hies and 
onditional relational in-
uen
es as prior knowledge of the assistant. We 
ompile this knowledge into anunderlying Dynami
 Bayesian network and use Bayesian network inferen
e algo-rithms to infer the distribution of user's goals given a sequen
e of their atomi
a
tions. We estimate the parameters for the user's poli
y and in
uen
e rela-tionships by observing the users' a
tions. On
e the user's goal distribution isinferred, we determine an approximately optimal a
tion by estimating the Q-values of di�erent a
tions using rollouts and pi
king the a
tion that has the leastexpe
ted 
ost.We evaluate our relational hierar
hi
al assistantship model in two di�erenttoy domains and 
ompare it to a propositional 
at model, propositional hier-ar
hi
al model, and a relational 
at model. Through simulations, we show thatwhen the prior knowledge of the assistant mat
hes the true behavior of theuser, the relational hierar
hi
al model provides superior assistan
e in terms ofperforming useful a
tions. The relational 
at model and the propositional hier-ar
hi
al model provide better assistan
e than the propositional 
at model, butfall short of the performan
e of the relational hierar
hi
al approa
h.The rest of the paper is organized as follows: Se
tion 2 summarizes the basi
de
ision-theoreti
 assistan
e framework, whi
h is followed by the relational hier-



ar
hi
al extension in Se
tion 3. Se
tion 4 presents the experiments and results,Se
tion 5 outlines some related work and Se
tion 6 
on
ludes the paper.2 De
ision-Theoreti
 Assistan
eIn this se
tion, we brie
y des
ribe the de
ision-theoreti
 model of assistan
e of[9℄ whi
h forms the basis of our work. In this setting, there is a user a
tingin the environment and an assistant that observes the user and attempts toassist him. The environment is modeled as an MDP des
ribed by the tuplehW;A;A0; T; C; Ii, where W is a �nite set of world states, A is a �nite set ofuser a
tions, A0 is a �nite set of assistant a
tions, and T (w; a; w0) is a transitionfun
tion that represents the probability of transitioning to state w0 given thata
tion a 2 A [ A0 is taken in state w. C is an a
tion-
ost fun
tion that mapsW � (A [A0) to real numbers, and I is an initial state distribution over W . Anepisodi
 setting is assumed, where the user 
hooses a goal and tries to a
hieve it.The assistant observes the user's a
tions and the world states but not the goal.After every user's a
tion, the assistant gets a 
han
e to take one or more a
tionsending with a noop a
tion, after whi
h the user gets a turn. The obje
tive is tominimize the sum of the 
osts of user and assistant a
tions.The user is modeled as a sto
hasti
 poli
y �(ajw; g) that gives the probabilityof sele
ting a
tion a 2 A given that the user has goal g and is in state w. Theobje
tive is to sele
t an assistant poli
y �0 that minimizes the expe
ted 
ost giventhe observed history of the user. The environment is only partially observableto the assistant sin
e it 
annot observe the user's goal. It 
an be modeled as aPOMDP, where the user is treated as part of the environment.In [9℄, the assistant POMDP is solved approximately, by �rst estimating thegoal of the user given the history of his a
tions, and then sele
ting the bestassistive a
tion given the posterior goal distribution. One of the key problemsin e�e
tive assistantship is to learn the task qui
kly enough to start helping theuser as early as possible. In [9℄, this problem is solved by assuming that theuser is rational, i.e., he takes a
tions to minimize the expe
ted 
ost. Further, theuser MDP is assumed to be tra
tably solvable for ea
h goal. Hen
e, their systemsolves the user MDP for ea
h goal and uses it to initialize the user's poli
y.Unfortunately the dual assumptions of tra
tability MDP and rationalitymake this approa
h too restri
tive to be useful in real-world domains that aretoo 
ompli
ated for any user to approa
h perfe
t rationality. We propose aknowledge-based approa
h to the e�e
tive assistantship problem that bypassesthe above two assumptions. We provide the assistant with partial knowledge ofthe user's poli
y, in the form of a task hierar
hy with relational 
onstraints on thesubtasks and their parameters. Given this strong prior knowledge, the assistantis able to learn the user's poli
y qui
kly by observing his a
tions and updatingthe poli
y parameters. We appropriately adopt the goal estimation and a
tionsele
tion steps of [9℄ to the new stru
tured poli
y of the user and show that itperforms signi�
antly better than the unstru
tured approa
h.



