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Abstract—Security-critical field programmable gate array
(FPGA) designs traditionally rely on bitstream encryption and
hashing to prevent bitstream modifications and provide design
authentication. Recent attacks to extract bitstream encryption
keys, and research in automated bitstream manipulation tools,
have created a class of vulnerabilities involving post-synthesis
low-level FPGA editing. Current authentication and tamper (e.g.,
malicious modification) detection approaches dependent upon
hash-based comparison mechanisms and register transfer level
safeguards are vulnerable to these post-synthesis exploits. In this
paper, we propose FLATS, which provides filling logic and testing
spatially to combat such vulnerability. FLATS fills unused lookup
tables (LUTs) within the FPGA design and inserts infrared-
emitting spatial watermarks into the partially used LUTs at
the post-synthesis stage for physical authentication and tamper
detection using backside infrared imaging. FLATS takes an
existing synthesized design and re-purposes a portion of its
LUT initialization to function as a watermark allowing for the
detection of changes to the post-synthesis placement and initial-
ization. Experimental results validate the FLATS architecture on
a 28nm Xilinx FPGA with less than 12% look-up table utilization
overhead and negligible compromises in power and speed.
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I. INTRODUCTION

Field programmable gate array (FPGA) devices must navi-
gate a delicate balance between reconfigurability and security.
The reconfigurable hardware aspect of FPGAs makes them
attractive candidates for system designers in search of high
performance with less development time and cost than an
application specific integrated circuit (ASIC). However, the
inherent reconfigurability of FPGAs also enables new threat
vectors for FPGA-centric hardware attacks such as hardware
Trojan insertion [2], encryption key extraction [5],[6], bit-
stream modifications [4], and intellectual property (IP) reverse
engineering [1]. FPGA vendors, such as Xilinx and Intel/Al-
tera, have begun to address various security concerns by intro-
ducing more hardware security measures into each iteration of
their hardware designs [15]. Nevertheless, hardware security
researchers continue to find new vulnerabilities and attack
vectors, creating a cyclical attack, defense, and counterattack
scenario.

Fig. 1: A typical design flow for a FPGA instantiating 3PIPs is
shown illustrating the potential attack vectors. FLATS provides post-
synthesis tamper detection and authentication.

A typical FPGA design flow as shown in Figure 1, pro-
gresses through the following steps: RTL design, synthesis,
place and route, bitstream generation, FPGA programming,
and usage in field. Previous work to detect tamper events,
such as hardware Trojans, have been focused almost primarily
within the RTL design flow step. Multiple techniques have
been published to detect Trojans in this step using structural
analysis [17], functional analysis [16], logic testing [18],
formal verification [19], and information flow tracking [20].
However, in reality an attack may be possible at any step
within the design flow depending on the motivation and
capability of the attacker. Recently published attacks and
research in Xilinx 28-nm FPGAs have shown the ability to
extract bitstream encryption keys [5],[6], defeat IEEE 1735p2
IP encryption standards [3], as well as create application
programming interfaces (APIs) to automate bitstream manipu-
lation [4]. These attacks provide the components necessary to
initiate a post-synthesis attack that can either insert malicious
functionality or replace sections of a design.

In this paper, we introduce the Filling Logic And Testing
Spatially (FLATS) methodology for post-synthesis IP authen-
tication and tamper detection. FLATS takes a synthesized
design, instantiates filler logic, and then modifies all logic into
dynamically controlled partial look-up table (LUT) oscillators.
These oscillators are categorized as beacons, authenticators,
and detectors and are configured for periodic activation during
run-time to create a design-dependent watermark. The loca-
tions of these three oscillator types are measured insitu on a



running design through backside Silicon infrared (IR) imaging
to determine their precise spatial locations. Beacons serve as
reference points and enable distance calculations between the
authenticators and detectors, which depend upon the specific
LUT inputs, including inputs involved in the original design
logic. Modifications to any LUT configurations, will affect
these distance calculations and enable the detection of a tamper
event. In addition, the notion of sequences which select the
type of oscillator, oscillator location, and oscillator enabling
logic is presented. The sequence generation logic is a function
of a user-generated input and an on-chip identifier integrated
into a linear feedback shift register (LFSR) making it ex-
tremely difficult to reverse engineer. The major contributions
of this paper are as follows:

• We experimentally demonstrate a post-synthesis attack
on typical hash-based bit-stream authentication technique
commonly used for encrypted designs in FPGAs with par-
tial reconfiguration capability. The demonstrated attack
provides strong rationale why it is extremely important
to employ novel post-synthesis authentication and tamper
detection schemes for preserving the security of the
proprietary design and integrity of the system.

