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Abstract. Building intelligent assistants has been a long-cherished goal
of AT and many were built and fine-tuned to specific application do-
mains. In recent work, a domain-independent decision-theoretic model
of assistance was proposed, where the task is to infer the user’s goal
and take actions that minimize the expected cost of the user’s policy.
In this paper, we extend this work to domains where the user’s policies
have rich relational and hierarchical structure. Our results indicate that
relational hierarchies allow succinct encoding of prior knowledge for the
assistant, which in turn enables the assistant to start helping the user
after a relatively small amount of experience.

1 Introduction

There has been a growing interest in developing intelligent assistant systems that
help users in a variety of tasks ranging from washing hands to travel planning
[2,6,3]. The emphasis in these systems has been to provide a well-engineered
domain-specific solution to the problem of reducing the users’ cognitive load in
their daily tasks. A decision-theoretic model was proposed recently to formalize
the general problem of assistantship as a partially observable Markov decision
process (POMDP). In this framework, the assistant and the user interact in the
environment to change its state. The goal of the assistant is to take actions that
minimize the expected cost of completing the user’s task [9]. In most situations,
however, the user’s task or goal! is not directly observable to the assistant, which
makes the problem of quickly inferring the user’s goals from observed actions
critically important. One approach to goal inference [9] is to learn a probabilistic
model of the user’s policy for achieving various goals and then to compute a
posterior distribution over goals given the current observation history. However,
for this approach to be useful in practice, it is important that the policy be
learned as early in the lifetime of the assistant as possible. We call this the
problem of “early assistance”, which is the main motivation behind this work.
One solution to the early assistance problem, advocated in [9], is to assume
that (a) the user’s policy is optimal with respect to their goals and actions,
the so called “rationality assumption,” and that (b) the optimal policy can be
computed quickly by knowing the goals, the “tractability assumption.” Under
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these assumptions, the user’s policy for each goal can be approximated by an
optimal policy, which may be quickly computed. Unfortunately in many real
world domains, neither of these assumptions is realistic. Real world domains
are too complex to allow tractable optimal solutions. The limited computational
power of the user renders the policies to be locally optimal at best.

In this paper, we propose a different solution to the early assistance prob-
lem, namely constraining the user’s policies using prior domain knowledge in
the form of hierarchical and relational constraints. Consider an example of a
desktop assistant similar to CALO [4] that helps an academic researcher. The
researcher could have some high level tasks like writing a proposal, which may
be divided into several subtasks such as preparing the cover page, writing the
project description, preparing the budget, completing the biography, etc. with
some ordering relationships between them. We expect that an assistant that
knows about this high level structure would better help the user. For example,
if the budget cannot be prepared before the cover page is done, the assistant
would not consider that possibility and can determine the user’s task faster. In
addition to the hierarchical structure, the tasks, subtasks, and states have a class
and relational structure. For example, the urgency of a proposal depends on the
closeness of the deadline. The deadline of the proposal is typically mentioned on
the web page of the agency to which the proposal is addressed. The collaboration
potential of an individual on a proposal depends on their expertise in the areas
related to the topic of the proposal. Knowing these relationships and how they
influence each other could make the assistant more effective.

The current paper extends the assistantship model to hierarchical and rela-
tional settings, building on the work in hierarchical reinforcement learning[10]
and statistical relational learning (SRL).We extend the assistantship framework
of [9] by including parameterized task hierarchies and conditional relational in-
fluences as prior knowledge of the assistant. We compile this knowledge into an
underlying Dynamic Bayesian network and use Bayesian network inference algo-
rithms to infer the distribution of user’s goals given a sequence of their atomic
actions. We estimate the parameters for the user’s policy and influence rela-
tionships by observing the users’ actions. Once the user’s goal distribution is
inferred, we determine an approximately optimal action by estimating the Q-
values of different actions using rollouts and picking the action that has the least
expected cost.

We evaluate our relational hierarchical assistantship model in two different
toy domains and compare it to a propositional flat model, propositional hier-
archical model, and a relational flat model. Through simulations, we show that
when the prior knowledge of the assistant matches the true behavior of the
user, the relational hierarchical model provides superior assistance in terms of
performing useful actions. The relational flat model and the propositional hier-
archical model provide better assistance than the propositional flat model, but
fall short of the performance of the relational hierarchical approach.