3 A Relational Hierar
hi
al Model of Assistan
eIn this se
tion, we propose a relational hierar
hi
al representation of the user'spoli
y and show its use for goal estimation and a
tion sele
tion.3.1 Relational Hierar
hi
al Poli
iesUsers in general, solve diÆ
ult problems by de
omposing them into a set ofsmaller ones with some ordering 
onstraints between them. For example, pro-posal writing might involve writing the proje
t des
ription, preparing the bud-get, and then getting signatures from proper authorities. Also, the tasks havea natural 
lass-sub
lass hierar
hy, e.g., submitting a paper to ICML and IJCAImight involve similar parameterized subtasks. In the real world, the tasks are
hosen based on some attributes of the environment or the user. For instan
e,the paper the user works on next is in
uen
ed by the 
loseness of the deadline.It is these kinds of relationships that we want to express as prior knowledge sothat the assistant 
an qui
kly learn the relevant parameters of the poli
y. Wemodel the user as a sto
hasti
 poli
y �(ajw; T;O) that gives the probability ofsele
ting a
tion a 2 A given that the user has goal sta
k T and is in state w. Ois the history of the observed states and a
tions. Learning a 
at, propositionalrepresentation of the user poli
y is not pra
ti
al in many domains. Rather, inthis work, we represent the user poli
y as a relational task hierar
hy and speedup the learning of the hierar
hy parameters via the use of 
onditional in
uen
estatements that 
onstrain the spa
e of probabilisti
 dependen
ies.Relational Task Hierar
hies. A relational task hierar
hy is spe
i�ed overa set of variables, domain 
onstants, and predi
ate symbols. There are predi
atesymbols for representing properties of world states and spe
ifying task names.The task predi
ates are divided into primitive and abstra
t tasks. Primitivetask predi
ates will be used to spe
ify ground a
tions in the MDP that 
an bedire
tly exe
uted by the user. Abstra
t task predi
ates will be used to spe
ifynon-primitive pro
edures (that involve 
alling subtasks) for a
hieving high-levelgoals. Below we will use the term task sta
k to mean a sequen
e of ground tasknames (i.e. task predi
ates applied to 
onstants).A relational task hierar
hy will be 
omposed of relational task s
hemas whi
hwe now de�ne.De�nition 1 (Relational Task S
hema). A relational task s
hema is either:1) A primitive task predi
ate applied to the appropriate number of variables, or2) A tuple hN;S;R;G; P i, where the task name N is an abstra
t task predi
ateapplied to a set of variables V , S is a set of 
hild relational task s
hemas (i.e. thesubtasks), R is a set of logi
al rules over state, task, and ba
kground predi
atesthat are used to derive a 
andidate set of ground 
hild tasks in a given situation,G is a set of rules that de�ne the goal 
onditions for the task, and P (sjT;w;O)is a probability distribution that gives the probability of a ground 
hild task s
onditioned on a task sta
k T , a world state w, and an observation history O.Ea
h way of instantiating the variables of a task s
hema with domain 
onstantsyields a ground task. The semanti
s of a relational task s
hema spe
ify what



it means for the user to \exe
ute to 
ompletion" a parti
ular ground task asfollows. As the base 
ase, a primitive ground task is exe
uted-to-
ompletion bysimply exe
uting the 
orresponding primitive MDP a
tion until it terminates,resulting in an updated world state.An abstra
t ground task, 
an intuitively be viewed as spe
ifying a sto
has-ti
 poli
y over its 
hild subtasks whi
h is exe
uted until its goal 
ondition issatis�ed. More pre
isely, an abstra
t ground task t is exe
uted-to-
ompletion byrepeatedly sele
ting ground 
hild tasks that are exe
uted-to-
ompletion until thegoal 
ondition G is satis�ed. At ea
h step given the 
urrent state w, observationhistory O, task sta
k T , and set of variable bindings B (that in
lude the bindingsfor t) a 
hild task is sele
ted as follows: 1) Subje
t to the variable bindings, therules R are used to derive a set of 
andidate ground 
hild tasks. 2) From thisset we draw a ground task s a

