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Abstract. Building intelligent assistants has been a long-cherished goal of AI and
many were built and fine-tuned to specific application domains. In recent work, a
domain-independent decision-theoretic model of assistance was proposed, where the
task is to infer the user’s goal and take actions that minimize the expected cost of the
user’s policy. In this paper, we extend this work to domains where the user’s policies
have rich relational and hierarchical structure. Our results indicate that relational hi-
erarchies allow succinct encoding of prior knowledge for the assistant, which in turn
enables the assistant to start helping the user after a relatively small amount of expe-
rience.

1. Introduction

There has been a growing interest in developing intelligent assistant systems
that help users in a variety of tasks ranging from washing hands to travel plan-
ning (Boger et al, 2005; Varakantham, 2005; Ambite et al, 2002). The emphasis
in these systems has been to provide a well-engineered domain-specific solu-
tion to the problem of reducing the users’ cognitive load in their daily tasks. A
decision-theoretic model was proposed recently (Fern et al, 2007) to formalize
the general problem of assistantship as a partially observable Markov decision
process (POMDP). In this framework, the assistant and the user interact in the
environment to change its state. The goal of the assistant is to take actions that
minimize the expected cost of completing the user’s task (Fern et al, 2007). In
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most situations, however, the user’s task or goal' is not directly observable to
the assistant, which makes the problem of quickly inferring the user’s goals from
observed actions critically important. One approach to goal inference is to learn
a probabilistic model of the user’s policy for achieving various goals and then
to compute a posterior distribution over goals given the current observation his-
tory. However, for this approach to be useful in practice, it is important that
the policy be learned as early in the lifetime of the assistant as possible. We call
this the problem of “early assistance”, which is the main motivation behind this
work.

One solution to the early assistance problem, advocated in (Fern et al, 2007),
is to assume that (a) the user’s policy is optimal with respect to their goals and
actions, the so called “rationality assumption,” and that (b) the optimal policy
can be computed quickly by knowing the goals, the “tractability assumption.”
Under these assumptions, the user’s policy for each goal can be approximated
by an optimal policy, which may be quickly computed. Unfortunately in many
real world domains, neither of these assumptions is realistic. Real world domains
are too complex to allow tractable optimal solutions. The limited computational
power of the user renders the policies to be locally optimal at best.

In this paper, we propose a different solution to the early assistance problem,
namely constraining the user’s policies using prior domain knowledge in the
form of hierarchical and relational constraints. Consider an example of a desktop
assistant similar to CALO (Bui et al, 2008) that helps an academic researcher.
The researcher could have some high level tasks like writing a proposal, which
may be divided into several subtasks such as preparing the cover page, writing the
project description, preparing the budget, completing the biography, etc. with
some ordering relationships between them. We expect that an assistant that
knows about this high level structure would better help the user. For example,
if the budget cannot be prepared before the cover page is done, the assistant
would not consider that possibility and can determine the user’s task faster. In
addition to the hierarchical structure, the tasks, subtasks, and states have a class
and relational structure. For example, the urgency of a proposal depends on the
closeness of the deadline. The deadline of the proposal is typically mentioned on
the web page of the agency to which the proposal is addressed. The collaboration
potential of an individual on a proposal depends on their expertise in the areas
related to the topic of the proposal. Knowing these relationships and how they
influence each other could make the assistant more effective.

This work extends the assistantship model to hierarchical and relational set-
tings, building on the work in hierarchical reinforcement learning(Dietterich,
2000) and statistical relational learning (SRL).We extend the assistantship frame-
work of (Fern et al, 2007) by including parameterized task hierarchies and con-
ditional relational influences as prior knowledge of the assistant. We perform
inference on the distribution of user’s goals given a sequence of their atomic
actions by two methods: firstly, we compile this knowledge into an underlying
Dynamic Bayesian network and use Bayesian network inference algorithms and
secondly, we directly sample the user’s tasks given the user’s actions. We estimate
the parameters for the user’s policy and influence relationships by observing the
users’ actions. Once the user’s goal distribution is inferred, we determine an ap-
proximately optimal action by estimating the Q-values of different actions using

I In this work, we use the words task and goal interchangeably.
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rollouts and picking the action that has the least expected cost. The use of re-
lational hierarchies could potentially be very useful in many real-world assistant
systems.

We evaluate our relational hierarchical assistantship model in two different
toy domains and compare it to a propositional flat model, propositional hierarchi-
cal model, and a relational flat model. Through simulations, we show that when
the prior knowledge of the assistant matches the true behavior of the user, the
relational hierarchical model provides superior assistance in terms of performing
useful actions. The relational flat model and the propositional hierarchical model
provide better assistance than the propositional flat model, but fall short of the
performance of the relational hierarchical approach.

The rest of the paper is organized as follows: Section 2 summarizes the basic
decision-theoretic assistance framework, which is followed by the relational hier-
archical extension in Section 3. Section 4 presents the experiments and results,
Section 5 outlines some related work and Section 6 concludes the paper.

2. Decision-Theoretic Assistance

In this section, we briefly describe the decision-theoretic model of assistance of
(Fern et al, 2007) which forms the basis of our work. In this setting, there is
a user acting in the environment and an assistant that observes the user and
attempts to assist him. The environment is modeled as an MDP described by
the tuple (W, A, A’ T, C, I), where W is a finite set of world states, A is a finite
set of user actions, A’ is a finite set of assistant actions, and T'(w,a,w’) is a
transition function that represents the probability of transitioning to state w’
given that action a € AU A’ is taken in state w. C' is an action-cost function that
maps W x (AU A’) to real numbers, and I is an initial state distribution over
W. An episodic (finite horizon) setting is assumed, where the user chooses a goal
and tries to achieve it. The assistant observes the user’s actions and the world
states but not the goal. After every user’s action, the assistant gets a chance to
take one or more actions ending with a noop action, after which the user gets
a turn. The objective is to minimize the sum of the costs of user and assistant
actions.

