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Abstract
As recent work demonstrated, the task of identifying communities in networks can be
considered analogous to the classical problem of decoding messages transmitted
along a noisy channel. We leverage this analogy to develop a community detection
method directly inspired by a standard and widely-used decoding technique. We
further simplify the algorithm to reduce the time complexity from quadratic to linear.
We test the performance of the original and reduced versions of the algorithm on
artificial benchmarks with pre-imposed community structure, and on real networks
with annotated community structure. Results of our systematic analysis indicate that
the proposed techniques are able to provide satisfactory results.
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Introduction
Real networks often exhibit organization in communities, intuitively defined as groups
of nodes with a higher density of edges within rather than between groups (Girvan
and Newman 2002; Fortunato 2010). Most of the research on this topic has focused on
the development of algorithms for community identification. Proposed approaches vary
widely, including hierarchical clustering algorithms (Friedman et al. 2001), modularity-
based methods (Newman and Girvan 2004; Newman 2004; Clauset et al. 2004; Guimera
et al. 2007; Duch and Arenas 2005; Newman ME 2006a; Newman ME 2006b), random
walk based algorithms (Zhou 2003; Rosvall and Bergstrom 2008), and statistical infer-
ence methods (Newman and Leicht 2007; Hastings 2006; Decelle et al. 2011b; Karrer and
Newman 2011; Peixoto 2014; 2013; 2018), to mention a few of them. Whereas algo-
rithms differ much in spirit, they all share two intrinsic limitations. First, as described
by the No Free Lunch Theorem (Peel et al. 2017), there is no community detection algo-
rithm that works best for all networks and community structures; an algorithm good for
one class of networks may be equally bad for another class of networks. A second type
of limitation arises from self-consistency tests, where community detection methods are
applied to instances of the stochastic block model to uncover the community structure
pre-imposed in the model. Algorithms can recover a non-vanishing portion of the true
community structure of the graph only if the amount of fuzziness in the network is below
the detectability threshold (Decelle et al. 2011b; Nadakuditi and Newman 2012; Krza-
kala et al. 2013; Radicchi 2013; 2014; Abbe and Sandon 2015; Abbe 2018). Also, exact
detection of the true cluster structure is subjected to a threshold phenomenon (Abbe et al.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-019-0114-7&domain=pdf
mailto: bathina@indiana.edu
mailto: f.radicchi@gmail.com
http://creativecommons.org/licenses/by/4.0/


Bathina and Radicchi Applied Network Science             (2019) 4:9 Page 2 of 15

2016; Abbe 2018; Mossel et al. 2018). This phenomenon can be understood through the
lens of coding theory by interpreting the problem of defining and identifying communi-
ties in networks as a classical communication task over a noisy channel, analogous to the
one originally considered by Shannon (2001). The value of the exact recovery threshold
can be estimated in the limit of infinitely large graphs (Abbe et al. 2016; Abbe and Sandon
2015; Abbe 2018; Mossel et al. 2018). A bound on the value of the threshold for finite-size
graphs can be obtained as an application of the Shannon’s noisy-channel coding theorem
(Radicchi 2018).
In this paper, we exploit the analogy between coding theory and community structure

in networks, and develop a novel class of algorithms for community detection based on a
state-of-the-art decoding technique (Gallager 1962;MacKay and Neal 1996). The idea has
been already considered in Radicchi (2018) for the simplest case of network bipartitions.
Here, we expand the method to find multiple communities by iterating the bipartition
method in a way similar to what already considered in Newman (2013); Kernighan and
Lin (1970); Fiduccia andMattheyses (1982). As the decodingmethod considered in Radic-
chi (2018) has computational complexity that scales quadratically with the number of
nodes in the network, we further propose an approximation of the algorithm that makes
the method complexity scale linearly with the number of edges, thus making it linearly
dependent with system size in sparse networks. We perform systematic tests of the both
algorithm versions on synthetic and real-world graphs. Performances appear satisfactory
in all cases.