ording to P , properly normalized to only takeinto a

ount the set of available subtasks. 3) The drawn ground task is thenexe
uted-to-
ompletion in the 
ontext of variables bindings B0 that in
lude thebindings in B along with those in s and a task sta
k 
orresponding to pushingt onto T .Based on the above des
ription, the set of rules R 
an be viewed as spe
ifyinghard 
onstraints on the legal subtasks with P sele
ting among those tasks thatsatisfy the 
onstraints. The hard 
onstraints imposed by R 
an be used restri
tthe argument of the 
hild task to be of a 
ertain type or may pla
e mutual
onstraints on variables of the 
hild tasks. For example, we 
ould spe
ify rulesthat say that the do
ument to be atta
hed in an email should belong to theproje
t that the user is working on. Also, the rules 
an spe
ify the ordering
onstraint between the 
hild tasks. For instan
e, it would be possible to say thatto submit a paper the task of writing the paper must be 
ompleted �rst.We 
an now de�ne a relational task hierar
hy.De�nition 2 (Relational Task Hierar
hy). A relational task hierar
hy isrooted a
y
li
 graph whose nodes are relational task s
hemas that satisfy thefollowing 
onstraints: 1) The root is a spe
ial subtask 
alled ROOT. 2) Theleaves of the graph are primitive task s
hemas. 3) There is an ar
 from node n1to node n2 if and only if the task s
hema of n2 is a 
hild of task s
hema n1.We will use relational task hierar
hies to spe
ify the poli
y of a user. Spe
i�
ally,the user's a
tions are assumed to be generated by exe
uting the ROOT task ofthe hierar
hy with an initially empty goal sta
k and set of variable bindings.An example of a Relational Task Hierar
hy is presented in the Figure 1 fora game involving resour
e gathering and ta
ti
al battles. For ea
h task s
hemawe depi
t some of the variable binding 
onstraints enfor
ed by the R as a logi
alexpression. For 
larity we do not depi
t the ordering 
onstraints imposed by R.From the ROOT task the user has two distin
t 
hoi
es to either gathering aresour
e, Gather(R) or atta
king an enemy, Atta
k(E). Ea
h of these tasks 
anbe a
hieved by exe
uting either a primitive a
tion (represented with ovals in the�gure) or another subtask. For example, to gather a resour
e, the user needsto 
olle
t the resour
e (denoted by Colle
t(R)) and deposit the resour
e at thestorage (denoted by Deposit(R,S), whi
h indi
ates that R is to be deposited in S).



Resour
es are stored in the storages of the same type (for example, gold in a bank,food in a granary et
.), whi
h is expressed as the 
onstraint R:type = S:type inthe �gure. On
e the user 
hooses to gather a resour
e (say gold1), the value ofR in all the nodes that are lower than the node Gather(R) is set to the valuegold1. R is freed after Gather is 
ompleted.
Gather(R) Attack(E)

Collect(R) Deposit(R,S) DestroyCamp(E)KillDragon(D)

Goto(L)
Pickup(R)

Move(X) Open(D)

DropOff(R,S)

R.Type = S.Type

L = S.Loc

L = R.Loc

L = D.Loc

Kill(D)

Destroy(E)

L = E.Loc

E.Type = D.Type

ROOT

Fig. 1. Example of a task hierar
hy of the user. The inner nodes indi
ate subtaskswhile the leaves are the primitive a
tions. The tasks are parameterized and the tasksat the higher level will 
all the tasks at the lower levelConditional In
uen
es: Often it is relatively easy to hand-
ode the rulesets R that en
ode hard-
onstraints on 
hild tasks. It is more diÆ
ult to pre
iselyspe
ify the probability distributions for ea
h task s
hema. In this work, we takethe approa
h of hand-
oding a set of 
onditional in
uen
e statements that areused to 
onstrain and hen
e speedup the learning of these probability distribu-tions. The 
onditional in
uen
es des
ribe the obje
ts and their attributes thatin
uen
e a subtask 
hoi
e based on some 
ondition, i.e., these statements serveto 
apture a distribution over the subtasks given some attributes of the envi-ronment (P (subtask j worldstate)). For example, sin
e there 
ould be multiplestorage lo
ations for a resour
e, the 
hoi
e of a storage may be in
uen
ed by itsdistan
e to the resour
e. While this knowledge 
an be easily expressed in mostSRL formalisms su
h as Probabilisti
 Relational Language [18℄ and BayesianLogi
 Programs [15℄, we give an example in First-Order Conditional In
uen
eLanguage (FOCIL) [19℄.If {Goal(Gather(R)),Completed(Colle
t(R)),Equal(Type(R),Type(S))} thenDistan
e(Lo
(R), Lo
(S))) Qinf subgoal(Deposit(R,S))A FOCIL statement of the form IffZ(�)g then Y1(�); : : : ; Yk(�) Qinf X(�)means that Y1(�); : : : ; Yk(�) in
uen
e X(�) when Z(�) is true, where � is a setof logi
al variables. The above statement 
aptures the knowledge that if R isa resour
e that has been 
olle
ted, and S is a storage where R 
an be stored,



