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Abstract—Hierarchical as well as coupled level sets are
widely used for multilevel image segmentation. However, these
tools are successful if the number of levels of an image are
known and a careful choice of initialization is performed.
We intend a novel hierarchical level set (HLS) followed by
an Adaptive Regularized Boosting (AR-Boost) for automatic
White Matter Lesion (WML) segmentation from Magnetic
Resonance Images. HLS does not need to know the number of
levels in an image and HLS is computationally less expensive
and more initialization independent than coupled level-sets
since HLS doesn’t generate redundant regions. We employ
an energy functional that minimizes the negative logarithm
of variances between the two partitions created by the level
set function. HLS uses a level set to partition the image into
a number of segments, then applies the level set on all the
segments separately to create more segments and the process
continues iteratively until all the segments become a nearly
homogeneous region (low intensity variance). Then AR-Boost
classifies the segments into WML and non-WML classes. The
proposed loss function for AR-boost enforces more weight
on misclassified samples at each iteration than Adaboost to
classify correctly in the next iteration and consequently leads
to early convergence. Unlike Adaboost, the user can select
optimal weights through cross-validation. Experimental results
demonstrate that the proposed method outperforms state-of-
the-art automated white matter lesion segmentation techniques.

Keywords-White Matter Lesion Segmentation; Level Set;
Boosting; Diabetes

I. INTRODUCTION

White Matter Lesions (WML) are thought to reflect
changes of chronic micro vascular ischemic disease, and
often develop in persons with type 2 diabetes [1]. Higher
WML load is associated with risk factors for cardiovascular
disease (CVD), such as multiple sclerosis, diabetes, hyper-
tension and tobacco use. WML predict an increaded risk of
stroke, dementia, cognitive decline and death. Quantitative
analysis of WML in large clinical trials may improve diag-
nosis and prognosis of the diseases affecting cerebral white
matter. White Matter Lesions (WML) refer to areas of high
intensity observed on T2 - weighted or Fluid Attenuated
Inversion Recovery (FLAIR) Magnetic Resonance Imaging
(MRI) within cerebral white matter.

Manual delineation of WML boundaries from FLAIR
MRI is laborious and tedious. Hence, WML grading is
often done using a semi-quantitative subjective 10 points
rating scale. However, this method suffers from poor inter-
rater variability. Tools for automated white matter lesion
segmentation are now becoming available but no gold stan-
dard has been established. Recently, two WML segmentation
algorithms [1], [2] have received attention. The first is an
automated tool designed for detecting FLAIR hyper-intense
WML in MS proposed by Schmidt et al [2]. It first deter-
mines the three cerebral tissue classes (Gray Matter (GM),
White Matter (WM) and Cerebro-Spinal Fluid (CSF)) from
the T1 - weighted images, then estimates the distribution
of FLAIR intensities for each tissue class separately, and
finally detects FLAIR hyper-intense outliers within each
tissue class which are interpreted as lesion belief. This
method iteratively computes the lesion belief by voxel-wise
evaluation of the likelihood of belonging to gray or white
matter against the likelihood of belonging to lesions. A
Hidden Markov Random Field (HMRF) based segmentation
model along with prior knowledge on WM location is
incorporated. However, the HMRF model suffers from high
computational overhead. Also, a major challenge is to design
the neighborhood system of the HMRF model characterizing
the patient-specific cerebral tissue structures.

The second WML segmentation algorithm, developed
by Lao et al. [1] first extracts local features from four
multiparametric (T1 - weighted, T2 - weighted, PD (Proton
Density)- weighted and FLAIR) MRI sequences. Then a
support vector machine classifier is used to classify 3D
structural MRI voxels into WML and non-WML classes.
A major challenge of voxel based classification is to handle
skewed distribution of positive and negative examples (num-
ber of voxels belonging to WML is substantially smaller
than the rest of brain voxels). This leads to a natural bias
of classification towards healthy tissues. They implement
adaptive boosting prior to Support Vector Machine(SVM)
to reduce the number of negative examples (healthy tissues
in this case) by selecting only those samples that were
misclassified in the first few iterations of boosting. Samples



that were misclassified in boosting iterations are considered
good representative samples of the respective classes for
classification purposes since they are relatively difficult to
classify. SVM models built on training these hard examples
presumes that it would classify the rest of the relatively
easier samples correctly. However, this sampling strategy
might lead to over fitting. In addition, MRI data including
all of these four modalities are not always available in all
studies and training on using fewer than four modalities
might degrade the expected performance of their model. For
voxel based classification, it is also very difficult to incorpo-
rate suitable neighborhood information characterizing actual
brain structures.