The user is modeled as a stochastic policy 7(a|w, g) that gives the probability
of selecting action a € A given that the user has goal g and is in state w. The
objective is to select an assistant policy 7’ that minimizes the expected cost given
the observed history of the user. The environment is only partially observable
to the assistant since it cannot observe the user’s goal. It can be modeled as a
POMDP, where the user is treated as part of the environment.

In (Fern et al, 2007), the assistant POMDP is solved approximately, by first
estimating the goal of the user given the history of his actions, and then selecting
the best assistive action given the posterior goal distribution. One of the key
problems in effective assistantship is to learn the task quickly enough to start
helping the user as early as possible. In (Fern et al, 2007), this problem is solved
by assuming that the user is rational, i.e., he takes actions to minimize the
expected cost. Further, the user MDP is assumed to be tractably solvable for
each goal. Hence, their system solves the user MDP for each goal and uses it to
initialize the user’s policy.

Unfortunately the dual assumptions of tractability MDP and rationality make
this approach too restrictive to be useful in real-world domains that are too com-
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plicated for any user to approach perfect rationality. We propose a knowledge-
based approach to the effective assistantship problem that bypasses the above
two assumptions. We provide the assistant with partial knowledge of the user’s
policy, in the form of a task hierarchy with relational constraints on the subtasks
and their parameters. Given this strong prior knowledge, the assistant is able to
learn the user’s policy quickly by observing his actions and updating the pol-
icy parameters. We appropriately adopt the goal estimation and action selection
steps of (Fern et al, 2007) to the new structured policy of the user and show that
it performs significantly better than the unstructured approach.

3. A Relational Hierarchical Model of Assistance

In this section, we propose a relational hierarchical representation of the user’s
policy and show its use for goal estimation and action selection.

3.1. Relational Hierarchical Policies

Users in general, solve difficult problems by decomposing them into a set of
smaller ones with some ordering constraints between them. For example, proposal
writing might involve writing the project description, preparing the budget, and
then getting signatures from proper authorities. Also, the tasks have a natural
class-subclass hierarchy, e.g., submitting a paper to ICML and IJCAI might
involve similar parameterized subtasks. In the real world, the tasks are chosen
based on some attributes of the environment or the user. For instance, the paper
the user works on next is influenced by the closeness of the deadline. It is these
kinds of relationships that we want to express as prior knowledge so that the
assistant can quickly learn the relevant parameters of the policy. We model the
user as a stochastic policy 7(alw,T,O) that gives the probability of selecting
action a € A given that the user has goal stack T and is in state w. O is the history
of the observed states and actions. Learning a flat, propositional representation
of the user policy is not practical in many domains. This is due to the fact that
in several domains, the state-action space could be prohibitively large. Rather,
in this work, we represent the user policy as a relational task hierarchy and speed
up the learning of the hierarchy parameters via the use of conditional influence
statements that constrain the space of probabilistic dependencies.

Relational Task Hierarchies. A relational task hierarchy is specified over
a set of variables, domain constants, and predicate symbols. There are predicate
symbols for representing properties of world states and specifying task names.
The task predicates are divided into primitive and abstract tasks. Primitive
task predicates will be used to specify ground actions in the MDP that can be
directly executed by the user. Abstract task predicates will be used to specify
non-primitive procedures (that involve calling subtasks) for achieving high-level
goals. Below we will use the term task stack to mean a sequence of ground task
names (i.e. task predicates applied to constants).

A relational task hierarchy will be composed of relational task schemas which
we now define.

Definition 1 (Relational Task Schema). A relational task schema is either:
1) A primitive task predicate applied to the appropriate number of variables, or
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2) A tuple (N, S, R, G, P), where the task name N is an abstract task predicate
applied to a set of variables V', S is a set of child relational task schemas (i.e. the
subtasks), R is a set of logical rules over state, task, and background predicates
that are used to derive a candidate set of ground child tasks in a given situation,
G is a set of rules that define the goal conditions for the task, and P(s|T,w, O)
is a probability distribution that gives the probability of a ground child task s
conditioned on a task stack T', a world state w, and an observation history O.

Each way of instantiating the variables of a task schema with domain constants
yields a ground task. The semantics of a relational task schema specify what
it means for the user to “execute to completion” a particular ground task as
follows. As the base case, a primitive ground task is executed-to-completion by
simply executing the corresponding primitive MDP action until it terminates,
resulting in an updated world state.

An abstract ground task, can intuitively be viewed as specifying a stochas-
tic policy over its child subtasks which is executed until its goal condition is
satisfied. More precisely, an abstract ground task t is executed-to-completion by
repeatedly selecting ground child tasks that are executed-to-completion until the
goal condition G is satisfied. At each step given the current state w, observation
history O, task stack T, and set of variable bindings B (that include the bindings
for t) a child task is selected as follows: 1) Subject to the variable bindings, the
rules R are used to derive a set of candidate ground child tasks. 2) From this
set we draw a ground task s according to P, properly normalized to only take
into account the set of available subtasks. 3) The drawn ground task is then
executed-to-completion in the context of variables bindings B’ that include the
bindings in B along with those in s and a task stack corresponding to pushing ¢
onto T'.

Based on the above description, the set of rules R can be viewed as specifying
hard constraints on the legal subtasks with P selecting among those tasks that
satisfy the constraints. The hard constraints imposed by R can be used restrict
the argument of the child task to be of a certain type or may place mutual
constraints on variables of the child tasks. For example, we could specify rules
that say that the document to be attached in an email should belong to the
project that the user is working on. Also, the rules can specify the ordering
constraint between the child tasks. For instance, it would be possible to say that
to submit a paper the task of writing the paper must be completed first.

We can now define a relational task hierarchy.