the 
hoi
e of the value of S is in
uen
ed by the distan
e between R and S. Theprobability of 
hoosing a subtask in a given state is determined solely by theattribute values of the obje
ts mentioned in the 
onditional in
uen
e statement,whi
h puts a strong 
onstraint on the user's poli
y and makes it easier to learn.3.2 Goal EstimationIn this se
tion, we des
ribe our goal estimation method, given the kind of priorknowledge des
ribed in the previous se
tion, and the observations, whi
h 
onsistof the user's primitive a
tions. Note that the probability of the user's a
tion
hoi
e depends in general on not only the pending subgoals, but also on someof the 
ompleted subgoals in
luding their variable bindings. Hen
e, in general,the assistant POMDP must maintain a belief state distribution over the pendingand 
ompleted subgoals. whi
h we 
all the \goal stru
ture."We now de�ne the assistant POMDP. The state spa
e is W �T where Wis the set of world states and T is the user's goal stru
ture. Correspondingly, thetransition probabilities are fun
tions between (w; t) and (w0; t). Similarly,the 
ost is a fun
tion of hstate, a
tioni pairs. The observation spa
e nowin
ludes the user's a
tions and their parameters (for example, the resour
e thatis 
olle
ted, the enemy type that is killed et
).In this work, we make a simplifying assumption that there is no un
ertaintyabout the 
ompleted subtasks. This assumption is justi�ed in our domains, wherethe 
ompletion of ea
h subtask is a

ompanied with an observation that identi�esthe subtask that has just 
ompleted. This would enable the inferen
e pro
ess tobe mu
h simpler as we do not need to maintain a distribution over the (possibly)
ompleted subtasks. For estimating the user's goal sta
k, we use a DBN similarto the one used in [16℄ and present it in Figure 2. T ij refers to the task at time-step j and level i in the DAG. Oi refers to the 
ompleted subtask at level i. F ijis an indi
ator variable that represents whether T ij has been 
ompleted and a
tsas a multiplexer node. If the lower level task is 
ompleted and the 
urrent task isnot 
ompleted, the transition fun
tion for the 
urrent task would re
e
t 
hoosingan a
tion for the 
urrent subtask. If the lower level task is not 
ompleted, the
urrent task stays at its 
urrent state. If the 
urrent task is 
ompleted, the valueis 
hosen using a prior distribution over the 
urrent task given the higher leveltasks.In the experiments reported in the next se
tion, we 
ompiled the FOCILstatements into a DBN stru
ture by hand. The number of levels of the tasks inthe DBN 
orresponds to the depth of the dire
ted graph in the relational taskhierar
hy. The values of the di�erent task level nodes will be the instantiatedtasks in the hierar
hy. For instan
e, the variable T 1j takes values 
orrespondingto all possible instantiations of the se
ond-level tasks. On
e the set of possiblevalues for ea
h 
urrent task variable in the task is determined, the 
onstraintsare used to 
onstru
t the CPT. For example, the 
onstraint R:Type = S:Typein the Figure 1 implies that a resour
e of one type 
an be stored in the storageof the same type. Assume that the user is gathering gold. Then in the CPT
orresponding to P (T 2j = Store(S; gold) j T 1j = Gather(gold), all the entriesex
ept the ones that 
orrespond to a bank are set to 0. The rules R of the task