Here we present a new hierarchical level set [3] based
curve evolution technique for WML segmentation that over-
comes the difficulties encountered in voxel based segmen-
tation models described above. Curve evolution techniques
combine all sequential tasks associated with other segmenta-
tion techniques such as voxel classification based segmenta-
tion or edge detection methods into a variational framework
and thus reduces the combined errors accumulated at each
stage of the segmentation method. Typically a level set
creates two partitions. For multiple segmentation, Coupled
Level Sets (CLS) are used [4]. However, CLS can create only
2n number of partitions where n is an integer. Creating the
number of partitions that are not a power of two using CLS
is often computationally expensive. It creates the nearest
2n partitions and then it requires post processing (region
merging or splitting the partitions) to make the required
number of partions. We implement a novel hierarchical level
set that works based on a divisive (top - down) approach.
We minimize the energy functional for HLS by maximizing
the between class variance. The proposed HLS first im-
plements a level set on an image creating two partitions.
Then the goodness (separability) of the partition is measured
by the ratio of variance between the partition to the total
variance [5]. If the ratio exceeds a predefined threshold
value then the partition is accepted. Then each partition is
divided by the level set function if the separation criterion
is satisfied. Thus the proposed HLS segments an image
into nearly homogeneous regions (low intensity variance).
Then we classify the homogeneous regions into WML and
non-WML classes by Adaptive-Regularized Boosting (AR-
Boost) [6]. AR-boost selects important features from a set
of regional features such as intensity, variance, entropy etc.
for WML classification. AR- Boost proposes a loss function
that incorporates a regularization term into the exponential
loss function. This proposed regularization assigns more
weight to the misclassified samples at each stage of the
boosting iteration resulting in early convergence of boosting.
AR - Boost allows the user to select optimal values for the
weights associated with misclassified samples through cross
validation.

In this work, we make the following major contributions:

(1) We introduce a novel Hierarchical Level Set (HLS)
that does not require estimation of the number of levels in
an image. (2) We employ an energy functional for HLS
that maximizes the variance between two partitions. We
first maximize the between class variance into the level set
framework. (3) HLS is computationally less expensive and
more initialization independent than coupled-level sets. (4)
AR-Boost employs a regularization term in the exponential
loss function that provides more weight to the misclassified
samples at each iteration during boosting that leads to early
convergence. (5) AR-Boost allows the user to select optimal
weights over Adaboost through cross validation. (6) The
proposed framework is evaluated for WML segmentation
from FLAIR MRI in a cohort of diabetic subjects and
experimental results demonstrate that it outperforms other
state-of-the-art techniques.

II. RELATED WORK

The level set method [3] is one of the most successful
tools for capturing boundaries of desired objects or tracking
interfaces in an image. To capture boundaries or track
interfaces, the level set function describing the boundaries
or interfaces is defined implicitly by a partial differential
equation. The Energy functional is minimized by solving
Euler-Lagrange Partial Differential Equations (PDE) and the
level set function defining the boundary of the objects is
obtained by solving the PDE numerically using a gradient
descent method. The level set based PDE transforms the
Euler Lagrange equations to a curve evolution technique
where curve evolution starts from random initialization
(naı̈ve curve such as circles, rectangles etc.) and converges
on the boundary of target objects. Typically level sets create
2 partitions. Multi-phase level sets have been proposed in the
literature to capture multiple partitions. Multi-phase models
can segment 2n phases/regions of the image, where n is the
number of level set functions. Thus, the multi-phase model
partitions the image into more than the number of desired
regions when the expected number of regions is not a power
of two. In this case the level set collapses for the redundant
regions and the redundant regions become empty.