Methods
Community detection as a communication process

For sake of clarity, we repeat the same description already provided in
Abbe et al. (2016); Abbe and Sandon (2015); Abbe (2018); Mossel et al. (2018); Radicchi
(2018) of how the definition and detection of communities in a network can be framed
as a communication process (see Fig. 1).
We assume that there are N nodes in the network and that each node i has associated

a single information bit σi = 0, 1. The value of the bit identifies the group of node i. The
message is encoded by adding N(N − 1)/2 parity bits θ , each for every pair of nodes. The
parity bit θi,j = 0 if σi = σj, or θi,j = 1, otherwise. The parity bits are essentially added to
the original message according to the rule

σi + σj + θi,j = 0 , (1)

where the sum is performed in modulo-2 arithmetic. The set of N(N − 1)/2 equations
defines the code used in the communication process. In the jargon of coding theory,
Eq. (1) defines a low-density parity-check (LDPC) code. These type of codes are often
used in practical communication tasks, given their effectiveness (Gallager 1962; MacKay
and Neal 1996; MacKay and Mac Kay 2003). In graphical terms, the encoded message
can be seen as a network composed of two disconnected cliques, where each identifies a
community of nodes.
Once encoded, the message is transmitted trough a communication channel. There,

noise alters the bit values. Information bits σ are deleted so that there is no longer
information about node memberships; some parity bits θ are flipped giving rise to the
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Fig. 1 Community detection as a decoding task of a message transmitted along a noisy channel. A message
made up of community assignments is formed into a network structure through an encoder. The codeword
is then transmitted trough a noisy channel. The channel noise delete any information regarding the
assignment of nodes to communities, and further deteriorates the network structure by deleting/adding
edges. The observed network is received at the end of the noisy channel, and its structure is used to decode
the original message

observed network. The goal of the decoder is to use information from the observed net-
work together with a hypothesis on the noise characterizing the channel to infer the
original message about group memberships.

Stochastic block model as a noisy channel

As already done in Abbe et al. (2016);Abbe and Sandon(2015); Abbe (2018);
Mossel et al. (2018); Radicchi (2018), we make a strong hypothesis on the noisy channel.
We assume that the observed network is given by a stochastic block model, where pairs
of nodes within the same group are connected with probability pin, and pairs of nodes
belonging to different groups are connected with probability pout . This corresponds to
assuming that the noisy channel is given by an asymmetric binary channel, and that the
parity bits θ are flipped with probabilities defined in Table 1. Further, it allows us to use
Bayes’ theorem to derive the conditional probability P

(
θi,j|Ai,j

)
for the parity check bit θi,j

depending on whether nodes i and j are connected in the observed network, i.e., Ai,j = 1
or Ai,j = 0. Please note that, since there is no prior knowledge of the true parity bits val-
ues, we assume P

(
θi,j = 1

) = 1/2 (Radicchi 2018). This represents a strong assumption
in the model, and the resulting algorithm is biased towards the detection of homogenous
communities.

Gallager community decoder

To find the community structure of an observed network, we take advantage of a widely-
used decoding technique for LDPC codes. The technique consists in iteratively solving

Table 1 The conditional probabilities between for the variables Ai,j and θi,j

Ai,j θi,j P
(
Ai,j|θi,j

)
P
(
θi,j|Ai,j

)

1 0 pin
pin

pin+pout

1 1 pout
pout

pin+pout

0 0 1 - pin
1−pin

2−(pin+pout)

0 1 1 - pout
1−pout

2−(pin+pout)

The last column was calculated using Bayes’ rule with an assumption on the prior of P
(
θi,j = 1

) = 1/2
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the system of parity-check equations that defines the code, given the knowledge of the
noisy channel (Gallager 1962; MacKay and Neal 1996). The application of the method
to community detection was considered in Radicchi (2018). Specifically, the technique is
used to solve Eqs. (1) using properties of the channel from Table 1. The t-th iteration of
the algorithm is based on