Definition 2 (Relational Task Hierarchy). A relational task hierarchy is rooted
acyclic graph whose nodes are relational task schemas that satisfy the following
constraints: 1) The root is a special subtask called ROOT. 2) The leaves of the
graph are primitive task schemas. 3) There is an arc from node n; to node ny if
and only if the task schema of ns is a child of task schema n;.

We will use relational task hierarchies to specify the policy of a user. Specifically,
the user’s actions are assumed to be generated by executing the ROOT task of
the hierarchy with an initially empty goal stack and set of variable bindings.
An example of a Relational Task Hierarchy is presented in the Figure 1 for
a game involving resource gathering and tactical battles. For each task schema
we depict some of the variable binding constraints enforced by the R as a logical
expression. For clarity we do not depict the ordering constraints imposed by
R. From the ROOT task the user has two distinct choices to either gather a
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[ collect(R) | [ Deposit(R.S) | [KillDragon(D) | [DestroyCamp(E)]

Fig. 1. Example of a task hierarchy of the user. The inner nodes indicate subtasks
while the leaves are the primitive actions. The tasks are parameterized and the
tasks at the higher level will call the tasks at the lower level

resource, Gather(R) or attack an enemy, Attack(E). Each of these tasks can be
achieved by executing either a primitive action (represented with ovals in the
figure) or another subtask. For example, to gather a resource, the user needs
to collect the resource (denoted by Collect(R)) and deposit the resource at the
storage (denoted by Deposit(R,S), which indicates that R is to be deposited in ).
Resources are stored in the storages of the same type (for example, gold in a bank,
food in a granary etc.), which is expressed as the constraint R.type = S.type in
the figure. Once the user chooses to gather a resource (say goldl), the value of
R in all the nodes that are lower than the node Gather(R) is set to the value
goldl. R is freed after Gather is completed.

Conditional Influences: Often it is relatively easy to hand-code the rule
sets R that encode hard-constraints on child tasks. It is more difficult to precisely
specify the probability distributions for each task schema. In this work, we take
the approach of hand-coding a set of conditional influence statements that are
used to constrain and hence speedup the learning of these probability distribu-
tions. The conditional influences describe the objects and their attributes that
influence a subtask choice based on some condition, i.e., these statements serve to
capture a distribution over the subtasks given some attributes of the environment
(P(subtask | worldstate)). For example, since there could be multiple storage
locations for a resource, the choice of a storage may be influenced by its distance
to the resource. While this knowledge can be easily expressed in most SRL for-
malisms such as Probabilistic Relational Language (Getoor and Grant, 2005) and
Bayesian Logic Programs (Kersting and De Raedt, 2000), we give an example in
First-Order Conditional Influence Language (FOCIL) (Natarajan, 2005).

If {Goal(Gather(R)),Completed(Collect(R)),Equal(Type(R),Type(S))} then
Distance(Loc(R), Loc(S))) Qinf subgoal (Deposit(R,S))

A FOCIL statement of the form
If{Z(a)} then Yi(a),...,Yi(a) Qinf X(a)

means that Yi(a), ...,Y;(«) influence X (a) when Z(«) is true, where « is a
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set of logical variables. The above statement captures the knowledge that if R
is a resource that has been collected, and S is a storage where R can be stored,
the choice of the value of S is influenced by the distance between R and S. The
probability of choosing a subtask in a given state is determined solely by the
attribute values of the objects mentioned in the conditional influence statement,
which puts a strong constraint on the user’s policy and makes it easier to learn.
We outline the relationship of FOCIL to other probabilistic relational languages
in the appendix section to reinforce the fact that most of the statistical relational
learning formalisms are capable of capturing this knowledge.

3.2. Goal Estimation

In this section, we describe our goal estimation method, given the kind of prior
knowledge described in the previous section, and the observations, which consist
of the user’s primitive actions. Note that the probability of the user’s action
choice depends in general on not only the pending subgoals, but also on some
of the completed subgoals including their variable bindings. Hence, in general,
the assistant POMDP must maintain a belief state distribution over the pending
and completed subgoals. which we call the “goal structure.”

We now define the assistant POMDP. The state space is W x T where W
is the set of world states and T is the user’s goal structure. Correspondingly, the
transition probabilities are functions between (w,t) and (w’,t). Similarly,
the cost is a function of (state, action) pairs. The observation space now
includes the user’s actions and their parameters (for example, the resource that
is collected, the enemy type that is killed etc).

In this work, we make a simplifying assumption that there is no uncertainty
about the completed subtasks. This assumption is justified in our domains, where
the completion of each subtask is accompanied with an observation that identifies
the subtask that has just completed. This would simplify the inference process
as we do not need to maintain a distribution over the (possibly) completed
subtasks. The estimation of the goal stack of the user was performed in two
different methods. In the first method a handcoded DBN is used and exact
inference is performed on the DBN. In the second method, we directly sample
the user’s tasks by observing the actions. We present both these methods in this
section.

3.2.1. Unrolled DBN

For estimating the user’s goal stack, we use a DBN similar to the one used in
(Murphy and Paskin, 2001) and present it in Figure 2. T} refers to the task at

time-step j and level i in the DAG. O refers to the completed subtask at level
1. FJ’ is an indicator variable that represents whether T]? has been completed
and acts as a multiplexer node. If the lower level task is completed and the
current task is not completed, the transition function for the current task would
reflect choosing an action for the current subtask. If the lower level task is not
completed, the current task stays at its current state. If the current task is
completed, the value is chosen using a prior distribution over the current task
given the higher level tasks.