The rest of the paper is organized as follows: Section 2 summarizes the basic
decision-theoretic assistance framework, which is followed by the relational hier-



archical extension in Section 3. Section 4 presents the experiments and results,
Section 5 outlines some related work and Section 6 concludes the paper.

2 Decision-Theoretic Assistance

In this section, we briefly describe the decision-theoretic model of assistance of
[9] which forms the basis of our work. In this setting, there is a user acting
in the environment and an assistant that observes the user and attempts to
assist him. The environment is modeled as an MDP described by the tuple
(W, A, A", T,C,I), where W is a finite set of world states, A is a finite set of
user actions, A’ is a finite set of assistant actions, and T'(w, a, w') is a transition
function that represents the probability of transitioning to state w' given that
action a € AU A’ is taken in state w. C is an action-cost function that maps
W x (AU A') to real numbers, and I is an initial state distribution over W. An
episodic setting is assumed, where the user chooses a goal and tries to achieve it.
The assistant observes the user’s actions and the world states but not the goal.
After every user’s action, the assistant gets a chance to take one or more actions
ending with a noop action, after which the user gets a turn. The objective is to
minimize the sum of the costs of user and assistant actions.

The user is modeled as a stochastic policy 7(a|w, g) that gives the probability
of selecting action a € A given that the user has goal g and is in state w. The
objective is to select an assistant policy 7’ that minimizes the expected cost given
the observed history of the user. The environment is only partially observable
to the assistant since it cannot observe the user’s goal. It can be modeled as a
POMDP, where the user is treated as part of the environment.

In [9], the assistant POMDP is solved approximately, by first estimating the
goal of the user given the history of his actions, and then selecting the best
assistive action given the posterior goal distribution. One of the key problems
in effective assistantship is to learn the task quickly enough to start helping the
user as early as possible. In [9], this problem is solved by assuming that the
user is rational, i.e., he takes actions to minimize the expected cost. Further, the
user MDP is assumed to be tractably solvable for each goal. Hence, their system
solves the user MDP for each goal and uses it to initialize the user’s policy.

Unfortunately the dual assumptions of tractability MDP and rationality
make this approach too restrictive to be useful in real-world domains that are
too complicated for any user to approach perfect rationality. We propose a
knowledge-based approach to the effective assistantship problem that bypasses
the above two assumptions. We provide the assistant with partial knowledge of
the user’s policy, in the form of a task hierarchy with relational constraints on the
subtasks and their parameters. Given this strong prior knowledge, the assistant
is able to learn the user’s policy quickly by observing his actions and updating
the policy parameters. We appropriately adopt the goal estimation and action
selection steps of [9] to the new structured policy of the user and show that it
performs significantly better than the unstructured approach.



3 A Relational Hierarchical Model of Assistance

In this section, we propose a relational hierarchical representation of the user’s
policy and show its use for goal estimation and action selection.

3.1 Relational Hierarchical Policies

Users in general, solve difficult problems by decomposing them into a set of
smaller ones with some ordering constraints between them. For example, pro-
posal writing might involve writing the project description, preparing the bud-
get, and then getting signatures from proper authorities. Also, the tasks have
a natural class-subclass hierarchy, e.g., submitting a paper to ICML and IJCAI
might involve similar parameterized subtasks. In the real world, the tasks are
chosen based on some attributes of the environment or the user. For instance,
the paper the user works on next is influenced by the closeness of the deadline.
It is these kinds of relationships that we want to express as prior knowledge so
that the assistant can quickly learn the relevant parameters of the policy. We
model the user as a stochastic policy 7(a|w, T, O) that gives the probability of
selecting action a € A given that the user has goal stack 7" and is in state w. O
is the history of the observed states and actions. Learning a flat, propositional
representation of the user policy is not practical in many domains. Rather, in
this work, we represent the user policy as a relational task hierarchy and speed
up the learning of the hierarchy parameters via the use of conditional influence
statements that constrain the space of probabilistic dependencies.