The hierarchical approach proposed by Tsai et al. [3]
and Jeon et al. [4] relieves the complexity of multi-phase
level sets that can segment the required number of regions.
The hierarchical level set method proposed by Tsai et al.
requires user intervention at each stage of segmentation to
decide whether any subregion needs to be segmented further.
Jeon et al. proposed a hierarchical level set method that
successively segments image subregions automatically at
each stage of the segmentation technique using a decision
criterion based on the intensity variance across the current
subregion. The region having larger variation becomes the
target of the next step of the hierarchy. The segmentation
stops when a specified number of levels has been reached.



However, a major challenge in segmentation analysis is the
estimation of the optimal number of levels. In addition, the
regions having relatively lower variation at any hierarchy
may require splitting if it is not a nearly homogeneous
region.

III. PROPOSED ALGORITHM

The proposed Methodology for WML segmentation is
shown in Figure 1. The method takes three dimensional
T1 and FLAIR MRI images of a patient as input and
returns the the WML found on FLAIR images. Broadly, we
divide the proposed tasks for WML segmentation into three
sequential subtasks: (a) Preprocessing performed using the
VBM8 toolbox of Statistical Parametric Mapping (SPM) [7];
(b) Hierarchical segmentation performed by HLS and (c)
Classification conducted by AR - Boost [6]. Details of these
three subtasks are provided below.

A. Preprocessing

We use SPM8 and the VBM8 toolbox [7] for prepro-
cessing T1 and Flair 3-D structural MRI. We first apply
the VBM8 segmentation algorithm on T1 images to classify
the cerebral tissues into three classes (Gray matter (GM),
White Matter (WM) and CerebroSpinal Fluid (CSF)). The
VBM8 segmentation algorithm generates patient - specific
GM, WM and CSF masks. Then we fill the small holes of
WM mask through morphological hole filling operation. For
FLAIR images we remove the skull and then perform bias
correction using SPM8. Then we register the preprocessed
(skull stripped and bias corrected) FLAIR image as shown in
Figure 1 with WM mask generated from the T1 images using
a Mutual Information (MI) based registration algorithm
implemented in the VBM8 toolbox. We exclude the cerebral
tissues outside the WM mask from the FLAIR images for
WML segmentation.

B. Hierarchical Level Sets (HLS)

First we explain the proposed variance based energy
functional used into levelset framework and then elaborate
on the proposed Hierarchical Level Set (HLS).

1) Variance based Energy Functional: Let us define Ω
to be a bounded open subset of R2, with ∂Ω its boundary.
Let us define the evolving curve C in Ω, as the boundary
of an open subset ω of Ω (i. e. ω ⊂ Ω, and C = ∂ω). Thus
inside(C) denotes the region ω, and outside(C) denotes the
region Ω\ω. Let I : Ω→ R be a given image. Our method is
the minimization of an energy based segmentation. Similar
to Otsu Threshold [5], we try to maximize the variances
between inside and outside regions of the curve C , σ2

b ,
i.e., σ2

b is maximized if the curve C lies on the interface
of two distinct regions. Now, max(σ2

b ) = min(−σ2
b ) =

Figure 1. Proposed methodology for WML segmentation.

min(−N1N2(µ1−µ2)2/N). Now, the energy functional E
which is the logarithm of max(σ2

b ), i. e.,

E = −(logN1 + logN2 + 2log(µ1 − µ2)− logN) (1)

If we consider that the image consists of two regions,
the segmentation curve C ⊂ Ω can be represented by the
zero level set of a Lipschitz function φ : Ω → R, where
C = (x, y)|φ(x, y) = 0, such that

φ(x, y, t) =


= 0 if (x, y) is on C,C = ∂ω

> 0 if (x, y) ∈ inside(C), inside(C) = ω

< 0 if (x, y) ∈ outside(C), outside(C) = Ω \ ω.
Using heaviside function, H(x) and the one-dimensional

Dirac measure δ, H(x) =

{
1 if x ≥ 0,

0 otherwise.
and

δ(z) = d
dzH(z), N1, N2, µ1 and µ2 can be defined

by, N1 =
∫

Ω
H(φ)∂x∂y,N2 =

∫
Ω

(1−H(φ))∂x∂y,
µ1 =

∫
Ω
IH(φ)∂x∂y∫

Ω
H(φ)∂x∂y

, µ2 =
∫
Ω
I(1−H(φ))∂x∂y∫

Ω
(1−H(φ))∂x∂y

.
The curve evolution equation can be obtained by minimizing
the energy functional (1) with respect to φ, and we deduce
the associated Euler-Lagrange equation for φ as,

∂φ

∂t
= δ(φ)[

1

N1
− 1

N2
+

2

(µ1 − µ2)
(
I − µ1

N1
− I − µ2

N2
)] (2)

Where, φ(0, x, y) = φ0(x, y) in Ω, δ(φ)
|∇φ|

∂φ
∂~n = 0 on ∂Ω.