In the experiments reported in the next section, we compiled the FOCIL
statements into a DBN structure by hand. The number of levels of the tasks in
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t=1 t=2

Fig. 2. Dynamic Bayesian network that is used to infer the user’s goal.

the DBN corresponds to the depth of the directed graph in the relational task
hierarchy. The values of the different task level nodes will be the instantiated
tasks in the hierarchy. For instance, the variable le takes values corresponding
to all possible instantiations of the second-level tasks. Once the set of possible
values for each current task variable in the task is determined, the constraints
are used to construct the CPT. For example, the constraint R.Type = S.Type
in the Figure 1 implies that a resource of one type can be stored in the storage
of the same type. Assume that the user is gathering gold. Then in the CPT
corresponding to P(T; = Store(S, gold) | T; = Gather(gold), all the entries
except the ones that correspond to a bank are set to 0. The rules R of the task
schema determine the non-zero entries of the CPTs, while the FOCIL statements
constrain the distributions further. Note that, in general, the subtasks completed
at a particular level influence the distribution over the current subtasks at the
same level through the hard constraints, which include ordering relationships. In
our experiments, however, we have chosen to not explicitly store the completed
subtasks at any stage since the ordering of subtasks has a special structure.
The subtasks are partitioned into small unordered groups, where the groups are
totally ordered. This allows us to maintain a small memory of only the completed
subtasks in the current group.

To illustrate the construction of the DBN given the hierarchy and influence
statements better, let us consider the example presented in Figure 1. Assume that
the user chooses to gather g1 (i.e., gold from location 1). Once the episode begins,
the variables in the DBN are instantiated to the corresponding values. The task
at the highest level T}, would take values from the set ( Gather(gl), Gather(g2),
Gather(wl),Gather(w2), Destroy(el),Destroy(e2) ), assuming that there are 2
gold and wood locations and 2 enemies. Similarly, the tasks at level n of the
DBN would assume values corresponding to the instantiation of the nodes at
the n'" level of the hierarchy. The conditional influence statements are used
to obtain a prior distribution over the goal stack only after every subtask is
finished or to minimize uncertainty and retain tractability. Once the prior is
obtained, the posterior over the goal stack is updated after every user action. For
example, once the user finishes the subtask of collect(g1), the relational structure
would restrict the set of subgoals to depositing the resource and the conditional
influence statements would provide a prior over the storage locations. Once the
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Table 1. Highlevel algorithm for assistance using the DBN

—Initialize DBNs as in Figure 2 incorporating all hard constraints into the CPTs
—For each episode

For each time step
*  Observe any task completed

x* Update the posterior distribution of goal stack based on the observation, the hard
constraints, and FOCI statements

*  Observe the next action
*  Update the posterior distribution over the tasks in the task stack
*  Compute the best assistive action

Update the DBN parameters

highest level task of Gather is completed, the DBN parameters are updated using
the complete set of observations. Our hypothesis that we verify empirically is
that, the relational structure and the conditional influence statements together
provide a strong prior over the task stack which enables fast learning.

Given this DBN, we need to infer the value of P(Tde | le;dl, Fjlidl, aj, Otd),
where d is the depth of the DAG i.e, infer the posterior distribution over the
user’s goal stack given the observations (the user actions in our case) and the
completed goal stack. As we have mentioned, we are not considering the com-
pleted subgoals due to the fact that most of our constraints are total order and
there is no necessity of maintaining them. Since we always estimate the current
goal stack given the current action and state, we can approximate the DBN
inference as a BN inference for the current time-step. The other issue is the
learning of parameters of the DBN. At the end of every episode, the assistant
updates the parameters of the DBN based on the observations in that episode
using maximum likelihood estimates with Laplace correction. Since the model is
inherently relational, we can exploit parameter tying between similar objects and
hence accelerate the learning of parameters. The parameter learning in the case
of relational models is significantly faster as demonstrated by our experiments.

It should be noted that Fern et al. (Fern et al, 2007) solved the user MDP
and used the values to initialize the priors for the user’s action models. Though
it seems justifiable, it is not always possible to solve the user MDP. We show
in our experiments that even if we begin with an uniform prior for the action
models, the relations and the hierarchical structure would enable the assistant
to be useful even in the early episodes.

The high level algorithm that uses a DBN for goal estimation is presented
in table 1. The parameters are updated at the end of the episode using MLE
estimates. When an episode is completed, the set of completed tasks and the
action trajectories are used to update the parameters of the nodes at different
levels.
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Table 2. Particle filtering algorithm

function PF returns {z¢} | = PF({zt_ 3N |, y)

1. For each sample i
— Draw the sample z} using the distribution z¢ ~ P(z¢|zi_,,yt)
— Compute the weight of the current sample, w? PT(yt\mi,l)

2. Resampling

— Resample the current state using, :E% ~ zi“l -
wi

—  Set the weights of the current sample, w® = 1

3.2.2. Sampling

The DBN though elegant in its representation of the user’s goal stack, is a hand-
crafted one. Also, as the objects in the domain change, the DBN also needs to
be modified accordingly. More importantly, the number of parameters can grow
rapidly with the number of objects in the domain. For instance, if there are 10
resources and 10 storage locations, there are 100 possible Deposit sub-goals. In
this work, we consider a simpler method as an alternative which is to sample the
user’s goal stack given the observations (user’s actions) without converting it to
a DBN. Our sampling procedure is inspired by particle filtering where the main
idea is to approximate the desired distribution by a set of samples.

The general approach to particle filtering works as follows: Samples are gen-
erated according to the prior distribution and propagated according to the tran-
sition distribution. The samples are then weighed according to the observed
evidence probabilities and new samples are generated according to the weights.