Relational Task Hierarchies. A relational task hierarchy is specified over
a set of variables, domain constants, and predicate symbols. There are predicate
symbols for representing properties of world states and specifying task names.
The task predicates are divided into primitive and abstract tasks. Primitive
task predicates will be used to specify ground actions in the MDP that can be
directly executed by the user. Abstract task predicates will be used to specify
non-primitive procedures (that involve calling subtasks) for achieving high-level
goals. Below we will use the term task stack to mean a sequence of ground task
names (i.e. task predicates applied to constants).

A relational task hierarchy will be composed of relational task schemas which
we now define.

Definition 1 (Relational Task Schema). A relational task schema is either:
1) A primitive task predicate applied to the appropriate number of variables, or
2) A tuple (N, S, R,G, P), where the task name N is an abstract task predicate
applied to a set of variables V', S is a set of child relational task schemas (i.e. the
subtasks), R is a set of logical rules over state, task, and background predicates
that are used to derive a candidate set of ground child tasks in a given situation,
G is a set of rules that define the goal conditions for the task, and P(s|T,w,O)
18 a probability distribution that gives the probability of a ground child task s
conditioned on a task stack T, a world state w, and an observation history O.

Each way of instantiating the variables of a task schema with domain constants
yields a ground task. The semantics of a relational task schema specify what



it means for the user to “execute to completion” a particular ground task as
follows. As the base case, a primitive ground task is executed-to-completion by
simply executing the corresponding primitive MDP action until it terminates,
resulting in an updated world state.

An abstract ground task, can intuitively be viewed as specifying a stochas-
tic policy over its child subtasks which is executed until its goal condition is
satisfied. More precisely, an abstract ground task ¢ is executed-to-completion by
repeatedly selecting ground child tasks that are executed-to-completion until the
goal condition G is satisfied. At each step given the current state w, observation
history O, task stack T', and set of variable bindings B (that include the bindings
for t) a child task is selected as follows: 1) Subject to the variable bindings, the
rules R are used to derive a set of candidate ground child tasks. 2) From this
set we draw a ground task s according to P, properly normalized to only take
into account the set of available subtasks. 3) The drawn ground task is then
executed-to-completion in the context of variables bindings B’ that include the
bindings in B along with those in s and a task stack corresponding to pushing
t onto T'.

Based on the above description, the set of rules R can be viewed as specifying
hard constraints on the legal subtasks with P selecting among those tasks that
satisfy the constraints. The hard constraints imposed by R can be used restrict
the argument of the child task to be of a certain type or may place mutual
constraints on variables of the child tasks. For example, we could specify rules
that say that the document to be attached in an email should belong to the
project that the user is working on. Also, the rules can specify the ordering
constraint between the child tasks. For instance, it would be possible to say that
to submit a paper the task of writing the paper must be completed first.

We can now define a relational task hierarchy.

Definition 2 (Relational Task Hierarchy). A relational task hierarchy is
rooted acyclic graph whose nodes are relational task schemas that satisfy the
following constraints: 1) The root is a special subtask called ROOT. 2) The
leaves of the graph are primitive task schemas. 8) There is an arc from node ny
to node no if and only if the task schema of ns is a child of task schema n;.

We will use relational task hierarchies to specify the policy of a user. Specifically,
the user’s actions are assumed to be generated by executing the ROOT task of
the hierarchy with an initially empty goal stack and set of variable bindings.
An example of a Relational Task Hierarchy is presented in the Figure 1 for
a game involving resource gathering and tactical battles. For each task schema
we depict some of the variable binding constraints enforced by the R as a logical
expression. For clarity we do not depict the ordering constraints imposed by R.
From the ROOT task the user has two distinct choices to either gathering a
resource, Gather(R) or attacking an enemy, Attack(E). Each of these tasks can
be achieved by executing either a primitive action (represented with ovals in the
figure) or another subtask. For example, to gather a resource, the user needs
to collect the resource (denoted by Collect(R)) and deposit the resource at the
storage (denoted by Deposit(R,S), which indicates that R is to be deposited in S).



Resources are stored in the storages of the same type (for example, gold in a bank,
food in a granary etc.), which is expressed as the constraint R.type = S.type in
the figure. Once the user chooses to gather a resource (say goldl), the value of
R in all the nodes that are lower than the node Gather(R) is set to the value
goldl. R is freed after Gather is completed.