~n denotes the exterior normal to the boundary ∂Ω, and
∂φ/∂~n denotes the normal derivative of φ at the boundary.
φ(0, x, y) = φ0(x, y) defines the inital contour.

2) Hierarchical Level Set (HLS): Pseudocode for the
proposed HLS algorithm are illustrated in Algorithm 1.
In this work, we propose a novel approach for Hierarchi-
cal Level Set (HLS) method that automatically partitions
the image into a number of nearly homogeneous (low
intensity variance) regions 1. Level set solver (line 7 in



Algorithm 1 Hierarchical Level Sets (HLS)
1: u0: given image
2: φ: level set function
3: I ← u0

4: current node← 0
5: seg tree← null
6: procedure seg tree← HLS(I, seg tree)
7: φ← level set solver(I)
8: C1 = I.H(φ) . H(.) is a heaviside function
9: C2 = I.(1−H(φ))

10: η = σ2
b/σ

2
t . η evaluates ”goodness” (separability)

11: . σ2
b is variance between C1&C2 and σ2

t is total
variance

12: if η > K then . K is a constant
13: current node← current node+ 1
14: seg tree(current node).parent← I
15: Let S = {si : si ∈ ConnComp(Cj , j ∈ {1, 2})
16:

∧
|si| > A} . A is area threshold(constant)

17: . ConnComp(.) refers to connected
components

18: seg tree(current node).child← S
19: for all si ∈ S do
20: I ← si
21: seg tree← HLS(I, seg tree)
22: end for
23: end if
24: end procedure
25: Find all the leaf nodes of seg tree by DFS (Depth

First Search)
26: . Segmented output of HLS is the segments found in

the leaf nodes of seg tree

Algorithm 1) minimizes variance minimization based energy
functional(equation (1) and (2)) as dicussed in subsec-
tion III-B1. Two advantages of the proposed method over
its competitors are mentioned here. Firstly, unlike Jeon et
al. [4], our method does not require apriori knowledge about
the number of inherent levels in an image. Estimating the
optimal number of levels in an image is difficult. Secondly,
at each level of the hierarchy we create two partitions using a
level set for each candidate connected component separately
only if the value of the ”goodness” (or separability) [5] of
creating two partitions exceed a threshold value (line number
10 - 12 of Algorithm 1) that can be easily determined
through cross validation. Discriminant criterion(η in line
number 10 of Algorithm 1) [5] is the ratio of variance
between two partitions and total variance that measures the
separability between two partitons. We have used the value
of K (in line number 12 of Algorithm 1) as 0.3 in our
experiment. Thus, HLS partitions the image into a number
of nearly homogeneous regions at the end of the hierarchy
and doesn’t need to segment further. On the contrary, Jeon et

al. [4] only create partitions if the regions have higher
variance at each level of hierarchy. Regions having lower
variance may need to be split again and it is not certain that
all the output segments at the end of the hierarchy appear
as nearly homogeneous regions.

Then we classify the nearly homogeneous regions found
from HLS into WML and non-WML classes using AR -
Boost.

C. Adaptive Regularized Boosting (AR-Boost)

Algorithm 2 Adaptive Regularized Boosting (AR-Boost)

1: Initialize the observation weights, w+
i = 1/N+, w−i =

1/N−, i = 1, 2, ...., N,N+ +N− = N. Where ’+’ and
’-’ represents positive and negative samples respectively.

2: for m=1 to M, do
3: Fit a classifier Gm(x)to the training data using

weights wi.
4: Compute errm =

∑N
i wiI(yi 6= Gm(xi))/

∑N
i wi

5: Compute αm = log(k(1− errm)/errm), k > 1 .
for Adaboost, k=1

6: Set wi ← wiexp[αmI(yi 6= Gm(xi))], i =
1, 2, ..., N.

