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Introduction

I Welcome to Genomics Data Mining (GDM) working group.

I Meetings will be bi-weekly starting today.
I Extract meaningful information about the system being

studied from gene expression data.
I The work is motivated by recent progress in cancer genomics.
I This overview is by no means comprehensive.
I There is no one-size-fits-all solution for the analysis and

interpretation of genome wide data.
I Many analysis options are available at all phases of analysis.
I An understanding of both biology and the computational

methods is essential.
I Complex mathematical methods do not necessarily perform

better than simpler ones.
I Prepackaged analysis tools are not a good substitute for

collaboration with computational/statistical scientists on
complex problems.
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Central Ideas

I Gene expression signatures: One can rationally distill a list of
genes from an unbiased global scan of gene-expression
changes observed across a carefully selected sample set.

I Biological states can be characterized by gene expression
signatures.

I We can use gene expression signatures as surrogates for
biological states.
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Central Papers

I Gene expression signatures: Molecular Classification of
Cancer, T.R. Golub et al., Science 286, 531, 1999.

I GSEA: Gene Set Enrichment Analysis, A. Subramanian et al.,
PNAS, 102, 2005.

I GE-HTS: Gene Expression-based High-throughput Screening,
K. Stegmaier et al., Nature genetics 36, 257, 2004.

I Connectivity Map: The Connectivity Map, J. Lamb et al.,
Science 313, 1929, 2006.
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Class Comparison

I Goal: Identify differentially expressed genes.

I Methods:
I Calculate a test statistic (t-test, ANOVA F statistic,

non-parametric rank-based,. . .)
I Determine the significance of the observed value for test

statistic.
I Normality, equal variance, multiple testing, FWER vs FDR

I Issues:
I Two or more experimental conditions
I Conditions may be independent or related (time series)
I Many different combinations of experimental variables
I Replication, to estimate variability, to identify biologically

reproducible changes
I How to incorporate estimates of variation (model-based

methods)
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Class Comparison

Opportunities:
Time-series analysis:

I Regulatory pathway inference

I Yeast cell cycle (Fourier transform, . . .)

I Model organism (e.g., Drosophila, Daphnia) development

I Analysis of samples (cells) exposed to different doses of the
same drug

I Analysis of expression patterns from related bacterial strains
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Class Discovery

I Goal: Identify meaningful patterns in the data, (aka.
Unsupervised learning.)

I Methods:

I Dimensionality reduction methods: Most of the variation in
data can be explained by a smaller number of transformed
variables.

I For example: SVD, PCA, MDS, . . ..

I Clustering: Data can be grouped into groups of similar points
based on some similarity measure.

I Aggregation methods (e.g., HC)
I Partitioning or centroid methods (for example, k-means, SOM

or Kohonen maps)
I Model-based methods (e.g., fitting into some mixture model)
I Optimization techniques (within class, between class)
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Class Discovery cont’d

Issues:

I It is unbiased, no a priori assumption.

I The structure may not be of clinical or biological interest.

I Should be viewed as a first step in more detailed analysis.

I There is no single best way to evaluate a clustering method or
a cluster.

I How to evaluate clustering methods?

I There is no single best clustering method for a data set.

I Some desirable properties maybe: Stability (reliability),
predictive power, reduction power, ...

I How to choose the number of clusters (Gordon, repeated
sampling, gap statistic, ...)
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Class Discovery cont’d

Opportunities:

I Stochastic clustering (e.g., NMF)

I Techniques from statistical physics (e.g., Deterministic
Annealing)

I Spectral methods (e.g., Diffusion maps on graphs)

I Geometric methods (e.g., Diffusion maps on manifolds)

I Information theoretic methods

I Statistical theory of clustering (Cf. comparing clustering
methods)
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Class Discovery Methodology

Expression Dataset

Scaling, Filtering and Normalization

Select Number of Classes

Cluster Data

Validation of Putative Classes

Discovered Classes
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Class Prediction

I Goal: Design an accurate classifier (predictor) under the
guidance of a supervisor, (aka. Supervised learning problem.)
E.g., predicting cancer (sub)types, clinical outcomes, etc.

I Methods:
I Linear and quadratic discriminant analysis
I Weighted voting
I Shrunken centroids
I k-NN
I Neural nets
I SVM
I Decision tree classifiers
I Naive Bayes
I Bagging and boosting (combining classifiers)
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Class Prediction, cont’d

Issues:

I features >> samples

I Overfitting (modeling the training data too exactly)

I High level of noise
I Which method to choose?