• We introduce the concept of embedding and dynamically
enabling an ‘infrared imaging-based’ watermark into an
FPGA core for physical spatial verification of the design.

• We propose a post-synthesis technique (FLATS) that fills
unused logic elements and incorporates spatial water-
marks into existing logic elements for tamper detection
and authentication.

• We present the methodology of applying lock-in ther-
mography to detect infrared watermarks through backside
silicon and validate our proposed technique for bitstream
authentication and tamper detection.

II. BACKGROUND

Historically, the FPGA design flow following the synthesis
step has been assumed to be secure because of proprietary bit-
stream formats, bitstream encryption and hash-based authenti-
cation. Recent research has exposed several vulnerabilities that
should be addressed when considering the use of an FPGA in
a security-critical system. We discuss possible attacks below
for each step in the FPGA design flow presented in Figure
1. Lastly, we present a motivational post-bitstream attack on
a SHA-3 IP core, which shows that existing countermeasures
do not necessarily eliminate all vulnerabilities providing op-
portunities for new attacks.

A. Post-Synthesis Attacks

Following the synthesis step, a netlist is created that maps
an original hardware description language design to pro-
grammable logic block (PLB) components such as LUTs and
flip-flops (FFs). Malicious logic can potentially be added to
this netlist if appropriate safeguards, such as netlist checksums
and version controls, are not maintained. An attack within the
design tool infrastructure has also been proposed at this stage
in the design flow [11].

B. Post-Place and Route Attack

Following synthesis, place and route is performed to im-
plement the PLBs into specific locations within the FPGA
through the use of specific programmable logic interconnect
(PLI) components. Upon completion of place and route, a
direct netlist modification is not possible, but a change to
the PLB properties, such as LUT truth table initialization is
possible and can, therefore, be used to insert a hardware Trojan
further discussed in Section E).

C. Post-Bitstream Attacks

Once a bitstream has been created, the entire configuration
of the FPGA is located in a single file. To facilitate the
programming of the FPGA, there is typically a protocol or
format that is used to encode the bitstream and, commonly,
is of public knowledge. For example, the bitstream encoding
protocol for Xilinx 7-series FPGAs is documented in user
guides allowing users to obtain the basic knowledge required
for a bitstream modification [21]. The recently published
BITMAN tool does just this, providing an API to perform
manual edits on various 7-series and newer Xilinx FPGAs [4].
To prevent the unauthorized loading of a modified bitstream,
the Xilinx security user guides provide recommended settings
for utilizing AES-256 encryption and Hash Message Authen-
tication Code (HMAC) checking during the bitstream loading.
With these security provisions, both the AES and HMAC keys
are required to load a modified bitstream into the FPGA.
However, the AES key may be leaked or extracted as discussed
in the following section. Additionally, the HMAC key may
be leaked, or potentially reprogrammed into the FPGA by an
adversary.

D. Post-Programming Attacks in the Field

Attacks are also possible in the field after an encrypted
bitstream has been loaded into the FPGA. In this scenario, an
attacker is assumed to have physical access to the system and is
capable of extracting and decrypting the bitstream [5], [6]. The
attacker begins by extracting the encrypted bitstream, which
may be stored within the system on an external non-volatile
memory such as a serial peripheral interface (SPI) Flash
chip. Once the encrypted bitstream and bitstream encryption
key are obtained, decrypting the bitstream is possible and a
hardware Trojan may be inserted into unused LUTs via the
above-mentioned bitstream manipulation. Finally, the modified
bitstream can be re-encrypted using the bitstream encryption
key and reprogrammed into the non-volatile memory. Simi-
larly, the HMAC signature can also be modified to pass the
authentication test by manipulating or obtaining the HMAC
key stored within the FPGA.

E. Motivating Attack Examples

An attack on a design in any of the post-synthesis steps
may take one of three major forms as illustrated in Figure
2. In this example, the original untampered design realizes
Z = (A&B&C)ˆD, shown in Figure 2(a). The simplest attack
involves the changing one of the behavioral properties of a



Fig. 2: Post-synthesis attack types: a) Original design, b) PLB attack, c) PLI attack, d) PLB + PLI attack

programmable logic block (PLB), such as modifying the LUT
truth in LUT A so that Z = (A | B | C)ˆD (see Figure
2(b)). Another attack can change a PLI, commonly used to
implement a switch matrix connection to route another node to
Z so that Z = CˆD (see Figure 2(c)). The third form involves
the changing of both a PLB and PLI and can potentially be
used to add malicious logic in an unused LUT and change
the switch matrix connections to route this malicious logic to
Z = TjˆD, where Tj is referred to as a hardware Trojan
signal (see Figure 2(d)).