ζ t
i→j =

{
�i t = 0
�i + ∑

s�=i,j F
[
tanh �i,s

2 , ζ t−1
s→i

]
t > 0

(2)

for all ordered pairs of nodes i → j. The function F is defined as

F[a, x]= log
1 + a tanh x

2
1 − a tanh x

2
, (3)

where tanh(·) is the hyperbolic tangent function. In the algorithm, the quantity �i is the
log-likehood ratio (LLR) �i = logP (σi = 0) − logP (σi = 1) associated with node i, that
is the natural logarithm of the ratio between the probabilities that the parity bit σi equals
zero or one. �i,j = logP

(
θi,j = 0|Ai,j

) − logP
(
θi,j = 1|Ai,j

)
is instead the LLR associated

with the parity bit θi,j given the hypothesis on the noisy channel and the evidence from
the observed network. The variable ζ t

i→j is still a LLR. It is defined for all pairs of nodes
i and j, irrespective of whether they are connected or not. ζ t

i→j may be interpreted as a
message that node i sends to node j regarding the value that the information bit σi should
assume based on the knowledge of the code, the noisy channel, and the evidence collected
by observing the network. Please note that two distinct messages are exchanged for every
pair of nodes i and j, depending on the direction of the message, either i → j or j → i.
At every iteration t, convergence of the algorithm is tested by first calculating the best
estimates of the LLRs as

�̂ti = �i +
∑

s�=i
F

[
tanh

�i,s
2
, ζ t−1

s→i

]

�̂ti,j = �i,j + F
[

tanh
ζ t−1
i→j

2
, ζ t−1

j→i

] . (4)

Then, one evaluates the best estimates of the information bits, according to σ̂i = 0 if
�̂ti > 0, and σ̂i = 1, otherwise. A similar rule is used for the best estimate of the par-
ity bit θ̂i,j. Finally, the best estimates of the bits are plugged in the system of Eq. (1). If
the equations are all satisfied, the algorithm has converged. Otherwise, one continues
iterating for a maximum number of iterations T. In our calculations, we set T = 100.
We remark three important facts. First, possible solutions of the algorithm are classi-

fications of nodes in either one or two groups. In the first case, the algorithm indicates
absence of block structure in the network. Second, knowledge of the noisy channel and
evidence of the observed network is used in the definition of the initial LLRs �i,j. For the
choice of the initial values of the LLRs for individual nodes �i there is not a specific rule.
If the community structure is strong enough, initial conditions for the iterative algorithm
are not very important. However, in regimes where community structure is less neat, they
may determine the basis of attraction for the iterated map. In this paper, we will consider
two different choices for the initial values of the nodes’ LLRs. Finally, we stress that the
algorithm is the ad-literam adaptation of the Gallager decoding algorithm to the detec-
tion of two communities. As such, the algorithm iterates over all possible pairs of nodes,
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irrespective of whether they are connected or not. Each iteration of the algorithm requires
a number of operations that scales with the network size N as O

(
N2), thus making the

algorithm applicable only to small/medium sized networks.

Reducing the computational complexity of the community decoder

We leverage network sparsity to reduce the computational complexity of the algorithm
without significantly deteriorating algorithm performance. The way we decrease the com-
plexity is rather intuitive. In the original implementation, a node sends a message to all
other nodes, even if there is not an edge connecting them. In the reduced algorithm, we
instead assume that (i) messages are delivered only along existing edges, (ii) the mes-
sage passed from a node to any unconnected node is the same regardless of the actual
pair of nodes considered. This reduces the total number of messages to twice the num-
ber of edges in the network, and thus the complexity fromO

(
N2) toO (N〈k〉), where 〈k〉

is the average degree of the network. Our proposed reduction makes the algorithm lin-
early dependent on the number of edges in the network, which corresponds to a linear
dependence with the system size if the network is sparse.
Specifically, the equations that define the algorithm are as follows. For connected pairs

of nodes i and j, we define the initial message ζ t=0
i→j = �i, and

ζ t
i→j = �i + (N − ki − 1) F

[
tanh �non

2 ,Z t−1
]

