SOLUTIONS FOR HOMEWORK 1

JIECAO CHEN

DEFINITIONS FROM THE TEXTBOOK

We suggest to use O, o, Ω, Θ as defined in our textbook *Introduction to Algorithms, 3Ed*.

Definition 0.1 (Θ). $\Theta(g(n)) = \{f(n)| \exists \text{ positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0\}.$

Definition 0.2 (O). $O(g(n)) = \{f(n)| \exists \text{ positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0\}.$

Definition 0.3 (Ω). $\Omega(g(n)) = \{f(n)| \exists \text{ positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0\}.$

Definition 0.4 (o). $o(g(n)) = \{f(n)| \text{ for any } c > 0, \exists \text{ a constant } n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0\}.$

The textbook also assumes that above notations are defined in terms of functions whose domains are the set of natural numbers \mathbb{N} because we are dealing with the running time function $T(n)$ and n represents the size of the input. However, above definitions are actually applicable to functions whose domains are the set of real numbers \mathbb{R}. **Unless we make explicit requirement, you can choose whichever domain (\mathbb{R} or \mathbb{N}) you like.**

One more thing worth to mention, $O(g(n))$ (other notations similar) is a set of functions based on our definition. When we write $f(n) = O(g(n))$, it is just a convention made in the community of computer science, what we really mean here is $f(n) \in O(g(n))$.
Reminders:
- Solutions provide one possible solution process. In many cases, there are multiple correct processes that will result in the correct final answer.
- Solutions are references that may also contain errors.

Question 1

We have neither \(f(n) = O(g(n)) \) nor \(g(n) = O(f(n)) \). Let us show \(f(n) \neq O(g(n)) \) here, the other direction can be proved similarly.

Claim 0.5. \(f(n) \neq O(g(n)) \)

Proof. Prove by contradiction. Assume \(f(n) = O(g(n)) \), by the definition, there exist constants \(c, n_0 > 0 \) such that \(0 \leq f(n) \leq cg(n) \) or \(0 \leq n \leq cn^{1 + \sin n} \) for all \(n \geq n_0 \). It implies \(\theta \)

\[
0 \leq 1 \leq cn^{\sin n} \text{ for all } n \geq n_0.
\]

Can it be true? To show that the answer is No, it suffices to show:

For any \(n_0 > 0 \), we can always pick an \(n \geq n_0 \) such that \(cn^{\sin n} < 1 \).

Easy Version: use domain \(\mathbb{R} \). For any given \(n_0 > 0 \), let \(n = 2k\pi - \frac{\pi}{2} \) where \(k \) is a large enough integer to make \(n > \max\{c,n_0\} \). Then \(cn^{\sin n} = \frac{c}{n} < 1 \).

Hard Version: use domain \(\mathbb{N} \). First let’s consider the set \(S = \{x \in \mathbb{R}^+ | \sin y \leq -0.5 \text{ for all } y \in (x - \frac{\pi}{3}, x + \frac{\pi}{3})\} \), it is trivial from the graph of \(\sin x \) to see that there will be infinitely many elements in \(S \).

Since each \((x - \frac{\pi}{3}, x + \frac{\pi}{3}) \) has length \(\frac{2\pi}{3} > 1 \), it must contain some integer, it tells us that there will be infinitely many \(n \in \mathbb{N} \) such that \(\sin n \leq -0.5 \).

Now given \(c,n_0 > 0 \), we can always pick an \(n \) that \(n > c^2, n > n_0 \) and \(\sin n \leq -0.5 \), hence \(cn^{\sin n} \leq cn^{-0.5} < \frac{c}{\sqrt{n}} \leq 1 \) which conflicts Inequality \((0.6)\).

□

Question 2

Claim 0.7. \(f(n) = \frac{1}{n} = o(1) \).

Proof. For any constant \(c > 0 \), choose an \(n_0 > \frac{1}{c} \), for any \(n > n_0 > \frac{1}{c} \), we have \(0 \leq \frac{1}{n} \leq \frac{1}{1/c} = c \cdot 1 \).

□

Question 3

Claim 0.8. \(f(n) = \Theta(g(n)) \) does not necessarily imply \(2f(n) = \Theta(2g(n)) \).

Proof. It suffices to prove the claim by showing a counterexample: \(f(n) = \log n, g(n) = 2\log n \), then \(2f(n) = n \) but \(2g(n) = n^2 \). Clearly \(n \neq \Theta(n^2) \).

□

Claim 0.9. \(f(n) = \Theta(g(n)) \) implies \(f^2(n) = \Theta(g^2(n)) \).

Proof. \(f(n) = \Theta(g(n)) \) implies that there exist \(c_1, c_2, n_0 > 0 \) such that \(0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \) for all \(n > n_0 \), which further implies that \(0 \leq c_1^2 g^2(n) \leq f^2(n) \leq c_2^2 g^2(n) \) for all \(n > n_0 \). The claim follows because \(c_1^2 \) and \(c_2^2 \) are also positive constants.

□
Question 4

Claim 0.10. If \(f(n) = O(g(n)) \) then \(f(n) + g(n) = O(g(n)) \)

Proof. \(f(n) = O(g(n)) \Rightarrow \)

there exist \(c,n_0 > 0 \) such that \(0 \leq f(n) \leq cg(n) \) for all \(n \geq n_0 \).

Hence \(0 \leq f(n) + g(n) \leq (c+1)g(n) \) for all \(n \geq n_0 \).

Therefore \(f(n) + g(n) = O(g(n)) \). \(\square \)

Claim 0.11. If \(f(n) = \Omega(g(n)) \), \(f(n) - g(n) \neq \Omega(g(n)) \).

Proof. Here is a counterexample: \(f(n) = g(n) = n \), clearly \(f(n) = \Omega(g(n)) \) but \(f(n) - g(n) = 0 \neq \Omega(n) \). \(\square \)

Question 5

Let \(T(n) \) be the running time of this algorithm and let a function \(f(n) = O(n^2) \).

The statement says that \(T(n) \) is at least \(O(n^2) \). That is \(f(n) = O(T(n)) \), but it does not tell us nothing about the growth rate of \(T(n) \), because by the definition of \(O \)-notation, there exist \(c_1, c_2, n_1, n_2 > 0 \) such that

(0.12) \(0 \leq f(n) \leq c_1 n^2 \) for all \(n \geq n_1 \).

(0.13) \(0 \leq f(n) \leq c_2 T(n) \) for all \(n \geq n_2 \).

(0.12) allows us to take \(f(n) = 0 \), substitute 0 for \(f(n) \) in (0.13), \(0 \leq T(n) \) tells us nothing about the growth rate of \(T(n) \).

If we want to give a lower bound, we can say that “the running time of this algorithm is \(\Omega(n^2) \)”. When we need an upper bound, we can say “the running time of this algorithm is \(O(n^2) \)”.