s
hema determine the non-zero entries of the CPTs, while the FOCIL statements
onstrain the distributions further. Note that, in general, the subtasks 
ompletedat a parti
ular level in
uen
e the distribution over the 
urrent subtasks at thesame level through the hard 
onstraints, whi
h in
lude ordering relationships. Inour experiments, however, we have 
hosen to not expli
itly store the 
ompletedsubtasks at any stage sin
e the ordering of subtasks has a spe
ial stru
ture.The subtasks are partitioned into small unordered groups, where the groups aretotally ordered. This allows us to maintain a small memory of only the 
ompletedsubtasks in the 
urrent group.
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Fig. 2. Dynami
 Bayesian network that is used to infer the user's goal.To illustrate the 
onstru
tion of the DBN given the hierar
hy and in
uen
estatements better, let us 
onsider the example presented in Figure 1. Assume thatthe user 
hooses to gather g1 (i.e., gold from lo
ation 1). On
e the episode begins,the variables in the DBN are instantiated to the 
orresponding values. The taskat the highest level T 1j , would take values from the set h Gather(g1), Gather(g2),Gather(w1),Gather(w2), Destroy(e1),Destroy(e2) i, assuming that there are 2gold and wood lo
ations and 2 enemies. Similarly, the tasks at level n of the DBNwould assume values 
orresponding to the instantiation of the nodes at the nthlevel of the hierar
hy. The 
onditional in
uen
e statements are used to obtaina prior distribution over the goal sta
k only after every subtask is �nished orat the beginning of the episode to minimize un
ertainty and retain tra
tability.On
e the prior is obtained, the posterior over the goal sta
k is updated afterevery user a
tion. For example, on
e the user �nishes the subtask of 
olle
t(g1),the relational stru
ture would restri
t the set of subgoals to depositing the re-sour
e and the 
onditional in
uen
e statements would provide a prior over thestorage lo
ations. On
e the highest level task of Gather is 
ompleted, the DBNparameters are updated using the 
omplete set of observations. Our hypothesisthat we verify empiri
ally is that, the relational stru
ture and the 
onditionalin
uen
e statements together provide a strong prior over the task sta
k whi
henables fast learning.Given this DBN, we need to infer the value of P (T 1:dj j T 1:dj�1; F 1:dj�1; aj ; O1:d),where d is the depth of the DAG i.e, infer the posterior distribution over the



user's goal sta
k given the observations (the user a
tions in our 
ase) and the
ompleted goal sta
k. As we have mentioned, we are not 
onsidering the 
om-pleted subgoals due to the fa
t that most of our 
onstraints are total order andthere is no ne
essity of maintaining them. Sin
e we always estimate the 
urrentgoal sta
k given the 
urrent a
tion and state, we 
an approximate the DBNinferen
e as a BN inferen
e for the 
urrent time-step. The other issue is thelearning of parameters of the DBN. At the end of every episode, the assistantupdates the parameters of the DBN based on the observations in that episodeusing maximum likelihood estimates with Lapla
e 
orre
tion. Sin
e the modelis inherently relational, we are able to exploit parameter tying between similarobje
ts and hen
e a

elerate the learning of parameters. The parameter learningin the 
ase of relational models is signi�
antly faster as demonstrated by ourexperiments.It should be noted that Fern et.al solved the user MDP and used the valuesto initialize the priors for the user's a
tion models. Though it seems justi�able,it is not always possible to solve the user MDP. We show in our experimentsthat even if we begin with an uniform prior for the a
tion models, the relationsand the hierar
hi
al stru
ture would enable the assistant to be useful even inthe early episodes.3.3 A
tion Sele
tionGiven the assistant POMDP M and the distribution over the user's goal sta
kP (T 1:d j Oj), where Oj are the observations, we 
an 
ompute the value of assis-tive a
tions. Following the approa
h of [9℄, we approximate the assistant POMDPwith a series of MDPsM(t1:d), for ea
h possible goal sta
k t1:d. Thus, the heuris-ti
 value of an a
tion a in a world state w given the observations Oj at time-stepj would now 
orrespond to,H(w; a;Oj) =Xt1:d Qt1:d(w; a) � P (t1:djOj)where Qt1:d(w; a) is the value of performing the a
tion a in state w in theMDP M(t1:d) and P (t1:djOj) is the posterior probability of the goal sta
k giventhe observations. Instead of sampling over the goals, we sample over the possiblegoal sta
k values. The relations between the di�erent goals would restri
t thenumber of goal-subgoal 
ombinations. If the hierar
hy is designed so that thesubgoals are not shared between higher level goals, we 
an greatly redu
e thenumber of possible 
ombinations and hen
e making the sampling pro
ess pra
-ti
ally feasible. We verify this empiri
ally in our experiments. To 
ompute thevalue of Qt1:d(w; a), we use the poli
y rollout te
hnique [5℄ where the assumptionis that the assistant would perform only one a
tion and assumes that the agenttakes over from there and estimates the value by rolling out the user poli
y.Sin
e the assistant has a

ess to the hierar
hy, it 
hooses the a
tions subje
tedto the 
onstraints spe
i�ed by the hierar
hy.To summarize, the high level algorithm is presented below. The parametersare updated at the end of the episode using MLE estimates. When an episodeis 
ompleted, the set of 
ompleted tasks and the a
tion traje
tories are used toupdate the parameters of the nodes at di�erent levels.