+ ∑
s∈Ni\j F

[
tanh �con

2 , ζ t−1
s→i

]
(5)

for iteration t ≥ 1. In the equation above, �non stands for the LLR of non-connected node,
and �con is the LLR for connected nodes. These quantities are defined as

�non = logP
(
θi,j = 0|Ai,j = 0

) − logP
(
θi,j = 1|Ai,j = 0

)

�con = logP
(
θi,j = 0|Ai,j = 1

) − logP
(
θi,j = 1|Ai,j = 1

) . (6)

Further, in Eq. (5), ki is the degree of node i, and Ni indicates the set of neighbors of
node i. Non-existing edges deliver the single message Z . This corresponds to the average
value of all messages among non-connected pairs of nodes in the original version of the
algorithm. The equations that define the iterations for Z are

Z t=0 =
∑N

i=1 (N − ki − 1) �i
N(N − 1) − 2M

(7)

and

Z t = Z t=0 + F
[
tanh

�non
2

,Z t−1
]

+
∑N

i=1
∑

j∈Ni F
[
tanh �con

2 , ζ t−1
i→j

]

N(N − 1) − 2M
(8)

for iteration t ≥ 1. We used 2M = ∑
i ki, i.e., the sum of the degrees of all the nodes in

the network.
Convergence of the equations above is tested using the same procedure described in the

original algorithm. In particular, the best estimates of the LLRs are computed using

�̂i = �i +
∑

s∈Ni

F
[
tanh

�con
2

, ζ t−1
s→i

]
+ (N − ki) F

[
tanh

�non
2

,Z t−1
]

�̂i,j = log
pin
pout

+ F
[

tanh
ζ t−1
i→j

2
, ζ t−1

j→i

]

.
(9)

These values are used to find the best estimates of the bits σ s and θs and, in turn, are
plugged into the parity-check Eq. (1). To keep the computational complexity linear, only
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parity-check equations corresponding to existing edges are actually tested. The maxi-
mum number of iterations T that we considered before stopping the algorithm for lack of
convergence is T = 1, 000.

Initial conditions

As we mentioned above, the initial value �i of the LLR for every node i requires initial-
ization. The initialization is potentially a very important decision for the performance of
the algorithm as it determines the basin of attraction of the iterative system of equations.
In this paper, we consider two different strategies for the determination of the starting
conditions:

Regular A random node i is chosen such that �i = 1 and �j = 0, ∀j �= i.
Random For every node i = 1, . . . ,N , �i is a random variable extracted from the uniform

distribution with support [−1, 1].

Multiple communities

Up to now, we have described how to find a bipartition in a network according to our
procedure. We remark that the output of the algorithm may also indicate no division of
the network. Our goal, however, is to detect an arbitrary number of communities in our
graph. To this end, we adopt a simple iterative procedure (see Fig. 2). The procedure
is identical to the one already adopted in Newman (2013); Kernighan and Lin (1970);
Fiduccia and Mattheyses (1982), and it may be summarized as follows. At the beginning,
we define a list of subgraphs L to be analyzed, and a list of detected communities C. The
list L contains only one element, the entire graph G, while C is empty. We then apply the
following steps:

1 Take a graph g from the list L. Remove the graph from the list.
2 Apply the bipartition algorithm to the graph g.

a If the algorithm finds a split of g in two sets of nodes, namely g1 and g2,
reconstruct each set as a graph using only nodes within the set, and only edges
between pairs of nodes within the set. Place g1 and g2 into the list L.

b If the algorithm finds only a set of nodes, so that no actual split was detected, g
is considered as a community and placed in the list C.