Here, we present a simple post-synthesis PLB attack on an
open source SHA-3 512 authentication circuit [22] as further
motivation for this work. The SHA-3 design was obtained from
opencores and ported to the Vivado 2017.2.1 software
targeting a xc7k70T Kintex-7 FPGA. Wrapper logic was
added to the SHA-3 core to map different 512-bit inputs, along
with a comparator output to indicate whether a successful
‘match’ was obtained. This design was validated via simula-
tion and then loaded into the FPGA following the steps shown
in Figure 1.

The attacker’s goal is to modify the LUT configuration
of the match comparator ‘pass’/‘fail’ logic to force a ‘pass’,
regardless of the input. We assume that the attack either takes
place between the synthesis and bitstream generation steps, or
takes place after bitstream generation using bitstream reverse
engineering techniques [4]. We began by taking our post-place
and route design and running a power analysis within the
Vivado software. The power analysis is designed to report
switching probabilities for design nodes to help estimate the
dynamic power consumption. However, the power analysis
also reports the probability of a given node being a logical
‘1’, given the logical representation of the complete design. We
then assumed that the node with the lowest probability corre-
sponded to the final comparator decision logic for the SHA-3
match signal. With this knowledge, we manually changed the
post-synthesis netlist LUT initialization for this 4-input LUT

node to 16’hFFFF so that the output is ‘1’ in all cases.
We then re-ran our simulations with correct and incorrect
SHA-3 inputs and verified that the match output was stuck
at ‘1’ independent of the input provided. Next, we analyzed
the bitstream and located the specific row, column, and minor
frame address corresponding to this LUT. We then instantiated
a simple state machine and internal configuration access port
(ICAP) primitive into our test design to dynamically change
the logic for this LUT during runtime. We experimentally
verified our change by taking the unmodified SHA-3 design
with the original LUT initializations, and used our state
machine and ICAP to dynamically modify the single critical
SHA-3 output LUT to report a pass under all conditions. Since
both of these attacks involved the modification of pre-existing
LUT configurations, they are detectable with FLATS, as will
be discussed in Section IV.

III. RELATED WORK

This section discusses current run-time authentication tech-
niques, watermarking approaches, and previous work on filling
unused logic in FPGAs and ASICs.

A. Run-time Authentication

The integrity of a bitstream loaded into an FPGA is typically
verified by reading the FPGA configuration memory and
comparing to a known reference. The configuration memory
reading and subsequent comparison may occur over a test
interface (JTAG), or may happen internally using the ICAP
[14].

We successfully attacked a standard JTAG configuration
verification operation using the run-time tamper scenario in
Figure 3a. Here, we utilized a piece of 3PIP containing access
to the ICAP to maliciously modify the FPGA configuration
at run-time. We also implemented logic into the 3PIP to
detect activity on the JTAG pins and to restore the original
configuration upon detection. The restoration of the original



Fig. 3: Examples of run-time attacks that may not be detectable by
the existing methods.

configuration data occurred before the JTAG verification oper-
ation completed, thus appearing as a successful ‘pass’ to the
user.

Run-time verification approaches are also vulnerable the
bypass attack conducted in Section II-E. Figure 3b illustrates
this concept, where loading a tampered bitstream can be used
to force the comparison result of the run-time verification to
always report as ‘pass’.

B. Watermarking Approaches

FPGA 3PIP watermarking research to date has focused
primarily on providing proof of authorship for resolving IP
piracy cases. These watermarks encode a design specific
signature into a device property such as power consumption
[7], or electromagnetic signatures [23]. With regards to tamper
detection, there are several limitations with these approaches
that are addressed in our work. First, the previous watermarks
are designed primarily to provide a proof of authorship and
do not provide proof of trust (i.e., whether the design is
tampered). Second, these watermarks are typically static, and
not available at run-time. Third, these techniques do not
incorporate defenses against adding malicious circuitry in
unused LUTs.

C. Filling Unused Logic

The concept of filling unused areas in an ASIC with filler
cells incorporating a test methodology was presented as Built-
in Self Authentication (BISA) in [9]. This approach was ex-
tended to the FPGA domain in recent papers as well [12], [13].
The FPGA approaches, however, concentrate primarily on the
filling of unused logic and do not provide a comprehensive test
methodology. FLATS fills the unused logic and incorporates
the same verification methodology implemented in the original
design LUTs to detect any tamper event in these newly filled
LUTs.

A table comparing these works can be seen in Table I.
Here, the HMAC comparisons can detect tampered IP, but
cannot show proof of authorship or perform at the IP level.

