1. Which vertices in a flow problem have their incoming flow not equal to outgoing flow? Explain. What is a capacity, what is flow on an edge, what is residual capacity on an edge? (answer for the last: capacity that remains after a flow is allocated on an edge, computed as \(c(u, v) - f(u, v) \))

2. What does NP stand for?

3. If I were to use a linked list rather than a heap as my main data structure in computing the minimum spanning tree, what would my running time be? Analyze. What if I used an array? Think of other types of data structures and analyze how this algorithm would behave if they were used.

4. Half-cycle. Given a graph \(G \) with \(n \) nodes, does it contain a simple cycle of length at least \(n/2 \)? Prove that this question is NP-complete.

5. Look up the traveling salesman problem and prove that it is NP-complete. What did you reduce from?

7. I give you a graph where all edges have the same weight, \(w \). Give me an algorithm to compute the cost of the minimum spanning tree in constant time. How about computing the actual tree – how fast can you do that?

8. Let \(G \) be a graph, and edge \(e \) be an edge in \(G \). \(e \) has the smallest weight in the entire graph; all other edges have higher weight. Prove that any MST of \(G \) must contain \(e \). This is a hard question, think about perhaps proving by contradiction.