3 Go back to point 2 until L is empty. The list of detected communities is given by C.

Learning the parameters of the noisy channel

So far, we tacitly assumed to know the values of the probabilities pin and pout . The
assumption has been used in the bipartition algorithm of Radicchi (2018) when applied
to instances of the stochastic block model with two communities. In practical situations,
however, prior knowledge of the probabilities pin and pout is not available. These param-
eters should instead be learned in a self-consistent way by the algorithm relying only on
information from the observed network. Here, we simultaneously propose and validate
a simple learning strategy. To this end, we generate instances of the so-called Girvan-
Newman (GN) benchmark graph (Girvan and Newman 2002), a variant of the stochastic
model with N = 128 and Q = 4 communities. Different from the original version of the
GN model we allow nodes to have average degree 〈k〉 �= 16. The average connectivity of
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Fig. 2 Schematic representation of the iterative procedure used by the algorithm to detect multiple
communities. In this example, the top graph is a sample network with 4 communities. In the first iteration,
the algorithm splits the network perfectly into two equal communities. In the next iteration, each network is
split perfectly again. The algorithm terminates because the next iterations do not lead to the discovery of
other sub-communities
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the model is set by fixing the sum of the true parameter values p̂in and p̂out , while the
strength of the community structure is instead determined by their difference. We con-
sider four different combinations

(
p̂in, p̂out

)
for the true values of the model parameters to

generate four instances of the model. To each of the four instances, we apply the original
algorithm with the regular starting conditions to the network using the parameters values
p̃in and p̃out . We measure the performance of the algorithm to recover the pre-imposed
community structure of the graph, using normalized mutual information (NMI)

NMI = I(True,Predicted)√
H(True)H(Predicted)

. (10)

NMI is defined as the mutual information I between the predicted and true clusters
normalized by the square root of the product of the individual entropies H (Strehl and
Ghosh 2002; Danon et al. 2005).
In Fig. 3, we display the outcome of our tests when the community detection algo-

rithm is applied relying on prior information given by p̃in and p̃out . We consider only
combinations

(
p̃in, p̃out

)
that lay in the regime of detectability (Decelle et al. 2011b).

The figure shows that our algorithm reproduces accurately the community structure of
the graph for several combinations

(
p̃in, p̃out

)
. This fact happens as long as

(
p̃in, p̃out

)

is not too far from the ground truth
(
p̂in, p̂out

)
. The finding tells us that knowing

a b

c d

Fig. 3 Learning the parameters of the noisy channel. Each subgraph report results obtained on an artificial
network constructed according to a synthetic model similar to the Girvan-Newman benchmark, where
N = 128 are divided into Q = 4 communities of equal size. Nodes within the same group are connected with
probability p̂in , while pairs of nodes belonging to different groups are connected with probability p̂out . We
consider four different combinations

(
p̂in , p̂out

)
to generate four different instances of the model. The four

different instances of the model are represented in panels a, b, c, and d. Ground-truth values of p̂in and p̂out
are denoted by the green star symbol in the various panels. We apply the method for community detection
introduced in this paper to the graph using the parameters values p̃in and p̃out , randomly sampled in the
regime of detectability. The value of the normalized mutual information (NMI) between retrieved and
ground-truth community structure is represented by the color of the various points. The green line in the
plot identifies combinations of pin and pout compatible with the observed average degree 〈k〉 of the graph.
The blue line is y = x, and denotes the region where community structure is present. The orange line is the

detectability threshold N(Q−1)
Q (pin − pout) =

√
N(Q−1)

Q (pin − pout)
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the exact value is not a necessary requirement for the correct detection of the mod-
ules; we need only a good guess of the values of the parameters. In particular, the
analysis suggests a simple criterion for the choice of the parameter values pin and
pout that can be used in the algorithm. We can use any combination that satisfy the
equations

pin + pout = 2〈k〉
N

pin − pout >
2
√〈k〉
N

. (11)

where 〈k〉 is the average degree observed in the network. The first equation imposes
that the parameters pin and pout are compatible with the average degree of the observed
network. The inequality appearing in the bottom of Eq. (11) is instead restricting our
possibilities only in the regime of detectability (Decelle et al. 2011a). As any point in the
segment determined by Eqs. (11) is equivalent in terms of performance, the values of the
parameters pin and pout used by our algorithm are obtained with

pin = α
〈k〉 + √〈k〉

N

pout = max
{
0,

2〈k〉
N

− pin
}
,

(12)

where α > 0 is a tunable parameter, whose value is chosen appropriately such that
pin > pout ≥ 0. In our numerical results, we set α = 1.2. However, we verified that the
performance of the algorithm doesn’t change if we choose small α values at random.