[ collect(R) | [ Deposit(R.S) | [KillDragon(D) | [DestroyCamp(E)]

L =SxXoc

L=R.Loc DropOff(R,S)

Fig.1. Example of a task hierarchy of the user. The inner nodes indicate subtasks
while the leaves are the primitive actions. The tasks are parameterized and the tasks
at the higher level will call the tasks at the lower level

Conditional Influences: Often it is relatively easy to hand-code the rule
sets R that encode hard-constraints on child tasks. It is more difficult to precisely
specify the probability distributions for each task schema. In this work, we take
the approach of hand-coding a set of conditional influence statements that are
used to constrain and hence speedup the learning of these probability distribu-
tions. The conditional influences describe the objects and their attributes that
influence a subtask choice based on some condition, i.e., these statements serve
to capture a distribution over the subtasks given some attributes of the envi-
ronment (P(subtask | worldstate)). For example, since there could be multiple
storage locations for a resource, the choice of a storage may be influenced by its
distance to the resource. While this knowledge can be easily expressed in most
SRL formalisms such as Probabilistic Relational Language [18] and Bayesian
Logic Programs [15], we give an example in First-Order Conditional Influence
Language (FOCIL) [19].

If {Goal(Gather(R)),Completed(Collect(R)),Equal(Type(R),Type(S))} then
Distance(Loc(R), Loc(S))) Qinf subgoal(Deposit(R,S))

A FOCIL statement of the form I f{Z(a)} then Yi(a),...,Yi(a) Qinf X(«a)
means that Y;(a), ..., Y () influence X (o) when Z(a) is true, where « is a set
of logical variables. The above statement captures the knowledge that if R is
a resource that has been collected, and S is a storage where R can be stored,



the choice of the value of S is influenced by the distance between R and S. The
probability of choosing a subtask in a given state is determined solely by the
attribute values of the objects mentioned in the conditional influence statement,
which puts a strong constraint on the user’s policy and makes it easier to learn.

3.2 Goal Estimation

In this section, we describe our goal estimation method, given the kind of prior
knowledge described in the previous section, and the observations, which consist
of the user’s primitive actions. Note that the probability of the user’s action
choice depends in general on not only the pending subgoals, but also on some
of the completed subgoals including their variable bindings. Hence, in general,
the assistant POMDP must maintain a belief state distribution over the pending
and completed subgoals. which we call the “goal structure.”

We now define the assistant POMDP. The state space is W x T where W
is the set of world states and T is the user’s goal structure. Correspondingly, the
transition probabilities are functions between (w,t) and (w’,t). Similarly,
the cost is a function of (state, action) pairs. The observation space now
includes the user’s actions and their parameters (for example, the resource that
is collected, the enemy type that is killed etc).

In this work, we make a simplifying assumption that there is no uncertainty
about the completed subtasks. This assumption is justified in our domains, where
the completion of each subtask is accompanied with an observation that identifies
the subtask that has just completed. This would enable the inference process to
be much simpler as we do not need to maintain a distribution over the (possibly)
completed subtasks. For estimating the user’s goal stack, we use a DBN similar
to the one used in [16] and present it in Figure 2. T]? refers to the task at time-
step j and level ¢ in the DAG. O? refers to the completed subtask at level i. F]Z
is an indicator variable that represents whether T]? has been completed and acts
as a multiplexer node. If the lower level task is completed and the current task is
not completed, the transition function for the current task would reflect choosing
an action for the current subtask. If the lower level task is not completed, the
current task stays at its current state. If the current task is completed, the value
is chosen using a prior distribution over the current task given the higher level
tasks.