TABLE I: A comparison of our FLATS work to existing approaches
that provide proof of authorship and detection of tampered IP.

Bitstream
HMAC

Run-time
HMAC

FSM
WM

Power
WM

EM
WM

Filler
Cells FLATS

References [21] [14] [7] [7] [23] [12][13] This Work
Proof of Authorship No No Yes Yes No No Yes
Detect Tampered IP Yes Yes No No Yes No Yes
Unique to FPGA SN Yes Yes No No No No Yes
Fill Unused LUTs No No No No No Yes Yes
Run-Time Technique No Yes No Yes Yes No Yes
IP-Level Technique No No Yes No No Yes Yes

Fig. 4: FLATS architecture is introduced into the standard FPGA
design flow for tamper detection and authentication.

Watermarking (WM) approaches can provide a proof of au-
thorship, but cannot detect tampered IP or the filling of unused
LUTs. FLATS addresses all of these areas in a using a single
infrared imaging infrastructure that will be described in the
next section.

IV. FLATS ARCHITECTURE

The FLATS architecture adapts to the original FPGA design
flow as shown in Figure 4. It is composed of two main
phases, insertion and verification. The insertion phase takes
place either during or after synthesis and either at the IP level
or at the design/synthesis level. During insertion, the design
logic is remapped into LUTs that reserve one LUT input
and one LUT output. A place and route boundary is created
around the logic, unsused LUTs, and other PLBs are filled, and
each LUT converts its unused input and output in a feedback
configuration to create a potential oscillator. Additional logic
is then added to determine the behavior of each oscillator, with
the oscillators grouped into either beacons, authenticators, or
detectors for the forthcoming verification step.

During the verification step, the beacons, authenticators,
and detectors are enabled at run-time to generate signatures
detectable in the infrared spectrum at precise spatial loca-
tions. Reference signatures are obtained by enabling different
authenticators and detectors, and determining their distances
from the beacons by the analysis of their infrared emissions.
Once the reference signatures are obtained, authentication and
tamper detection activities may be performed at any time
by repeating a measurement, or creating a new measurement
using information from the place and route step to approximate
locations of the different LUTs within the design. This step
may be performed at time after insertion, either with the
final FPGA design, or with a preliminary bitstream and/or
representative FPGA.



Fig. 5: a) Original post-synthesis design. b) Modified design after
FLATS insertion and with a sequence applied to select LUTA.

A. Insertion

The process of inserting the FLATS architecture into the
standard FPGA design flow is described in this section. A
post-synthesis illustration of an unmodified design and a post-
FLATS design can be seen in Figure 5 to assist in the
discussion.

FLATS insertion begins by adding configurable oscillators
to portions of the LUTs in a synthesized design. This is done
by modifying the desired number of LUTs of a synthesized
design so that one of the LUT outputs is connected to one
of the LUT inputs in a feedback configuration to allow for
potential run-time oscillator configuration. If a design has yet
to be synthesized, a constraints file is used to mark the required
input and output as unused. If a design has already been syn-
thesized, logic remapping is used to remap the logic into this
configuration. Additional unused LUT inputs are tied to a logic
‘1’. For authentication purposes, a small fraction of LUTs
may be selected to achieve the desired confidence level. For
tamper detection, the percentage of LUTs chosen is directly
proportional to the detection probability. This technique also
achieves significant tamper detection benefits when selecting
LUTs with a primary output connected to a critical node.

Once the LUT modifications have been made, additional
logic is added at the hardware description level (HDL) level
to implement the control circuitry for enabling and disabling
specific LUT oscillators. A LFSR is inserted to obfuscate
the oscillator selection from the user input to defend against
spoofing attacks by making it difficult for an attacker to learn
the correlation between user input and oscillator selection
properties. The LFSR seed input is a concatenation of the
on-chip Electronic Chip Identifier (ECID) with a portion of
the user input value. The remaining portion of the user input
controls the amount of clock cycles to operate the LFSR
before stopping the clock to obtain the LFSR output. The

LFSR output is referred to as the sequence, and contains
information regarding which LUT oscillator(s) to select, which
frequency to enable and disable said LUT oscillator(s), and
what LUT function to implement to tie the oscillation behavior
(enabled/disabled) to the current state of the original design.
Clock gating circuitry is added to the original design so that the
controller may ‘pause’ the original design, preserving state, for
tamper detection. Clock divider circuitry is added for imple-
menting the LUT oscillator pulsing. Lastly, an interface to the
on-chip ICAP controller is created to generate the appropriate
frames for configuring the LUT initialization values of the
selected LUTs.