Results
Artificial graphs

First, we perform tests of the original and reduced versions of the algorithm on synthetic
graphs with pre-imposed community structure. These are compared with 100 realizations
from both the well-established methods Louvain (Blondel et al. 2008) and Infomap (Ros-
vall and Bergstrom 2008). In our numerical tests, we used the implementations of the two
algorithms provided by the Python library igraph (2019). In particular, we use as best par-
tition found by Louvain the community structure obtained looking at the lowest level of
the multiresolution method (Lancichinetti and Fortunato 2009). We consider two differ-
ent variants of the stochastic block model: the Girvan-Newman (GN) benchmark graph
(Girvan and Newman 2002) and the Lancichinetti-Fortunato-Radicchi (LFR) benchmark
graph (Lancichinetti et al. 2008). We measure the performance of the algorithms using
NMI as a function of the community strength of the model, determined by the value of
the mixing parameter μ = kout

kout+kin , i.e., the ratio between external and total degree of the
nodes. This parametrization allows for a direct comparison between our results on those
reported in Lancichinetti and Fortunato (2009).
In Fig. 4a, we show the performance of the algorithms on the Girvan-Newman (GN)

graph. The original algorithm is tested on 100 instances for each μ value. We compare
results using both starting conditions. Similarly, Fig. 4b shows the results of the reduced
algorithm on 100 instances of the GN graph. In the original implementation, at around
μ = 0.5, the performances of both algorithm reduce to 0. Both tend to outperform
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a b

Fig. 4 Performance of the community detection algorithm on the Girvan-Newman (GN) benchmark graph.
We plot measure values of the normalized mutual information (NMI) as a function of the mixing parameter μ
of the model. a Results of the original version of the algorithm with both starting conditions; b Performance
of the reduced version of the algorithm. Both of these are compared with Louvain and Infomap

Infomap for large values of μ but perform worse than Louvain. In the reduced version of
the algorithm, the performance of the regular implementation reduces to 0 whenμ ≥ 0.3.
The random implementation is similar to Infomap and both start to drop aroundμ = 0.4.
As before, both perform worse than Louvain. The values of μ where we see a drop in per-
formance are tantamount with the level of fuzziness where most of the algorithms start
to systematically fail on the GN benchmark (Lancichinetti and Fortunato 2009). In most
of the cases, either perfect communities or one large community was predicted. An inter-
esting finding is that the reduced version of the algorithm is able to perform just as well as
the original version with the regular conditions and just slightly worse with the random
conditions for low values of μ.
Tests on the LFR graphs are reported in Fig. 5. Similar to Lancichinetti and Fortunato

(2009), our tests were performed on networks with size either N = 1000 or N = 5000,
generated under condition S, i.e., small communities with size in the range [ 10, 50] nodes
per community, or under condition B, i.e., large communities with size in the range
[ 20, 100]. In the generation of graph instances, community sizes are chosen at random
according to power-law functions with exponent −1 defined over the aforementioned
ranges. Node degrees are random variates extracted from a power-law degree distribution
with exponent −2, such that the average degree of the nodes is 20 and maximum degree
equals 50. We tested the performance of our algorithms over 100 instances of the model
for each μ value. Given the high complexity of the original version of the algorithm, we
could test in a systematic fashion only the performance of the reduced algorithm. The
algorithm was started from both initial conditions. The results of Fig. 5 provide evidence
that the algorithm is able to achieve good performance, although the ability to recover
the right community structure of the model decreases to zero for a level of noise slightly
smaller than those of other algorithms (Lancichinetti and Fortunato 2009).
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a b