In the experiments reported in the next section, we compiled the FOCIL
statements into a DBN structure by hand. The number of levels of the tasks in
the DBN corresponds to the depth of the directed graph in the relational task
hierarchy. The values of the different task level nodes will be the instantiated
tasks in the hierarchy. For instance, the variable le takes values corresponding
to all possible instantiations of the second-level tasks. Once the set of possible
values for each current task variable in the task is determined, the constraints
are used to construct the CPT. For example, the constraint R.Type = S.Type
in the Figure 1 implies that a resource of one type can be stored in the storage
of the same type. Assume that the user is gathering gold. Then in the CPT
corresponding to P(T} = Store(S, gold) | T} = Gather(gold), all the entries
except the ones that correspond to a bank are set to 0. The rules R of the task



schema determine the non-zero entries of the CPTs, while the FOCIL statements
constrain the distributions further. Note that, in general, the subtasks completed
at a particular level influence the distribution over the current subtasks at the
same level through the hard constraints, which include ordering relationships. In
our experiments, however, we have chosen to not explicitly store the completed
subtasks at any stage since the ordering of subtasks has a special structure.
The subtasks are partitioned into small unordered groups, where the groups are
totally ordered. This allows us to maintain a small memory of only the completed
subtasks in the current group.

Fig. 2. Dynamic Bayesian network that is used to infer the user’s goal.

To illustrate the construction of the DBN given the hierarchy and influence
statements better, let us consider the example presented in Figure 1. Assume that
the user chooses to gather g1 (i.e., gold from location 1). Once the episode begins,
the variables in the DBN are instantiated to the corresponding values. The task
at the highest level T}, would take values from the set ( Gather(g1), Gather(g2),
Gather(wl),Gather(w2), Destroy(el),Destroy(e2) ), assuming that there are 2
gold and wood locations and 2 enemies. Similarly, the tasks at level n of the DBN
would assume values corresponding to the instantiation of the nodes at the nt"
level of the hierarchy. The conditional influence statements are used to obtain
a prior distribution over the goal stack only after every subtask is finished or
at the beginning of the episode to minimize uncertainty and retain tractability.
Once the prior is obtained, the posterior over the goal stack is updated after
every user action. For example, once the user finishes the subtask of collect(g1),
the relational structure would restrict the set of subgoals to depositing the re-
source and the conditional influence statements would provide a prior over the
storage locations. Once the highest level task of Gather is completed, the DBN
parameters are updated using the complete set of observations. Our hypothesis
that we verify empirically is that, the relational structure and the conditional
influence statements together provide a strong prior over the task stack which
enables fast learning.

Given this DBN, we need to infer the value of P(T;¢ | T}, F}*%,a;,0"%%),

J=1 5 -1
where d is the depth of the DAG i.e, infer the posterior distribution over the



user’s goal stack given the observations (the user actions in our case) and the
completed goal stack. As we have mentioned, we are not considering the com-
pleted subgoals due to the fact that most of our constraints are total order and
there is no necessity of maintaining them. Since we always estimate the current
goal stack given the current action and state, we can approximate the DBN
inference as a BN inference for the current time-step. The other issue is the
learning of parameters of the DBN. At the end of every episode, the assistant
updates the parameters of the DBN based on the observations in that episode
using maximum likelihood estimates with Laplace correction. Since the model
is inherently relational, we are able to exploit parameter tying between similar
objects and hence accelerate the learning of parameters. The parameter learning
in the case of relational models is significantly faster as demonstrated by our
experiments.

It should be noted that Fern et.al solved the user MDP and used the values
to initialize the priors for the user’s action models. Though it seems justifiable,
it is not always possible to solve the user MDP. We show in our experiments
that even if we begin with an uniform prior for the action models, the relations
and the hierarchical structure would enable the assistant to be useful even in
the early episodes.

3.3 Action Selection

Given the assistant POMDP M and the distribution over the user’s goal stack
P(T*4| O;), where O; are the observations, we can compute the value of assis-
tive actions. Following the approach of [9], we approximate the assistant POMDP
with a series of MDPs M (t!:?), for each possible goal stack ¢!?. Thus, the heuris-
tic value of an action a in a world state w given the observations O; at time-step
7 would now correspond to,

H(w,a,0;) =Y Qua(w,a) - P(t"]0;)
1:d

where Q;1.4(w,a) is the value é)f performing the action a in state w in the
MDP M (t*%) and P(t**?|0,) is the posterior probability of the goal stack given
the observations. Instead of sampling over the goals, we sample over the possible
goal stack values. The relations between the different goals would restrict the
number of goal-subgoal combinations. If the hierarchy is designed so that the
subgoals are not shared between higher level goals, we can greatly reduce the
number of possible combinations and hence making the sampling process prac-
tically feasible. We verify this empirically in our experiments. To compute the
value of Q;1.a (w, a), we use the policy rollout technique [5] where the assumption
is that the assistant would perform only one action and assumes that the agent
takes over from there and estimates the value by rolling out the user policy.
Since the assistant has access to the hierarchy, it chooses the actions subjected
to the constraints specified by the hierarchy.