An example illustration of the ICAP writing a configuration
frame is shown in Figure 5b. A sequence of 0x104008 is
produced by the controller logic which corresponds to the
selection of LUT 0x1 for LUTA, with a LUT output O1
initialization of 0x0400, and a clock divider divisor of 0x8.
The LUT initialization corresponds to equations

O1 =∼ [!I1 ∗ I2∗!I3 ∗ I4]

which when rewritten in terms of the circuit nodes, looks like

Z =∼ [!I1 ∗A∗!B ∗ C]

The equation states logically that the oscillator built into the
LUTA O1 output should oscillate when A,C = ‘1’ and B =
‘0’. The equation for O1 in general can be written as

O1 = f(I1 : I4)

which covers all permutations of the LUT inputs. This example
makes use of a 4-input, 2-output LUT for simplicity and can be
extended to the more common 6-input, 2-output LUTs found
in modern commercial FPGAs.

A place and route boundary is created in preparation for the
place and route step. A first pass of place and route is then per-
formed which places the synthesized elements and controller
logic within the boundary and creates routing connections. All
‘placed’ cells after the place and route step are fixed, with
their placement constraints saved to the master constraints file
to ensure their placement remains unchanged. The placement
information is then exported to a script which checks for
unused LUTs within boundary and applies a filling algorithm
upon detection. The filling algorithm edits the synthesized
design to instantiate each unused LUT with a feedback path
with each unused output connecting to a single unused input,
as described in the previous sections. The remaining inputs
on these newly instantiated LUTs are set to a logical ‘1’. The
filling algorithm edits the master constraints file to also include
the placement of the filler cell(s). A second pass of place and
route completes the routing connections for all cells placed
within the master constraints file. At this point, the design
is in a mature state to perform the registration step for use in
the forthcoming authentication and tamper detection activities.
From here, the design can then progress through the standard
integration and bitstream generation steps, or be archived in
a checkpointed format. The registration process begins with a



post-place and route simulation to select several LUTs from
the design, typically around corners or other spatially signifi-
cant points to serve as ‘beacons’. The sequences responsible
for selecting the beacons are obtained and the user inputs are
calculated using the LFSR algorithm for their generation de-
pending upon the ECID and a selected user inputs. These user
inputs and their beacons are then ‘registered’ for future use
in the verification process. The authentication step within the
registration process selects several non-beacon LUTs, referred
to as ‘authenticators’ and runs similar simulations to determine
the appropriate sequences for their activations. The locations
of the authenticators can be chosen to resemble a pattern, or
may be chosen at random. Each authenticator is then registered
for future use in the authentication step of the verification
process. For tamper detection, the registration of ‘detectors’
may be made by simulating the functional design to specific
point, pausing the design and then choosing LUTs around
particular nodes of interest and determining and registering
their sequences.

B. Verification

The verification step in the FLATS architecture uses run-
time imaging of the FPGA to record the spatial locations of
the beacons, authenticators and detectors as described in the
previous section. An illustration of these elements while at the
place and route stage and after performing image analysis is
shown in Figure 6.

FLATS verification begins by aiming and focusing an IR
imager directly above FPGA surface. Many Xilinx and In-
tel/Altera sub-45nm FPGAs are available in flip-chip packages
with the backside Silicon already exposed, making them ideal
candidates for backside infrared and photon-emission imaging.
Infrared imaging equipment is significantly less expensive
than photon emission equipment. An in-situ infrared-based
solution is also possible with the FLIR Lepton imager, which is
available in a cell phone camera form factor. Photon emission
equipment typically allows for finer spatial resolution, albeit
with a smaller field of view and at an increased cost.

After setting up the imager, the sequences obtained in
the registration process can be applied to enable the desired
LUT oscillator. Upon the enabling of a sequence, frames
may be captured by an imager for post-processing. During
post-processing, lock-in analysis techniques are applied to
determine which pixel correlates most strongly to the expected
sequence frequency. The beacons should be enabled first
individually to establish points of reference. Once the beacons
have pixel coordinates established, authenticator and detector
sequences may be applied with their euclidean distance calcu-
lated from each beacon and added to the appropriate registra-
tion entry. Results obtained from the verification process can
be used in the authentication and tamper detection activities
discussed below.