{ Iitialize DBNs as in Figure 2 in
orporating all hard 
onstraints into the CPTs{ For ea
h episode� For ea
h time step� Observe any task 
ompleted� Update the posterior distribution of goal sta
k based on the obser-vation, the hard 
onstraints, and FOCI statements� Observe the next a
tion� Update the posterior distribution over the tasks in the task sta
k� Compute the best assistive a
tion� Update the DBN parameters4 Experiments and ResultsIn this se
tion, we brie
y explain the results of simulation of a user in two do-mains2: a gridworld doorman domain where the assistant has to open the rightdoors to the user's destination and a kit
hen domain where the assistant helpsthe user in preparing food. We simulate a user in these domains and 
omparedi�erent versions of the de
ision theoreti
 model and present the results of the
omparison. The di�erent models that we 
ompare are: the relational hierar
hi-
al model that we presented, a hierar
hi
al model where the goal stru
ture ishierar
hi
al, a relational model where there are obje
ts and relations but thereis a 
at goal stru
ture and a 
at model whi
h is a very naive model with a 
atgoal stru
ture and no notion of obje
ts are relationships. Our hypothesis is thatthe relational models would bene�t from parameter tying and hen
e 
an learnthe parameters faster and would o�er better assistan
e than their propositional
ounterparts at earlier episodes. Similarly, the hierar
hi
al model would makeit possible to de
ompose the goal stru
ture thus making it possible to learnfaster. We demonstrate through experiments that the 
ombination of relationaland hierar
hi
al models would enable the assistant to be more e�e
tive than theassistant that uses either of these models.4.1 Doorman DomainIn this domain, the user is in a gridworld where ea
h grid 
ell has 4 doors that theuser has to open to navigate to the adja
ent 
ell (see Figure 3.a). The hierar
hypresented in Figure 1.a was used as the user's goal stru
ture. The goals of theuser are to Gather a resour
e or to Atta
k an enemy. To gather a resour
e, theuser has to 
olle
t the resour
e and deposit it at the 
orresponding lo
ation.Similarly, to destroy an enemy, the user has to kill the dragon and destroy the
astle. There are di�erent kinds of resour
es, namely food and gold. Ea
h resour
e
an be stored only in a storage of its own type (i.e, food is stored in granaryand gold is stored in bank). There are 2 lo
ations for ea
h of the resour
es andits storage. Similarly there are 2 kinds of enemy red and blue. The user has tokill the dragon of a parti
ular kind and destroy the 
astle of the same kind. Theepisode ends when the user a
hieves the highest level goal. The a
tions that the2 These are modi�
ation to the domains presented by Fern et.al[9℄



user 
an perform are to move in 4 dire
tions, open the 4 doors, pi
k up, put downand atta
k. The assistant 
an only open the doors or perform a noop. The door
loses after one time-step so that at any time only one door is open. The goalof the assistant is to minimize the number of doors that the user needs to open.The user and assistant take a
tions alternately in this domain. We employed
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RelationalModelFig. 3. (a)Doorman Domain. Ea
h 
ell has 4 doors that the user has to open to navigateto the adja
ent 
ell. The goal of the assistant is to minimize the number of doors thatthe user has to open. (b)Learning 
urves for the 4 algorithms in the doorman domain.The y-axis presents the average savings for the user due to the assistant.four versions of the assistant that models the user's goal stru
ture: one thatmodels the stru
ture as a relational hierar
hi
al model, se
ond whi
h assumes ahierar
hi
al goal stru
ture but no relational stru
ture (i.e., the model does notknow that the 2 gold lo
ations are of the same type et
 and thus 
annot exploitparameter tying), third whi
h assumes a relational stru
ture of user's goal butassumes 
at goals and hen
e does not know the relationship between 
olle
t anddeposit of subtasks, and the fourth that assumes a 
at goal stru
ture. A stateis a tuple hs; di, where s stands for the the agent's 
ell and d is the door that isopen. For the two 
at 
ases, there is a ne
essity in
lude variables su
h as 
arrythat 
an take 5 possible values and kill that take 3 values to 
apture the stateof the user having 
olle
ted a resour
e or killed the dragon before rea
hing theeventual destination. Hen
e the state spa
e of the 2 
at models is 15 times morethan that of the hierar
hi
al one.To 
ompare the 4 algorithms, we solved the underlying hierar
hi
al MDPand then used the Q-values to simulate the user. For ea
h episode, the higherlevel goals are 
hosen at random and the user attempts to a
hieve the goal.We 
al
ulate usefulness of the assistant as the ratio of the 
orre
t doors thatit opens to the total number of doors that are needed to be opened for theuser to rea
h his goal whi
h is a worst-
ase measure of the 
ost savings of theuser. We average the usefulness every 10 episodes. The user's poli
y is hiddenfrom the assistant in all the algorithms and the assistant learns the user poli
yas and when the user performs his a
tions. The relational model 
aptures therelationship between the resour
es and storage and between the dragon's type