The particle filtering algorithm is presented in Table 2. The state at time
t is denoted by z; and the observation at time step ¢ is denoted by y;. The
distribution P(x¢|z_,,v:) is given by,

, P(ye|we) P(xe]we)
P(x xlfv =
(Te|zi_1, ye) > e, P(yilwe) P(xe]20-1)

while,

Plydla;_1) =Y Plyelas) Plalai—1)

The key thing to note is that the evidence (y;) is being used while sampling
for the new state. This would ensure that the number of samples required to
converge on the true distribution is small. In our model, the hidden state x
corresponds to the goal stack T of the user while the observation y corresponds
to the user’s action a and the current world state s and is represented as O. Hence
the goal of this sampling process is to use the user’s actions to generate samples
of the goal stack, weigh them according to the user’s actions and regenerate the
samples. Since, the distribution is represented using the set of samples, there
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Table 3. Highlevel algorithm for assistance using the sampling methods

1. Initialize the parameters of the user’s policy using the hard constraints specified in the
relational hierarchical model

2. For each episode
— For each time step

Observe any task completed and update the posterior distribution of goal stack
based on the observation, the hard constraints, and FOCI statements

Observe the next action and the current state

Compute the posterior over the user’s goals using the particle filter algorithm pre-
sented in table 2

Compute the best assistive action

— Update the policy parameters

is no necessity of explicitly maintaining the distribution. Note that, the sample
counts are the sufficient statistic for the posterior. Thus, we can compute the
posterior using the normalized counts i.e.,
N
PT=i|0)= ="+ 1
(T=i]0) = 1)
where IV, is the number of samples whose task stack is equal to i. Similar to
the DBN method, the user’s policy P(a | s, T) is updated after every trajectory.
The highlevel algorithm for assistance using sampling is presented in Table 3.
The difference with respect to the earlier algorithm is in the goal estimation step,
where we use sampling to obtain a distribution over the user’s goal stack. As can
be seen, the action selection and the update steps are similar to the earlier case.
The advantage of the sampling approach is that it is very general and can be
extended across several domains. It is easy to implement and does not require
any engineering tailored towards particular application domains. The drawback
is that it tends to have a slightly lower accuracy and higher variance in the
predicted model when compared to the exact methods. We verify this empiracally
in our experiments.

3.3. Action Selection

Given the assistant POMDP M and the distribution over the user’s goal stack
P(T% | Oy), where O; are the observations, we can compute the value of as-
sistive actions. Following the approach of (Fern et al, 2007), we approximate
the assistant POMDP with a series of MDPs M (%), for each possible goal

stack ¢, Thus, the heuristic value of an action a in a world state w given the
observations O; at time-step j would now correspond to,

H(w,a,0;) = ¥ Qua(w,a) - P(t"|0;)

$1:d
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where Q1.4 (w, a) is the value of performing the action a in state w in the MDP
M (t¥d) and P(t?0O;) is the posterior probability of the goal stack given the
observations. Instead of sampling over the goals, we sample over the possible goal
stack values. The relations between the different goals would restrict the number
of goal-subgoal combinations. If the hierarchy is designed so that the subgoals
are not shared between higher level goals, we can greatly reduce the number of
possible combinations and make the sampling process practically feasible. We
verify this empirically in our experiments. To compute the value of Q1:a(w,a),
we use the policy rollout technique (Bertsekas and Tsitsiklis, 1996) where the
assumption is that the assistant would perform only one action and assumes
that the agent takes over from there and estimates the value by rolling out the
user policy. Since the assistant has access to the hierarchy, it chooses the actions
subjected to the constraints specified by the hierarchy. It should be mentioned
that the approach taken here to solve the POMDPs is similar to the QMDP
heuristic solution approach taken by Littman et al., (Littman et al, 2005) and
hence suffers from a similar problem in that the assistant cannot take information
gathering actions. While these are very useful in many domains, they are not
significant in our domains. Hence, we do not consider them explicitly but point
out that we can replace the myopic heuristics with POMDP solvers such as
sparse sampling (Kearns et al, 1999) when needed.

4. Experiments and Results

In this section, we briefly explain the results of simulation of a user in two
domains?: a gridworld doorman domain where the assistant has to open the right
doors to the user’s destination and a kitchen domain where the assistant helps
the user in preparing food. We simulate a user in these domains and compare
different versions of the decision theoretic model and present the results of the
comparison.

The different models that we compare are: the relational hierarchical model
that we presented, a hierarchical model where the goal structure is hierarchical,
a relational model where there are objects and relations but there is a flat goal
structure and a flat model which is a very naive model with a flat goal structure
and no notion of objects are relationships. Our hypothesis is that the relational
models would benefit from parameter tying and hence can learn the parameters
faster and would offer better assistance than their propositional counterparts
at earlier episodes. Similarly, the hierarchical model would make it possible to
decompose the goal structure thus making it possible to learn faster. We demon-
strate through experiments that the combination of relational and hierarchical
models would enable the assistant to be more effective than the assistant that
uses either of these models.

4.1. Doorman Domain

In this domain, the user is in a gridworld where each grid cell has 4 doors that the
user has to open to navigate to the adjacent cell (see Figure 3). The hierarchy

2 These are modification to the domains presented by Fern et.al(Fern et al, 2007)
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Fig. 3. Doorman Domain. Each cell has 4 doors that the user has to open to
navigate to the adjacent cell. The goal of the assistant is to minimize the number
of doors that the user has to open.

presented in Figure 1 was used as the user’s goal structure. The goals of the
user are to Gather a resource or to Attack an enemy. To gather a resource, the
user has to collect the resource and deposit it at the corresponding location.
Similarly, to destroy an enemy, the user has to kill the dragon and destroy the
castle. There are different kinds of resources, namely food and gold. Each resource
can be stored only in a storage of its own type (i.e, food is stored in granary and
gold is stored in bank). There are 2 locations for each of the resources and its
storage. Similarly there are 2 kinds of enemy red and blue. The user has to kill
the dragon of a particular kind and destroy the castle of the same kind. The
episode ends when the user achieves the highest level goal. The actions that the
user can perform are to move in 4 directions, open the 4 doors, pick up, put
down and attack. The assistant can only open the doors or perform a noop. The
door closes after one time-step so that at any time only one door is open. The
goal of the assistant is to minimize the number of doors that the user needs to
open. The user and assistant take actions alternately in this domain.