1) Authentication: An authentication of a post-synthesis
design that has been embedded with the FLATS methodology
is possible at any step once registration has been completed.
An illustrated example of a successful authentication from the

Fig. 6: (a) A trusted IP vendor inserts a watermark composed of
ring oscillators (RO) into the IP. (b) An end-user physically verifies
the watermark at a later stage using an IR camera to determine
authenticity.

viewpoint of place and route LUTs and the pixels detected
during imaging is shown in Figure 6. The simplest scenario
to authenticate a design involves a user running the beacon
sequences while imaging as described above to obtain pixel
location of the beacons in the design. Next the user applies
the detector sequences to determine the pixels corresponding
to each detector. Distances between each authenticator pixel
and each beacon pixel can be calculated and compared to a
pre-computed reference value. These pre-computed reference
values may be obtained via a trusted bitstream or may even
be computed via the place and route coordinates of the
associated LUTs in the FPGA design software. Indicators of
an inauthentic design would be a lack of beacon pixels, or
a difference between actual and expected distances among
authenticator/beacon pairs.

2) Tamper Detection: Tamper detection can be performed
in a similar manner to authentication once the verification step
has been completed. First, the desired set of detector sequences
is obtained for the desired number of LUTs. Next, pixel
locations and associated distances to beacons are obtained for
each sequences and stored as a reference for future compar-
isons. Once the reference values are stored, a comparison may
take place by replicating a given sequence and comparing
associated beacon differences to said reference. A deviation
from the reference distance values would indicate a change
to the LUT inputs of the LUT under test, or a change to the
physical placement of the LUT. Each of which indicates a
tamper event.

V. EXPERIMENTAL RESULTS

Experiments were performed on a 28-nm Xilinx
Kintex-7 FPGA to verify and quantify the components of
the FLATS architecture. A 28-nm Xilinx Kintex-7 FPGA with
part number XC7K70TFBG676 was used as the FPGA under
test. A long wave infrared (LWIR) FLIR A325sc 320 x 240
pixel, 60 frames per second camera was used as the imager.
A 10 millimeter focal length lens achieving 25 micron per-
pixel resolution used with the camera as well. The camera
was mounted vertically using a Glide Gear table top camera
mount with standoffs placed underneath the FPGA printed
circuit board to achieve the 10 millimeter distance from the



Fig. 7: The experimental setup is shown, including a Xilinx Kintex-7
FPGA and FLIR LWIR imager.

TABLE II: A comparison of ISCAS-85 benchmark circuit resource
utilization before and after application of the FLATS partial LUT
oscillator modifications.

ISCAS-85 ckt Gates LUTs
pre-FLATs

LUTs
post-FLATS % LUT Increase

c432 160 60 51 0%
c499 356 59 63 6.8%
c880 293 68 76 11.8%
c7552 3512 270 301 11.5%

camera lens. All test conditions for the imager and FPGA were
kept within the datasheet electrical specifications. An image
of the experimental setup is shown in Figure 7.

A. Benchmark Circuits

Designs from the ISCAS-85 benchmark suite were utilized
to test the post-synthesis modifications. The designs were
initially obtained in gate level verilog and were subsequently
synthesized using Xilinx Vivado 2017.2.1. Synthesis
was first performed using standard Vivado constraints as a
control, and then performed again while reserving a LUT input
and one output from the dual LUT outputs for the FLATS
implementation. Table II illustrates several benchmarks from
this suite, their gate count, pre-FLATS LUT count and Post-
FLATS LUT count to show the resource utilization before
and after application of the FLATS partial LUT oscillator
modifications. As seen, the resource utilization is less than
12% for the benchmarks.

The filling of unused LUTs was performed on c432 bench-
mark, with an image of the initial and post-FLATS place and
route shown in Figure 8. The place and route boundaries,
referred to as a ‘p-block’ by Xilinx are visible. It can be seen
that before FLATS, there are several unused LUTs within the
p-block (Figure 8(a)), and that those LUTs are filled and routed
after the application of FLATS (Figure 8(b)).

Once FLATS was inserted into the designs, several se-
quences were chosen to activate LUTS as beacons, authen-
ticators and detectors as described in the section IV. Figure
9 shows our Kintex-7 die, beacons and authenticators within
the place and route step, a single IR image frame, and the

Fig. 8: a) Initial place and route. b) Place and route results after the
filling of unused LUTs.

Fig. 9: a) Kintex-7 die. b) Beacon locations within place and route
tool. c) Beacons detected after lock-in measurements. d) Single
infrared image frame.

same beacons and authenticators after IR lock-in analysis. This
particular implementation chose 4 LUTs to use beacons.