and the 
astle's type. The hierar
hi
al model 
aptures the relationship betweenthe di�erent goals and subgoals, for instan
e, that the user has to 
olle
t someresour
e in order to deposit it, et
. The hierar
hi
al relational model has a

essto both the kinds of knowledge and also to the knowledge that the distan
e tothe storage lo
ation in
uen
es the 
hoi
e of the storage lo
ation.The results are presented in Figure 3.b. The graph presents the average use-fulness of the assistant after every 10 episodes. As 
an be seen from the �gure,the relational hierar
hi
al assistant is more useful than the other models. Inparti
ular, it 
an exploit the prior knowledge e�e
tively as demonstrated by therapid in
rease in the usefulness in earlier episodes. The hierar
hi
al and rela-tional models also exploit the prior knowledge and hen
e have a qui
ker learningrate than the 
at model (as 
an be seen from the �rst few episodes of the �g-ure). The hierar
hi
al relational model outperforms the hierar
hi
al model asit 
an share parameters and hen
e has to learn a smaller number of parame-ters. It outperforms the relational model as it 
an exploit the knowledge of theuser's goal stru
ture e�e
tively and 
an learn qui
kly at the early stages of anepisode.required for 
omputing the best a
tion of the assistant for all the fouralgorithms. This 
learly demonstrates that the hierar
hi
al relational model 
anbe more e�e
tive without in
reasing the 
omputational 
ost.4.2 Kit
hen DomainThe other experimental domain is a kit
hen domain where the user has to 
ooksome dishes. In this domain, the user has 2 kinds of higher-level goals: one inwhi
h he 
ould prepare a re
ipe whi
h 
ontains a main dish and a side dish andthe se
ond in whi
h, he 
ould use some instant food to prepare a main dish anda side dish. There are 2 kinds of main dishes and 2 kinds of side dishes that he
ould prepare from the re
ipe. Similarly, there are 2 kinds of main dishes and2 kinds of side dishes that he 
ould prepare from instant food. The hierar
hy ispresented in Figure 4.a. The symbol 2 is used to 
apture the information thatthe obje
t is part of the plan. For instan
e, the expression I 2 M:Ing means thatthe parameter to be passed is the ingredient that is used to 
ook the main dish.The plans are partially ordered. There are 2 shelves with 3 ingredients ea
h. Theshelves have doors that must be opened before fet
hing ingredients and only onedoor 
an be open at a time.The state 
onsists of the 
ontents of the bowl, the ingredient on the table,the mixing state and temperature state of the ingredient (if it is in the bowl)and the door that is open. The user's a
tions are: open the doors, fet
h theingredients, pour them into the bowl, mix, heat and bake the 
ontents of thebowl, or repla
e an ingredient ba
k to the shelf. The assistant 
an perform alluser a
tions ex
ept for pouring the ingredients or repla
ing an ingredient ba
k tothe shelf. The 
ost of all non-pour a
tions is -1. Unlike in the doorman domain,here it is not ne
essary for the assistant to wait at every alternative time step.The assistant 
ontinues to a
t until the noop be
omes the best a
tion a

ordingto the heuristi
. The episode begins with all the ingredients in the shelf and thedoors 
losed. The episode ends when the user a
hieves the goal of preparing amain dish and a side dish either with the re
ipe or using instant food.



The savings in this domain is the ratio of the 
orre
t non-pour a
tions that theassistant has performed to the number of a
tions required for the goal. Similarto the other domain, we 
ompared 4 di�erent types of models of assistan
e.The �rst is the hierar
hi
al relational model that has the knowledge of the goal-subgoal hierar
hy and also has the relationship between the subgoals themselves.It knows that the type of the main dish in
uen
es the 
hoi
e of the side dish.The se
ond model is the hierar
hi
al model, that has the notions of the goalsand subgoals but no knowledge of the relationship between the main dishes andthe side dishes and thus has more number of parameters to learn. The relationalmodel assumes that there are two kinds of food namely the one prepared fromre
ipe and one from instant food and does not possess any knowledge about thehierar
hi
al goal stru
ture. The 
at model 
onsiders the preparation of ea
h ofthe 8 dishes as a separate goal and assists the user. Both the 
at model and therelational model assume that the user is always going to prepare the dishes inpairs but do not have the notion of main dish and side dishes or the ordering
onstraints between them.
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Relational HierarchicalFig. 4. (a)The kit
hen domain hierar
hy. (b)Learning 
urves of the di�erent algorithmsin the Kit
hen Domain.The results are presented in Figure 4.b. As 
an be seen, the hierar
hi
al mod-els greatly dominate the 
at ones. Among the models, the relational models havea faster learning rate than their propositional 
ounterparts. They perform betterin the earlier few episodes whi
h 
learly demonstrates that relational ba
kgroundknowledge a