c d

Fig. 5 Performance of the community detection algorithm on the Lancichinetti-Fortunato-Radicchi (LFR)
benchmark graph. We display results only for the reduced version of the algorithm but with both initial
conditions. As a term of comparison, we display results obtained by Louvain and Infomap in the same set of
benchmark graphs. In the various panels, performance is measured in terms of normalized mutual
information (NMI). This quantity is evaluated as a function of the mixing parameter μ of the model. We
consider the following experimental settings: a Small communities with N = 1000 nodes; b Big communities
with N = 1000 nodes; c N = 5000 nodes with Small communities; d N = 5000 nodes with Big communities

Real networks

Recently, community detection algorithms have been focusing on incorporating edge and
node metadata into community formation (Newman and Clauset 2016). An interesting
point in this context is understanding how much the community structure of a network
is actually representative for exogenous classifications of nodes obtainable frommetadata
(Hric et al. 2014).
We run both versions of the algorithms 100 times on 5 well-known datasets with

metadata. For each dataset, we applied three filters; splitting communities into con-
nected components, removing duplicates, and removing singletons (Hric et al. 2014).
The Zachary Karate Club network is a social network of 34 nodes and 78 edges of
self reported friends (Zachary 1977). A disagreement between the two leaders led to
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the splitting of the club into two groups. The US College football network is a net-
work of college football teams in which edges represent a scheduled game in the Fall
of 2000 (Girvan and Newman 2002). The communities are the 12 conferences each of
the teams belong to. The US Political Book network represents all books co-purchased
on Amazon.com around the 2004 election in which edges are Amazon recommenda-
tions indicating co-purchases from other users while the groups represent the political
leanings of the book (Liberal, Neutral, or Conservative) found by human ratings (Krebs
2008). The US Political Blog dataset is a network of hyperlinks between blogs with the
groups being Conservative or Liberal (Adamic and Glance 2005). Finally, the Facebook
social networks are undirected friendship networks from 97 different colleges across the
US (Traud et al. 2012). We specifically use network 82 with dorms, gender, high school,
and major as the communities. Due to the size, we only ran 5 iterations on the Facebook
network.
Table 2 shows the performance of algorithms, under both initial conditions, on

the various datasets. Performance is still measured in terms of NMI between the
community structure recovered by the algorithms and the one given by the meta-
data. Best matches between topological communities and metadata were observed
for the US College Football network, similar to Hric et al. 2014. The result is
expected as college football teams play more against teams within their confer-
ence rather than teams outside their conference. Interestingly, the communities
found by our algorithm seem to provide significantly higher NMI values than those
obtained via Louvain and Infomap on the US Political Book and US Political Blog
networks.

Conclusion
In this paper, we exploited the interpretation of the problem of defining and identify-
ing communities in networks as a classical communication task over a noisy channel,
and made use of a widely-used decoding technique to generate a novel algorithm for
community detection. Although the primitive version of the algorithm was introduced
in Radicchi (2018), we extended the idea in three respects. First, we generalized the
algorithm, originally designed for the detection of two communities only, to the detec-
tion of an arbitrary number of communities. The generalization consists of iterating the
binary version of the algorithm till convergence. Second, we accounted for the sparsity
of graphs which community detection methods are usually applied to, and reduced the
complexity of the algorithm from quadratic to linear. The simplification allowed us to
generate a method able to deal with potentially large networks without renouncing too
much to the basic principles of the original version of the algorithm. Third, we system-
atically tested the performance of the new algorithm on both synthetic networks and
real-world graphs. These tests provided results that are consistent with what already
observed in the literature for other well-established algorithms for community detection.
In particular, the algorithm outperformed top community detection algorithms in tests
based on the standard SBM, i.e., involving the detection of equally sized communities in
graphs with homogenous degree distributions. On the basis of the performance results
obtained here, we believe that our algorithm may represent an effective and efficient
alternative to other methods that rely on the SBM ansatz to infer network community
structure.
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