The power consumption of a single beacon, operating with
and enabling/disabling frequency of 1Hz was measured to be
approximately 15µW . This measurement was performed by
monitoring the supply current of the Kintex-7 VCCINT volt-
age supply over 600 periods. The actual oscillating frequency
of the LUT was estimated to be approximately 300MHz.
This estimate was obtained by routing the oscillator directly
to an FPGA output pad and observing the frequency on an
oscilloscope. The actual oscillating frequency of the LUT,
however is not as important provided it dissipates sufficient
power for IR detection. The important frequency is the en-
abling and disabling of the LUT oscillator, as this is precisely
controlled by the FLATS controller circuitry and used in the
lock-in measurements discussed in the next section. Because
this enabling and disabling frequency is precisely controlled
by the controller circuitry, it is immune to process, voltage, and
temperature variations that plague oscillator-based physically
unclonable functions.



Fig. 10: Lock-in thermography principle illustrated by a reference
signal with two phases [24].

B. Infrared Imaging

The infrared imaging performed in these experiments uti-
lized Python and the Activegige software development kit
(SDK) from AB Software to communicate with the LWIR
imager over the GigE interface. Images were acquired between
30 and 6000 frames per capture depending upon the desired
accuracy. The longer captures acquired more periods of the
LUT oscillator being enabled and disabled, allowing for better
filtering of noise to pick out the relatively low infrared
emissions coming from the LUT oscillators.

The infrared emissions resulting from the LUT oscillators
are caused by power dissipating during the oscillation of the
small circuit. The power dissipated generates heat, which in
turn is present in the infrared spectrum. The total power
dissipation is a sum of the static power and dynamic power.
Since the static power is assumed to be constant, the changes in
the infrared emissions can be attributed to the dynamic power.
The primary component of the dynamic power is the power
consumed during a switching operation,

Pswitching = a ∗ f ∗ Ceff ∗ V DD2

where, a is the switching activity or fraction of the circuit
switching, f is the switching frequency, Ceff is the effective
capacitance, and VDD represents the voltage supply. In our
experiments, a is fixed at 0.5 for a 50 percent duty cycle, f is
the switching frequency of the LUT oscillator when enabled,
Ceff is dependent upon the number of cells loading the output,
and VDD is the FPGA supply voltage VCCINT. If desired, one
could then increase the magnitude of the infrared emissions
from each LUT oscillator by increasing the VCCINT FPGA
supply voltage. Increasing Ceff would have the negative side
effect of decreasing f, since the circuit is essentially a ring
oscillator. Likewise, increasing the switching activity ‘a’, by
including more transistors in the oscillator feedback path,
would also reduce the switching frequency f.

C. Lock-in Thermography

Lock-in thermography was applied to determine the pixel
locations correlating to the LUT oscillators. The general

Fig. 11: Lock-in results a single detector sequence designed to
activate pixel 208,180.

concept of lock-in thermography generates reference signals at
a specific frequency, with various phase offsets and multiplies
these signals on a frame-by-frame basis to all pixels while
calculating a running summation. The pixels with the largest
summation for a given phase are mathematically more strongly
correlated to the reference signals. This concept is shown in
Figure 10 where S0 is a sine wave running at the reference
detection frequency. S1 is the same signal with a 90 degree
phase shift applied [24]. This concept is useful in our work,
as the infrared magnitude of the switching power consumption
of the single LUT oscillators is smaller than the infrared
magnitude from the rest of the circuitry inside the FPGA.
However, since the enabling and disabling frequency of these
LUT oscillators is precisely controllable, and can be changed
with different sequence values, it is possible to use these lock-
in principles to determine their pixel locations.

The lock-in approach was experimentally verified using
a 6000 frame capture with a authenticator sequence chosen
to activate a single LUT oscillator at 1Hz. The reference
waveform was generated as a 1Hz waveform in Python with
the frame-by-frame multiplication and summation occurring
in Python as well. Since the equation is applied to each pixel
independently, a two dimensional array with size equal to the
pixel resolution is created containing the lock-in magnitudes
for a given phase offset. A plot of these magnitudes can be
seen as a heat map in Figure 11. The bright area near pixel
coordinates [208,180] is the area of highest correlation to
the reference waveform.

The reference signal, raw IR magnitudes, and lock-in value
summation from the first 600 frames of this capture for pixel
[208,180] are plotted with respect to the frame number in
Figure 12. It can be seen that the raw IR magnitudes do have
a strong correlation to the reference signal and that the lock-
in value increases relatively linearly with increasing frame
number. As a complementary example, pixel [0,0] is plotted
in Figure 13, which does not have a significant correlation to
the reference waveform. As such, the lock-in value stays close
to zero as the frame numbers increase.



Fig. 12: The reference waveform, IR frame-by-frame magnitude of a
watermarked pixel, and the cumulative lock-in summation.

Fig. 13: The reference waveform, IR frame-by-frame magnitude of a
non-watermarked pixel, and the cumulative lock-in summation.