elerates learning. In this domain, the hierar
hi
al knowledge seemsto dominate the relational knowledge. This is due to the fa
t that all the subgoalsare similar (i.e, ea
h of them is preparing some kind of food) and the hierar
hi
alknowledge 
learly states the ordering of these subgoals. The relational hierar-
hi
al model has a better savings rate in the �rst few episodes as it has a fewerparameters to learn. Both the 
at model and the relational model eventually 
on-verged on the same savings after 700 episodes. These results demonstrate thatthough all the models 
an eventually 
onverge to the same value, the relationalhierar
hi
al model 
onverges in early episodes.



5 Related WorkMost of the de
ision-theoreti
 assistants have been formulated as POMDPs thatare approximately solved o�ine. For instan
e, the COACH system helped peoplesu�ering from Dementia by giving them appropriate prompts as needed in theirdaily a
tivities [2℄. In this system, there is a single �xed goal of washing handsfor the user. In Ele
tri
 Elves, the assistant is used to res
hedule a meetingshould it appear that the user is likely to miss it [6℄. These systems do not havea hierar
hi
al goal stru
ture for the user while in our system, the assistant infersthe user's goal 
ombinations and renders assistan
e.Several plan re
ognition algorithms use a hierar
hi
al stru
ture for the user'splan. These systems would typi
ally use a hierar
hi
al HMM [17℄ or an abstra
tHMM [1℄ to tra
k the user's plan. They unroll the HMMs to a DBN and performinferen
e to infer the user's plan. We follow a similar approa
h, but the keydi�eren
e is that in our system, the user's goals are relational. Also, we allowfor ri
her models and do not restri
t the user's goal stru
ture to be modeled bya HMM. We use the qualitative in
uen
e statements to model the prior overthe user's goal sta
k. We observe that this 
ould be 
onsidered as a method toin
orporate ri
her user models inside the plan re
ognition systems. There hasbeen substantial resear
h in the area of user modeling. Systems that have beenused for assistan
e in spreadsheets [7℄ and text editing [8℄ have used hand
odedDBNs to infer about the user. Our system provides a natural way to in
orporateuser models into a de
ision-theoreti
 assistant framework.In re
ent years, there have been several �rst-order probabilisti
 languages de-veloped su
h as PRMs [14℄, BLPs [15℄, RBNs [12℄, MLNs [13℄ and many others.One of the main features of these languages is that they allow the domain expertto spe
ify the prior knowledge in a su

in
t manner. These systems exploit the
on
ept of parameter tying through the use of obje
ts and relations. In this pa-per, we showed that these systems 
an be exploited in de
ision-theoreti
 setting.We 
ombined the hierar
hi
al models typi
ally used in reinfor
ement learningwith the kinds of in
uen
e knowledge typi
ally en
oded in relational models toprovide a strong bias on the user poli
ies and a

elerate learning.6 Con
lusions and Future WorkIn this work we proposed the in
orporation of parameterized task hierar
hies to
apture the goal stru
ture of a user in a de
ision-theoreti
 model of assistan
e.We used the relational models to spe
ify the prior knowledge as relational hier-ar
hies and as a means to provide informative priors. We evaluated our modelagainst the non-hierar
hi
al and non-relational versions of the model and es-tablished that 
ombining both the hierar
hies and relational models makes theassistant more useful. The in
orporation of hierar
hies would enable the assis-tant to address several other problems in future. The most important one isthe 
on
ept of parallel a
tions. Our 
urrent model assumes that the user andthe assistant have interleaved a
tions and 
annot a
t in parallel. Allowing par-allel a
tions 
an be leveraged if the goal stru
ture is hierar
hi
al as the user
an a
hieve a subgoal while the assistant 
an try to a
hieve another one. Yetanother problem that 
ould be handled due to the in
orporation of hierar
hies is



the possibility of the user 
hanging his goals midway during an episode. Finally,we 
an also imagine providing assistan
e to the user in the 
ases where he forgetsto a
hieve a parti
ular subgoal.Referen
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