7: end for
8: Output: G(x) = sign[

∑M
m=1 αmGm(x)]

We compute different features such as average intensity,
entropy, variance, etc. for each region found by HLS. We
use Adaboost (variant of boosting) for selecting important
features [8]. On training images, we classify regions found
by HLS as positive examples that show high overlap ratio
(higher value of Dice Coefficient [6]) with expert delin-
eated WML and consider other regions found by HLS
as negative examples. We employ decision stump (thresh-
old) [8] as the underlying weak classifier. At test phase,
we first apply HLS to partition the images into a number
of segments and we compute the values of the important
features chosen by boosting during training for each region.
Then we multiply them with the weights associated with
the features chosen by boosting during the training phase
and subsequently add them to form a strong classifier,
G(x) = sign(

∑M
m=1 αmGm(x)), where, αm is the weight

associated with weak classifier Gm(.). If the sign of the
response of the strong classifier for a region is positive then
it is only classified as WML.

For classification, Adaboost minimizes an exponential
loss function [8]: L(y, f(x)) = exp(−yf(x)), where y
is the response and f is the prediction. Figure 2: left
shows different loss functions for two - class classification
as a function of the margin y.f(x). Misclassfication loss
L(y, f(x)) = I(y.f(x) < 0), gives unit penalty for negative
margin values, and no penalty for all positive margin values.



Figure 2. Left: Loss functions for two-class classification. Middle: 5-fold cross validation with standard error bars. Right: Misclassification error over
number of iterations for k=6.

Squared-error loss L(y, f(x)) = (y − f(x))2, is not a good
alternate for misclassification error. Figure 2 shows that
squared-error loss is not a monotone decreasing function of
increasing margin yf(x). For margin values yif(xi) > 1
it increases quadratically, thus adopting increasing influ-
ence (error) on observations that are correctly classified
with increasing certainty, which nullifies the relative in-
fluence of those incorrectly classified yif(xi) < 0. It is
noted here that a monotone decreasing criterion serves as
a better alternate loss function. Both binomial deviance
L(y, f(x)) = log(1 + exp(−2yf(x))), and exponential loss
can be observed as monotone continuous approximations to
misclassification loss as shown in Figure 2: left. The penalty
associated with binomial deviance increases linearly for
large increasingly negative margin, whereas the exponential
loss function penalizes exponentially for large increasingly
negative margin ones than they reward increasingly positive
ones [8].

One drawback of this exponential loss function is that it
incurs substantial misclassification error rate as the penalty
increases exponentially for large increasing negative margin
due to outliers [8]. To address this problem, we propose
a novel loss function: L(y, f(x)) = exp(−yf(x) + λ|y −
G(x)|), where λ < 0 and G(.) is the prediction of the weak
classifier chosen at the current stage. We have introduced
one additional term to the exponential loss function that
acts as a regularizer. At any boosting iteration, the proposed
loss function is the same as the existing loss function
if the misclassification error rate at the current stage is
zero (proposed term vanishes when λ = 0). The penalty
associated with the proposed loss function is less than that
of the exponential one, if the misclassification error rate at
the current stage is not equal to zero (shown in Figure 2: left
where loss is plotted against a function of the classification
margin y.f ). This modification leads to more weight to
the misclassified samples at any iteration and it enforces
the misclassified samples to classify correctly in the next
iteration. One additional advantage of this proposed loss
function is that the user can adjust the amount of penalty for
negative margins after observing the classifier performance
over a training data set. Accordingly, we determine the

value of λ through cross validation (λ is a function of k
(the value of k is determined experimentally). We derive
a modified Adaboost algorithm that we call Adaptive Reg-
ularized Boosting(AR-Boost) as illustrated in Algorithm 2
by minimizing the proposed loss function (The derivation
is shown in [6]). Our modified Adaboost finds the feature
weight, αm = log(k(1−errm)/errm), k ≥ 1, (line number
5 of Algorithm 2) where, for the existing Adaboost algorithm
the value of k is always 1. This leads to the weights
associated with misclassified observations at any stage being
k times as much as the existing Adaboost [6]. The value
of k for AR - Boost is determined by cross-validation as
shown in Figure 2: Middle and is discussed in the next
section. Our proposed term in the existing loss function acts
as a regularizer in the boosting framework. Our method
can adaptively adjust the effects of regularization in the
boosting framework by selecting the proper value of k from
the training data set as shown in Figure 2 : Middle. Figure 2
: Middle shows the misclassification error is minimum for
k=6. Figure 2 : Right shows the misclassification error over
AR-Boost iterations.