We employed six versions of the assistant that models the user’s goal struc-
ture. The first two models use a relational hierarchical structure for the user’s
goal structure. One of them employs the DBN for goal estimation while the other
employs sampling for the same. The next two models assume a hierarchical goal
structure but no relational structure (i.e., the model does not know that the 2
gold locations are of the same type etc and thus cannot exploit parameter tying),
and use the DBN or the sampling method for goal estimation. The fifth model
assumes a relational structure of user’s goal but assumes flat goals and hence
does not know the relationship between collect and deposit of subtasks, while
the final model assumes a flat goal structure. A state is a tuple (s, d), where s
stands for the the agent’s cell and d is the door that is open. For the two flat
cases, there is a necessity include variables such as carry that can take 5 possible
values and kill that take 3 values to capture the state of the user having collected
a resource or killed the dragon before reaching the eventual destination. Hence
the state space of the 2 flat models is 15 times more than that of the hierarchical
one.

To compare the different algorithms, we solved the underlying hierarchical
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Fig. 4. Learning curves for the 4 algorithms in the doorman domain. The y-axis
presents the average savings for the user due to the assistant.

MDP and then used the Q-values to simulate the user. For each episode, the
higher level goals are chosen at random and the user attempts to achieve the
goal. We calculate usefulness of the assistant as the ratio of the correct doors
that it opens to the total number of doors that are needed to be opened for the
user to reach his goal which is a worst-case measure of the cost savings of the
user. We average the usefulness every 10 episodes. The user’s policy is hidden
from the assistant in all the algorithms and the assistant learns the user policy
as and when the user performs his actions. The relational model captures the
relationship between the resources and storage and between the dragon’s type
and the castle’s type. The hierarchical model captures the relationship between
the different goals and subgoals, for instance, that the user has to collect some
resource in order to deposit it, etc. The hierarchical relational model has access
to both the kinds of knowledge and also to the knowledge that the distance to
the storage location influences the choice of the storage location.

The results are presented in Figure 4. The graph presents the average useful-
ness of the assistant after every 10 episodes. As can be seen from the figure, the
assistants that use the relational hierarchical models are more useful than the
other models. In particular, they can exploit the prior knowledge effectively as
demonstrated by the rapid increase in the usefulness in earlier episodes. It is also
observed that the relational hierarchical assistant that employs the handcoded
DBN performs better than the sampling method in some situations. This is due
to the fact that sampling is an approximate technique for inference. Though in
certain cases, the assistant based on sampling does not match the performance
of the hand-coded DBN, sampling is very easy to implement and is a domain-
independent inference mechanism that can scale easily to large domains.

The two hierarchical and the relational models also exploit the prior knowl-
edge and hence have a quicker learning rate than the flat model (as can be seen
from the first few episodes of the figure). The relational hierarchical models out-
perform the hierarchical models as they can share parameters and hence have to
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Fig. 5. The kitchen domain hierarchy

learn a smaller number of parameters. They outperform the relational model as
they can exploit the knowledge of the user’s goal structure effectively and can
learn quickly at the early stages of an episode. Also, there was no significant
difference in the time required for computing the best action of the assistant for
all the four algorithms. This clearly demonstrates that the relational hierarchical
model can be more effective without increasing the computational cost.

4.2. Kitchen Domain

The other experimental domain is a kitchen domain where the user has to cook
some dishes. In this domain, the user has 2 kinds of higher-level goals: one in
which he could prepare a recipe which contains a main dish and a side dish and
the second in which, he could use some instant food to prepare a main dish and
a side dish. There are 2 kinds of main dishes and 2 kinds of side dishes that he
could prepare from the recipe. Similarly, there are 2 kinds of main dishes and
2 kinds of side dishes that he could prepare from instant food. The hierarchy is
presented in Figure 5. The symbol € is used to capture the information that the
object is part of the plan. For instance, the expression I € M.Ing means that
the parameter to be passed is the ingredient that is used to cook the main dish.
The plans are partially ordered. There are 2 shelves with 3 ingredients each. The
shelves have doors that must be opened before fetching ingredients and only one
door can be open at a time.

The state consists of the contents of the bowl, the ingredient on the table,
the mixing state and temperature state of the ingredient (if it is in the bowl)
and the door that is open. The user’s actions are: open the doors, fetch the
ingredients, pour them into the bowl, mix, heat and bake the contents of the
bowl, or replace an ingredient back to the shelf. The assistant can perform all
user actions except for pouring the ingredients or replacing an ingredient back to
the shelf. The cost of all non-pour actions is -1. Unlike in the doorman domain,
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here it is not necessary for the assistant to wait at every alternative time step.
The assistant continues to act until the noop becomes the best action according
to the heuristic. The episode begins with all the ingredients in the shelf and the
doors closed. The episode ends when the user achieves the goal of preparing a
main dish and a side dish either with the recipe or using instant food.

The savings is the ratio of the correct non-pour actions that the assistant has
performed to the number of actions required for the goal. Similar to the other
domain, we compared 6 different types of models of assistance. The first two
models are the relational hierarchical models that have the knowledge of the goal-
subgoal hierarchy and also has the relationship between the subgoals themselves.
They know that the type of the main dish influences the choice of the side dish.
Like the previous domain, the two versions employed the DBN and the sampling
methods respectively for goal estimation. The third and fourth models are the
exact and sampling versions of the hierarchical model, that have the notions of
the goals and subgoals but no knowledge of the relationship between the main
dishes and the side dishes and thus have more parameters to learn. The relational
model assumes that there are two kinds of food namely the one prepared from
recipe and one from instant food and does not possess any knowledge about the
hierarchical goal structure. The flat model considers the preparation of each of
the 8 dishes as a separate goal and assists the user. Both the flat model and the
relational model assume that the user is always going to prepare the dishes in
pairs but do not have the notion of main dish and side dishes or the ordering
constraints between them.