To summarize, the high level algorithm is presented below. The parameters
are updated at the end of the episode using MLE estimates. When an episode
is completed, the set of completed tasks and the action trajectories are used to
update the parameters of the nodes at different levels.



— litialize DBNs as in Figure 2 incorporating all hard constraints into the CP'T's
— For each episode
e For each time step
* Observe any task completed
* Update the posterior distribution of goal stack based on the obser-
vation, the hard constraints, and FOCI statements
* Observe the next action
* Update the posterior distribution over the tasks in the task stack
x Compute the best assistive action
e Update the DBN parameters

4 Experiments and Results

In this section, we briefly explain the results of simulation of a user in two do-
mains?: a gridworld doorman domain where the assistant has to open the right
doors to the user’s destination and a kitchen domain where the assistant helps
the user in preparing food. We simulate a user in these domains and compare
different versions of the decision theoretic model and present the results of the
comparison. The different models that we compare are: the relational hierarchi-
cal model that we presented, a hierarchical model where the goal structure is
hierarchical, a relational model where there are objects and relations but there
is a flat goal structure and a flat model which is a very naive model with a flat
goal structure and no notion of objects are relationships. Our hypothesis is that
the relational models would benefit from parameter tying and hence can learn
the parameters faster and would offer better assistance than their propositional
counterparts at earlier episodes. Similarly, the hierarchical model would make
it possible to decompose the goal structure thus making it possible to learn
faster. We demonstrate through experiments that the combination of relational
and hierarchical models would enable the assistant to be more effective than the
assistant that uses either of these models.

4.1 Doorman Domain

In this domain, the user is in a gridworld where each grid cell has 4 doors that the
user has to open to navigate to the adjacent cell (see Figure 3.a). The hierarchy
presented in Figure 1.a was used as the user’s goal structure. The goals of the
user are to Gather a resource or to Attack an enemy. To gather a resource, the
user has to collect the resource and deposit it at the corresponding location.
Similarly, to destroy an enemy, the user has to kill the dragon and destroy the
castle. There are different kinds of resources, namely food and gold. Each resource
can be stored only in a storage of its own type (i.e, food is stored in granary
and gold is stored in bank). There are 2 locations for each of the resources and
its storage. Similarly there are 2 kinds of enemy red and blue. The user has to
kill the dragon of a particular kind and destroy the castle of the same kind. The
episode ends when the user achieves the highest level goal. The actions that the

2 These are modification to the domains presented by Fern et.al[9)]



user can perform are to move in 4 directions, open the 4 doors, pick up, put down
and attack. The assistant can only open the doors or perform a noop. The door
closes after one time-step so that at any time only one door is open. The goal
of the assistant is to minimize the number of doors that the user needs to open.
The user and assistant take actions alternately in this domain. We employed
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Fig. 3. (a)Doorman Domain. Each cell has 4 doors that the user has to open to navigate
to the adjacent cell. The goal of the assistant is to minimize the number of doors that
the user has to open. (b)Learning curves for the 4 algorithms in the doorman domain.
The y-axis presents the average savings for the user due to the assistant.

four versions of the assistant that models the user’s goal structure: one that
models the structure as a relational hierarchical model, second which assumes a
hierarchical goal structure but no relational structure (i.e., the model does not
know that the 2 gold locations are of the same type etc and thus cannot exploit
parameter tying), third which assumes a relational structure of user’s goal but
assumes flat goals and hence does not know the relationship between collect and
deposit of subtasks, and the fourth that assumes a flat goal structure. A state
is a tuple (s, d), where s stands for the the agent’s cell and d is the door that is
open. For the two flat cases, there is a necessity include variables such as carry
that can take 5 possible values and k:ll that take 3 values to capture the state
of the user having collected a resource or killed the dragon before reaching the
eventual destination. Hence the state space of the 2 flat models is 15 times more
than that of the hierarchical one.