IV. RESULTS AND DISCUSSIONS

Subjects and Magnetic Resonance Imaging
Images used in this study were collected from ongoing

studies investigating white matter changes in diabetes at
Wake Forest. We obtained a sample of 50 randomly selected
control subjects, and 50 diabetic patients.We used a 3D
structural T1-weighted sequence, and a 3D structural FLAIR
sequence.

Qualitative and Quantitative Evaluation
We compare our proposed method for WML segmen-

tation with SVM method proposed by Lao et al. [1],
HMRF method proposed by Schmidt et al [2] that is
available in SPM8 Lesion Segmentation Toolbox (LST) [9]
and a thresholding based segmentation algorithm followed
by morphological operations. Results of these methods on
Flair images of three different patients are demonstrated in
Figure 3. The SPM8 LST [9] based WML segmentation
maps were generated for each subject using 20 thresholds (k)



Figure 3. Results of Different Methods. Left column:Global Thresholding;
Second column from Left:SVM method proposed by Lao et al. [1];
Third column from Left:HMRF method proposed by Schmidt et al [2];
Second column from Right: Proposed Methodology; Right column: Manual
Segmentation.

Figure 4. Left: Dice Coefficient (DC) and Right: Pratt’s Figure of Merit
(PFOM).

ranging from 0-1 at .05 increments with the best threshold
chosen through cross validation [8]. Ground Truth (GT) was
determined using manual segmentation of the FLAIR images
by an experienced reader. The performances of our proposed
method, SVM, HMRF or LST, and Thresholding were
compared against the manual segmentations using the Dice
Coefficient (DC) [6] and Pratt’s Figure of Merit (PFOM) [6].
Average DC and PFOM for all of these methods on 100
subjectes are illustrated in Figure 4. The values of DC and
PFOM lie beween 0 and 1. Higher DC indicates higher
overlap ratio between segmented output and actual objects
found in GT. Higher PFOM refers to less distance between
the edges of segmented objects and actual objects in GT.
Higher DC and PFOM in Figure 4 demonstrates superiority
of the propsed algorithm (HLS followed by AR-Boost) over
SVM, LST and thresholding. The proposed technique is
able to trace irregular shaped and less intense WML more
accurately than other methods as demonstrated in Figure 3.

V. CONCLUSIONS

We have demonstrated a novel automated Hierarchical
Level Set (HLS) method and Adaptively Regularized Boost-
ing (AR- Boost) classifier that outperforms two state-of-the-

art algorithms, [1] and [2] or [9] for WML segmentation.
Unlike other hierarchical level set methods in [3], [4], the
proposed HLS does not require anticipating the inherent
number of levels in an image. HLS is computationally
faster than coupled level sets since it doesn’t create un-
necessary regions like coupled level sets. HLS is more
initialization independent than coupled level set since if the
curve evolution starts away from the desired interface, the
divisive (top-down) partitioning criteria helps to initialize
the level set near the desired boundary at the lower/lowest
level of the hierarchy. The proposed HLS takes a divisive
(top-down) approach and iteratively partitions the image
into a number of nearly homogeneous regions (low inten-
sity variance). Adaptive Regularized Boosting (AR-Boost)
classifies the segments into WML and non-WML classes.
AR-Boost exploits a modified exponential loss function
that assigns more weight to the misclassified samples than
adaboost at each stage of the boosting iteration. This forces
misclassified samples to be classified correctly at the next
iteration and leads to early convergence. Users can choose
optimal values of the weights using cross validation during
training. The proposed algorithm can delineate WML using
FLAIR images and uses T1 - weighted images to remove
false positives residing outside the WM mask. This proposed
technique may be useful for investigating a wide range of
cerebrovascular diseases that affect cerebral white matter.
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