I Careful with comparisons
I Some trends emerge (e.g, Diagonal LD does better than

Fisher’s LD, k-NN performs better after gene filtering,
combined methods do better, simpler methods do better, ...)
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Class Prediction cont’d

Opportunities:

I Theory for method and classifier comparison

I Combining knowledge from different methods

I Incorporating knowledge from complementary sources

I Boosting the power and rigor of analysis

I Subpattern discovery, Califano et al. 99
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Marker Selection Methodology

Gene Expression
Dataset

Known Classes
(Phenotype)

Scaling, Filtering and Normalization

Compute Gene−Class Correlations
and sort genes accordingly

(Feature Selection)

More Experiments

(Validation)
Computational 

Analysis

Visualization and

Biological Study of MarkersBuild Supervised Classifier

Predictive 
Model
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Class Prediction Methodology

Evaluate Predictor on

Independent Test Set

Test Classifier by Cross−Validation

Build Classifier
(Training)

Compute Gene−Class Correlations
and sort Genes Accordingly

(Feature Selection)

Expression Data Known or Discovered Classes

Scaling, Filtering and Normalization
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Example (Golub et al. 1999)

ALL vs AML (The Biology of Cancer, R. Weinberg)
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Compare to this!!

Normal kidney vs Renal cell carcinoma.
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Example cont’d

I Sample: 38 bone marrow samples (27 ALL, 11 AML).
6817 genes

I Test statistic: SNR = µ1−µ2
σ1+σ2

to determine gene-class
correlation

I Significance test: Permutation test (nhood analysis)

I Signature: 50 informative genes are selected

I Prediction: Given a new sample each informative gene casts a
weighted vote, the votes are then summed to determine the
winning class and to define the 0 < PS < 1 (prediction
strength) which needs to be above 0.3 for each decisive vote.

I Validity of the predictor: Cross-validation and trying on test
data.
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In symbols ...

Suppose we have n samples.

I Gene vector: v(g) = (e1, · · · , en),

I Class vector: c = (c1, · · · , cn): ci = 1 if i ∈ AML, and 0 if
i ∈ ALL.

I Gene-Class Correlation:
P(g , c) = (µ1(g)− µ2(g))/(σ1(g) + σ2(g)) for each gene g .

I Nhood: N1(c , r) = {g |P(g , c) = r}
I Permutation test: compare with N1(c

∗, r), for 400
permutations.

I Number of informative genes is a free parameter, chosen to be
50: 25 top-most and 25 bottom-most.

I Robustness to noise
I Ease of applicability.
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In symbols cont’d

Predictor Design:

I vg = ag (xg − bg ) where ag = P(g , c),
bg = [µ1(g) + µ2(g)]/2,

I xg normalized log expression level of gene g in sample x

I vg ≥ 0 means g votes for class 1 (AML) and vg < 0 means g
votes for class 2 (ALL).

I V1 =
∑

g∈IG vg for vg ≥ 0, and

I V2 =
∑

g∈IG |vg | for vg < 0.

I PS = (Vwin − Vlose)/(Vwin + Vlose)

I V1 > V2 with PS > 0.3 means x ∈ AML, if PS ≤ 0.3 then
uncertain.
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In symbols, cont’d

I Cross-validation: 36 were assigned classes (with 100%)
accuracy and 2 were uncertain. Median PS = 0.77

I Test data (34 samples): 24 bone marrow and 10 peripheral
blood samples, 20 ALL, 14 AML.
Result: 29 predicted with 100% accuracy and 5 uncertain.
Median PS = 0.73.
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Example cont’d, clustering

I View each sample as a 6817-dimensional vector and cluster
samples.

I 2-SOM on 38 samples:
A1: 24 ALL, 1 AML and A2: 10 AML, 3 ALL.

ALL

AML

A1 A2
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4-SOM

I 4-SOM on the same samples:
B1: 10 AML, B2: 8 T-ALL, 1 B-ALL
B3: 5 B-ALL, B4: 13 B-ALL, 1 AML.

ALL B−Cell

AML

ALL T−Cell

B1 B2 B3 B4
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Example cont’d, clustering

I How to evaluate clusters to see if they represent true
biological structure?

I Idea: true structure implies more accurate predictor.

I So design predictors based on clustering classes: leads to
merging B3 and B4.
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Enrichment Analysis

I Goal: Look at (Gene Set)-Class correlation instead of
Gene-Class correlation.

I Motivation:
I Mootha 03: No single gene is significantly differentially

expressed, yet sets of genes might express differentially.
I Subramanian 05: 1. Robustness to different sites, and 2.