To compare the 4 algorithms, we solved the underlying hierarchical MDP
and then used the Q-values to simulate the user. For each episode, the higher
level goals are chosen at random and the user attempts to achieve the goal.
We calculate usefulness of the assistant as the ratio of the correct doors that
it opens to the total number of doors that are needed to be opened for the
user to reach his goal which is a worst-case measure of the cost savings of the
user. We average the usefulness every 10 episodes. The user’s policy is hidden
from the assistant in all the algorithms and the assistant learns the user policy
as and when the user performs his actions. The relational model captures the
relationship between the resources and storage and between the dragon’s type



and the castle’s type. The hierarchical model captures the relationship between
the different goals and subgoals, for instance, that the user has to collect some
resource in order to deposit it, etc. The hierarchical relational model has access
to both the kinds of knowledge and also to the knowledge that the distance to
the storage location influences the choice of the storage location.

The results are presented in Figure 3.b. The graph presents the average use-
fulness of the assistant after every 10 episodes. As can be seen from the figure,
the relational hierarchical assistant is more useful than the other models. In
particular, it can exploit the prior knowledge effectively as demonstrated by the
rapid increase in the usefulness in earlier episodes. The hierarchical and rela-
tional models also exploit the prior knowledge and hence have a quicker learning
rate than the flat model (as can be seen from the first few episodes of the fig-
ure). The hierarchical relational model outperforms the hierarchical model as
it can share parameters and hence has to learn a smaller number of parame-
ters. It outperforms the relational model as it can exploit the knowledge of the
user’s goal structure effectively and can learn quickly at the early stages of an
episode.required for computing the best action of the assistant for all the four
algorithms. This clearly demonstrates that the hierarchical relational model can
be more effective without increasing the computational cost.

4.2 Kitchen Domain

The other experimental domain is a kitchen domain where the user has to cook
some dishes. In this domain, the user has 2 kinds of higher-level goals: one in
which he could prepare a recipe which contains a main dish and a side dish and
the second in which, he could use some instant food to prepare a main dish and
a side dish. There are 2 kinds of main dishes and 2 kinds of side dishes that he
could prepare from the recipe. Similarly, there are 2 kinds of main dishes and
2 kinds of side dishes that he could prepare from instant food. The hierarchy is
presented in Figure 4.a. The symbol € is used to capture the information that
the object is part of the plan. For instance, the expression I € M.Ing means that
the parameter to be passed is the ingredient that is used to cook the main dish.
The plans are partially ordered. There are 2 shelves with 3 ingredients each. The
shelves have doors that must be opened before fetching ingredients and only one
door can be open at a time.

The state consists of the contents of the bowl, the ingredient on the table,
the mixing state and temperature state of the ingredient (if it is in the bowl)
and the door that is open. The user’s actions are: open the doors, fetch the
ingredients, pour them into the bowl, mix, heat and bake the contents of the
bowl, or replace an ingredient back to the shelf. The assistant can perform all
user actions except for pouring the ingredients or replacing an ingredient back to
the shelf. The cost of all non-pour actions is -1. Unlike in the doorman domain,
here it is not necessary for the assistant to wait at every alternative time step.
The assistant continues to act until the noop becomes the best action according
to the heuristic. The episode begins with all the ingredients in the shelf and the
doors closed. The episode ends when the user achieves the goal of preparing a
main dish and a side dish either with the recipe or using instant food.



The savings in this domain is the ratio of the correct non-pour actions that the
assistant has performed to the number of actions required for the goal. Similar
to the other domain, we compared 4 different types of models of assistance.
The first is the hierarchical relational model that has the knowledge of the goal-
subgoal hierarchy and also has the relationship between the subgoals themselves.
It knows that the type of the main dish influences the choice of the side dish.
The second model is the hierarchical model, that has the notions of the goals
and subgoals but no knowledge of the relationship between the main dishes and
the side dishes and thus has more number of parameters to learn. The relational
model assumes that there are two kinds of food namely the one prepared from
recipe and one from instant food and does not possess any knowledge about the
hierarchical goal structure. The flat model considers the preparation of each of
the 8 dishes as a separate goal and assists the user. Both the flat model and the
relational model assume that the user is always going to prepare the dishes in
pairs but do not have the notion of main dish and side dishes or the ordering
constraints between them.
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Fig. 4. (a)The kitchen domain hierarchy. (b)Learning curves of the different algorithms
in the Kitchen Domain.