The results are presented in Figure 6. As can be seen, the hierarchical models
greatly dominate the flat ones. Among the models, the relational models have a
faster learning rate than their propositional counterparts. They perform better
in the earlier few episodes which clearly demonstrates that relational background
knowledge accelerates learning. It can be observed that the sampling methods
are dominated by the exact models in this domain as well. But, here there is
a significant difference between the sampling and the exact methods in the hi-
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erarchical model where there is a difference of .9, which corresponds to 9% of
non-pour actions. In the relational hierarchical case, this difference is greatly
reduced (0.3 to 0.4).

In this domain, the hierarchical knowledge seems to dominate the relational
knowledge. This is due to the fact that all the subgoals are similar (i.e, each
of them is preparing some kind of food) and the hierarchical knowledge clearly
states the ordering of these subgoals. The relational hierarchical models have a
better savings rate in the first few episodes as they have fewer parameters to
learn. Both the flat model and the relational model eventually converged on the
same savings after 700 episodes. These results demonstrate that though all the
models can eventually converge to the same value, the relational hierarchical
model converges in early episodes.

There are some differences in the two domains: in the grid world, the agent
and the assistant perform alternating actions. In the kitchen domain, the assis-
tant can continue to act till it reaches a pour action or it chooses no-op as the
best action. In grid world, there are no irreversible actions while pour is irre-
versible in kitchen domain. In grid world, the user’s goal distribution has a prior
that is a function of the number of doors to be opened to the goal while in the
kitchen domain it is simply the number of actions in the plan. In grid world,
the relations and hierarchy are equally important while in the kitchen domain,
the hierarchies seem to be of more importance as the non-relational methods
seem to do reasonably well. In spite of these differences, the two domains follow
a similarity: the user’s goal structure can be modeled as a relational hierarchy
and hence can be solved by our proposed model.

5. Related Work

The use of relational hierarchies could potentially be very useful in many real-
world assistant systems. For instance, see the work on a real-time desktop as-
sistant (Bui et al, 2008). This assistant uses a relational hierarchical model and
a particle filter algorithm for tracking the user’s goals. There has been several
decision-theoretic assistants that have been formulated as POMDPs that are
approximately solved offline. For instance, the COACH system helped people
suffering from Dementia by giving them appropriate prompts as needed in their
daily activities (Boger et al, 2005). In this system, there is a single fixed goal of
washing hands for the user. In Flectric Elves, the assistant is used to reschedule
a meeting should it appear that the user is likely to miss it (Varakantham, 2005).
These systems do not have a hierarchical goal structure for the user while in our
system, the assistant infers the user’s goal combinations and renders assistance.

Several plan recognition algorithms use a hierarchical structure for the user’s
plan. These systems would typically use a hierarchical HMM (Fine et al, 1998)
or an abstract HMM (But et al, 2002) to track the user’s plan. They unroll the
HMDMs to a DBN and perform inference to infer the user’s plan. We follow a
similar approach, but the key difference is that in our system, the user’s goals
are relational. Also, we allow for richer models and do not restrict the user’s goal
structure to be modeled by a HMM. We use the qualitative influence statements
to model the prior over the user’s goal stack. We observe that this could be
considered as a method to incorporate richer user models inside the plan recog-
nition systems. There has been substantial research in the area of user modeling.
Systems that have been used for assistance in spreadsheets (Horvitz, 1998) and
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text editing (Hui and Boutilier, 2006) have used handcoded DBNS to infer about
the user. Our system provides a natural way to incorporate user models into a
decision-theoretic assistant framework.

Hierarchical Task Networks (HTNs)(Russell and Norvig, 2002) have long been
used in planning. HTNs refine plans by applying action decompositions where
higher level actions consist of a partially-ordered set of lower level actions. Our
work can be understood as using a (relational) HTN for representing the user’s
goal structure and then performing inference using this network in order to ob-
tain a distribution over user’s goals. In recent years, there have been several
first-order probabilistic languages developed such as PRMs (Getoor et al, 2001),
BLPs (Kersting and De Raedt, 2000), RBNs (Jaeger, 1997), MLNs (Domingos
and Richardson, 2006) and many others. One of the main features of these lan-
guages is that they allow the domain expert to specify the prior knowledge in a
succinct manner. These systems exploit the concept of parameter tying through
the use of objects and relations. In this paper, we showed that these systems can
be exploited in decision-theoretic setting. We combined the hierarchical models
typically used in reinforcement learning with the kinds of influence knowledge
typically encoded in relational models to provide a strong bias on the user policies
and accelerate learning.

Quite a lot of progress have been made in the design of decision-support
sytems. For a detailed review, please see (Liu et al, 2008). It would be interest-
ing to understand how the use of relational hierarchical models can help in the
decision-making of a complex organization. Also, there has been some work on
using hierarchies to organize information collected from huge amounts of texts
(such as web documents)(Kim and Lee, 2004). It will be an exciting future di-
rection to use the hierarchical structured learned by this method and track the
navigation of the user in the web and provide assistive actions.

6. Conclusions and Future Work

In this work we proposed the incorporation of parameterized task hierarchies to
capture the goal structure of a user in a decision-theoretic model of assistance. We
used the relational models to specify the prior knowledge as relational hierarchies
and as a means to provide informative priors. We evaluated our model against the
non-hierarchical and non-relational versions of the model and established that
combining both the hierarchies and relational models makes the assistant more
useful. We also provided a couple of solutions for estimating the user’s goals: an
exact method based on DBN and an approximate method based on sampling.
The number of parameters can grow rapidly with the number of objects in the
case of the DBN. The sampling method on the other hand sacrificies a small
amount of accuracy for the ease of design, implementation and scalability. One
of our future problems is to investigate the use of Rao-Blackwellization that
allows for analytical inference on a part of the network and samples the other
part of the network thus increasing the accuracy of the predicted model. Our has
been employed in a real desktop assistant (Bui et al, 2008) but the same ideas
can be used in several other assistant domains. For instance, in real-time strategy
games where there is a natural hierarchical goal structure an in-built assistant can
execute some of the user’s goals. In a assistive technology for disabled setting,
the user’s goals can be modeled hierarchically and the assistant can provide
necessary prompts or communication options.
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The incorporation of hierarchies would enable the assistant to address several
other problems in future. The most important one is the concept of parallel ac-
tions. Our current model assumes that the user and the assistant have interleaved
actions and cannot act in parallel. Allowing parallel actions can be leveraged if
the goal structure is hierarchical as the user can achieve a subgoal while the assis-
tant can try to achieve another one. Yet another problem that could be handled
due to the incorporation of hierarchies is the possibility of the user changing his
goals midway during an episode. We can also imagine providing assistance to
the user in the cases where he forgets to achieve a particular subgoal. Finally,
it is important to learn these relational hierarchies using the trajectories of the
user. There has been a lot of work on learning rules from uncertain data (Qin et
al, 2011; De Raedt et al, 2010).