D. Blob Detection

The lock-in magnitude arrays, such as the array in Figure
11, have visible blobs of higher pixel intensities that is larger
than a signal pixel due to the properties of heat diffusion
and the thickness of the backside Silicon. To detect the blob
and the pixel representative of its center, the Laplacian of
Gaussian (LoG) blob detection algorithm was performed. The
LoG approach convolves the image by a Gaussian kernel and
applies a Laplacian operator to determine whether a blob of a
specific size was located. To detect blobs of varying sizes, the
size of the Gaussian kernel was varied in a systematic fashion
starting from large to small until a blob was detected. Once the
blob was detected, the spatial mean of the blob was reported
as the detected pixel.

E. Authentication Results

A real-time authentication was performed by instantiating
the ISCAS 85 c432 benchmark circuit with the FLATS instan-
tiation of 4 beacons and 4 authenticators as previously seen in
Figure 9. The beacons are placed at the corners of the place
and route boundary while 3 authenticators are places at the
midpoint of boundary edges with the last authenticator placed
roughly in the middle of the design. An initial verification run
was performed with the golden design to establish a reference

Fig. 14: Experimental results for FLATS design integrated into the
ISCAS 85 benchmark c432. Registration, successful verification, and
tamper detection events are shown.

pixel locations for the beacons and authenticator pixels, with
the Euclidean distances computed between each beacon and
authenticator. This reference design was then attacked by the
movement of a single authenticator LUT to another slice.
After the attack, the experiment was performed again and
the distance between the attacked slice to beacon reference
points were shown to vary by as much as 29 percent. A
plot illustrating the distances computed by the FLATS post-
processing step is shown in Figure 14. The x-axis in the figure
includes all of the beacon/authenticator pairs and is ordered by
beacon number. It can be see that every fourth measurement
of one of the plot series experiences a significant change
in distance, which is then used to label the design as not
authentic.

F. Detection Results

Experiments were performed to evaluate various aspects of
infrared imaging approach for the detection application. First,
A FLATS instantiation of 32 beacon LUTs were placed in 8
adjacent slices with 4 LUTS per slice. The beacon LUTs were
enabled and disabled in groups of 4 corresponding to their
occupying slice at a frequency of 1 Hz for duration of 60 sec-
onds. After lock-in analysis was performed, the means of each
slice were plotted and had their pixel coordinates compared
to their place and route coordinates. The pixel coordinates
were shown to correspond to the place and route coordinates,
with several places experiencing a mirroring effect, likely
stemming from IC layout design choices during the FPGA
IC floorplanning design. This can be seen visually in Figure
15, where mirroring is seen to occur horizontally between the
bottom four slices.

Experiments were also performed to evaluate the accuracy
of detecting and discriminating between the four single-LUT
oscillators occupying a single slice. A FLATS instantiation
of 4 detector LUTS were instantiated in a slice and activated
individually at a frequency of 1 Hz for duration of 60 seconds.
A total of 25 measurements were performed for each detector
LUT to account for measurement error. After lock-in analysis
was performed, the mean values of each set of 25 measure-



Fig. 15: a) Vivado place and route representation of 8 slices. b)
Experimental verification of slice activation from infrared imaging.

Fig. 16: Experimental verification of single LUT activation from
infrared imaging.

ments were plotted, along with error bars to reflect a standard
deviation. In all 25 cases, the LUT location was reported
within 1 pixel of standard deviation. These pixel coordinates
can be seen in Figure 16, where they appear to have slight
overlaps between adjacent LUT error bars. This may be due
in part to the other transistors outside of the LUT, but involved
in the routing from the LUT output to the LUT input, being
tightly co-located in the FPGA IC layout. This may be taken
into account when implementing the FLATS technique by
potentially utilizing a LWIR camera and lens combination
with increased spatial resolution, or utilizing photon emission
microscopy for the image acquisitions.

VI. CONCLUSION

The Filling Logically and Testing Spatially (FLATS) ar-
chitecture was proposed here to provide authentication and
tamper detection against post-synthesis attacks. Several post-
synthesis attack concepts and example attacks were presented.
The concept of embedding infrared-emitting dynamically con-
trolled partial look-up table (LUT) oscillators was introduced
to detect these attacks. Beacon, authenticator, and detector
variations of the oscillators were presented and discussed.
Backside infrared imaging techniques were presented to deter-
mine precise pixel locations of these oscillators for performing
statistical analyses. Authentication and detection activities
were experimentally verified using a 28-nm Xilinx Kintex-7
FPGA to demonstrate the effectiveness of detecting a post-
synthesis attack down to a single LUT initialization value
modification.
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