The results are presented in Figure 4.b. As can be seen, the hierarchical mod-
els greatly dominate the flat ones. Among the models, the relational models have
a faster learning rate than their propositional counterparts. They perform better
in the earlier few episodes which clearly demonstrates that relational background
knowledge accelerates learning. In this domain, the hierarchical knowledge seems
to dominate the relational knowledge. This is due to the fact that all the subgoals
are similar (i.e, each of them is preparing some kind of food) and the hierarchical
knowledge clearly states the ordering of these subgoals. The relational hierar-
chical model has a better savings rate in the first few episodes as it has a fewer
parameters to learn. Both the flat model and the relational model eventually con-
verged on the same savings after 700 episodes. These results demonstrate that
though all the models can eventually converge to the same value, the relational
hierarchical model converges in early episodes.



5 Related Work

Most of the decision-theoretic assistants have been formulated as POMDPs that
are approximately solved offline. For instance, the COACH system helped people
suffering from Dementia by giving them appropriate prompts as needed in their
daily activities [2]. In this system, there is a single fixed goal of washing hands
for the user. In Flectric Elves, the assistant is used to reschedule a meeting
should it appear that the user is likely to miss it [6]. These systems do not have
a hierarchical goal structure for the user while in our system, the assistant infers
the user’s goal combinations and renders assistance.

Several plan recognition algorithms use a hierarchical structure for the user’s
plan. These systems would typically use a hierarchical HMM [17] or an abstract
HMM [1] to track the user’s plan. They unroll the HMMs to a DBN and perform
inference to infer the user’s plan. We follow a similar approach, but the key
difference is that in our system, the user’s goals are relational. Also, we allow
for richer models and do not restrict the user’s goal structure to be modeled by
a HMM. We use the qualitative influence statements to model the prior over
the user’s goal stack. We observe that this could be considered as a method to
incorporate richer user models inside the plan recognition systems. There has
been substantial research in the area of user modeling. Systems that have been
used for assistance in spreadsheets [7] and text editing [8] have used handcoded
DBNs to infer about the user. Our system provides a natural way to incorporate
user models into a decision-theoretic assistant framework.

In recent years, there have been several first-order probabilistic languages de-
veloped such as PRMs [14], BLPs [15], RBNs [12], MLNs [13] and many others.
One of the main features of these languages is that they allow the domain expert
to specify the prior knowledge in a succinct manner. These systems exploit the
concept of parameter tying through the use of objects and relations. In this pa-
per, we showed that these systems can be exploited in decision-theoretic setting.
We combined the hierarchical models typically used in reinforcement learning
with the kinds of influence knowledge typically encoded in relational models to
provide a strong bias on the user policies and accelerate learning.

6 Conclusions and Future Work

In this work we proposed the incorporation of parameterized task hierarchies to
capture the goal structure of a user in a decision-theoretic model of assistance.
We used the relational models to specify the prior knowledge as relational hier-
archies and as a means to provide informative priors. We evaluated our model
against the non-hierarchical and non-relational versions of the model and es-
tablished that combining both the hierarchies and relational models makes the
assistant more useful. The incorporation of hierarchies would enable the assis-
tant to address several other problems in future. The most important one is
the concept of parallel actions. Our current model assumes that the user and
the assistant have interleaved actions and cannot act in parallel. Allowing par-
allel actions can be leveraged if the goal structure is hierarchical as the user
can achieve a subgoal while the assistant can try to achieve another one. Yet
another problem that could be handled due to the incorporation of hierarchies is



the possibility of the user changing his goals midway during an episode. Finally,
we can also imagine providing assistance to the user in the cases where he forgets
to achieve a particular subgoal.
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