APPENDIX

In this section, we represent several first order probabilistic models in FOCIL’s
syntax to show their commonalities and illustrate the fact that the algorithms
are not specific to FOCIL.

Kersting and De Raedt introduced Bayesian Logic Programs (Kersting and
De Raedt, 2000). BLPs combine Bayesian Networks with definite clause logic.
Bayesian Logic Programs consist of two components: a qualitative component
that captures the logical structure of the domain (similar to that of the Bayesian
Network structure) and a quantitative component that denotes the probability
distributions. An example of a BLP clause is as follows:

bt(X) | father(F,X), bt(F), mother(M,X), bt (M)

There is a CPT corresponding to this clause. In this case, the predicates mother(M, X)
and father(F, X) would have boolean values. One could then specify the ground
facts like father(John,Tom) etc. The function bt(F') represents the blood type

of F. The above statement says that a person’s blood type is a function of his
father’s and mother’s blood types. The FOCI statement corresponding to the
above BLP clause is:

If { mother(M,P), father(F,P)} then M.bt, F.bt Qinf P.bt

BLPs also use combining rules for combining the distributions due to multiple
instantiations of the parent predicates. The main difference between BLPs and
FOCI statements is that in the latter, the logical conditions are clearly separated
from the influents. BLPs do not make this distinction in the clauses, although
they are semantically distinguished and implemented by a separate declaration
in the model.

Another representation that is closely related to both FOCIL and BLPs is
Logical Bayesian Networks (Fierens et al, 2005). They consist of conditional de-
pendency clauses of the form X Y1, ..., Yy «— Zi,..., Zp,. This can be interpreted
as “Yq,..., Yy influence X when (Z1,...Zy) are true,” where Y7, ...,Y; and X are
random variables and (71, ..., Z,,) are logical literals. The above example of the
bloodtype can be represented in LBNs as:
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bt(X) | bt (M), bt(F) +— Mother(M,X),Father(F,X)

More recently Getoor and Grant proposed the formalism of Probabilistic Re-
lational Language (PRL) (Getoor and Grant, 2005). The main motivation be-
hind this work is to represent the original work on probabilistic relational mod-
els (PRMs) (?) in logical notation. While PRMs exclusively use aggregators
to combine the influences of multiple parents, both aggregators and combining
rules can be used in the PRL framework. The entities and the relationships
that are represented as predicates form the logical structure of the domain.
The probabilistic structure is composed of non-key attributes that form the
random variables in the domain. The general structure of the influence state-
ment is: DependsOn(X (a), Y1 (a),...Yn(@)) +— Z(«) and can be interpreted as
“(Y1(a)....Y, () influence X (a) when Z(a) is true.” Consider, our bloodtype
example. In PRL, we can represent it as follows:

DependsOn (bt (X) ,bt (M), bt(F)) <— Mother(M,X), Father(F,X)

The main difference between the PRLs and LBNs lies in the fact that the PRLs
allow for aggregate functions explicitly. The aggregate functions do not pose spe-
cial problems for parameter learning because often they are deterministic and
are given. However, inference is much more complicated with aggregate func-
tions. In this paper we ignore aggregation and focus on combining rules. Also,
in (Getoor and Grant, 2005) the authors show how to represent several kinds
of uncertainties like structure uncertainty, reference uncertainty, and existence
uncertainty in PRL. These extensions are out of the scope for the current paper.

Although the different models differ from each other in syntactic details,
they all share the same underlying semantics for the core language, and express
equivalent pieces of knowledge. All of them also suffer from the multiple-parent
problem, which can be addressed through combining rules. Thus, the algorithms
discussed in this paper are relevant and applicable to all these formalisms and a
few others such as Relational Bayesian Networks (RBNs) (Jaeger, 1997), Multi-
Entity Bayesian Networks (MEBNS) (Laskey, 2008), and Probabilistic Logic Pro-
grams (Ngo and Haddawy, 1995).

Not surprisingly, there are also some statistical relational models that are
different compared to FOCIL and it is an interesting research direction to deter-
mine how to use these models to specify prior knowledge. For example, PRISM
(Sato and Kameya, 2001) uses a representation that consists of a set of prob-
abilistic atoms called facts, and a set of deterministic non-unit definite clauses
called rules. A probability distribution is placed on the interpretations over the
facts, and is extended to all literals via the minimal model semantics of definite
clause programs. There is no straightforward mapping between the FOCIL rep-
resentations and PRISM programs. Stochastic Logic Programs (SLPs) are very
different from all the above languages since they place distributions on possible
proofs of Horn programs rather than on interpretations (Muggleton, 1996).

Markov Logic Networks (Domingos and Richardson, 2006) and related Condi-
tional Random Fields (Lafferty, 2001) are based on undirected graphical models
and significantly differ from models based on directed graphs. Markov Logic
Networks, for example, are more flexible in allowing knowledge to be expressed
as weighted first-order formulas, and have correspondingly harder learning and
inference problems as functions of the size of the formulas. It is possible to use
such a representation for inference but specifying weights seem unnatural for
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the domains that we consider. Nevertheless, we are currently investigating the
problem of using MLNs for specifying prior knowledge.
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