Integrating biological knowledge.

I Methods:

I GSEA (A. Subramanian, PNAS 2005). Lung adenocarcinoma
with good/poor outcome. |SB ∩ SM | = 12 and
|SB ∩ SM ∩ SS | = 1 whereas SB in M was NES = 1.9,
p < 0.001 and SM in B was NES=2.13, p < 0.001.

I Tibshirani and Efron
I R. Gentleman (Bioconductor)
I Module maps, a refinement of GSEA, gene set minimization

(Segal et al. Nature Genetics, 04,05)
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EA cont’d

Opportunities:

I Using BLAST theory to enhance the predictive power.

I Random walks on networks.
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Chemical Genomics

I Generating large collections of small molecules and using them
to modulate cellular states.

I One approach is to screen different compounds that induce
state modulations, using signatures for the states.

I GE-HTS (Stegmaier et al., Nature Genetics, 2004) 1,739
compounds are screened for AML/neutrophil and
AML/monocyte terminal cell differentiation.

I Connectivity Map (J. Lamb et al., Science 06):

disease – gene – drug.
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CG, cont’d

Issues:

I Necessary modifications when dealing with more
heterogeneous situations, e.g., BC vs Leukemia.

I Choice of cell type

I Measurement time

I Concentration and treatment duration

I Analytical methods for detecting relevant signals
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Toxicogenomics

I Identification of potential human and environmental toxicants,
and their putative mechanisms of action, through the use of
genomics resources.

I Gene expression is altered during toxicity.

I Challenge: Given a set of experimental conditions, define the
characteristic and specific pattern of gene expression elicited
by a given toxicant. (Toxicant signatures!)

I Given a model organism:
Known toxicants → signatures → database → determine the
action mechanism of an unknown toxicant.

I Connectivity Map: gene – toxicant
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TG, cont’d

Issues:

I Proper definition of signature similarity

I Model system selection

I Dose selection

I Measurement time (Time series analysis?)

I Other factors: age, diet, etc
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Tools

I Bioconductor

I BRB ArrayTools (NCI, Richard Simon)

I GenePattern, includes GeneCluster (Broad Institute)

I Connectivity Map (Broad Institute)

I Benchmark data sets

I Local implementations with interface to the tools above

Esfandiar Haghverdi Molecular Classification of Biological Phenotypes



Tools

I Bioconductor

I BRB ArrayTools (NCI, Richard Simon)

I GenePattern, includes GeneCluster (Broad Institute)

I Connectivity Map (Broad Institute)

I Benchmark data sets

I Local implementations with interface to the tools above

Esfandiar Haghverdi Molecular Classification of Biological Phenotypes



Tools

I Bioconductor

I BRB ArrayTools (NCI, Richard Simon)

I GenePattern, includes GeneCluster (Broad Institute)

I Connectivity Map (Broad Institute)

I Benchmark data sets

I Local implementations with interface to the tools above

Esfandiar Haghverdi Molecular Classification of Biological Phenotypes



Tools

I Bioconductor

I BRB ArrayTools (NCI, Richard Simon)

I GenePattern, includes GeneCluster (Broad Institute)

I Connectivity Map (Broad Institute)

I Benchmark data sets

I Local implementations with interface to the tools above

Esfandiar Haghverdi Molecular Classification of Biological Phenotypes



Tools

I Bioconductor

I BRB ArrayTools (NCI, Richard Simon)

I GenePattern, includes GeneCluster (Broad Institute)

I Connectivity Map (Broad Institute)

I Benchmark data sets

I Local implementations with interface to the tools above

Esfandiar Haghverdi Molecular Classification of Biological Phenotypes



Tools

I Bioconductor

I BRB ArrayTools (NCI, Richard Simon)

I GenePattern, includes GeneCluster (Broad Institute)

I Connectivity Map (Broad Institute)

I Benchmark data sets

I Local implementations with interface to the tools above

Esfandiar Haghverdi Molecular Classification of Biological Phenotypes



Some ideas ...

I Technical improvements at different levels

I Integrating biological knowledge into the mathematical
models (after Random Markov Fields)

I New mathematical tools

I Using signatures to infer signalling pathways

I Using signatures to improve clustering algorithms

I Technology transfer from: Time-series analysis of financial
data, VLDB, Theoretical Neuroscience
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Ideas, cont’d

I New biologically relevant and important questions:

I Daphnia based toxicogenomics

I Daphnia based ecogenomics

I Signatures in developmental stages of model organisms

I Time series analysis of environmental effects

I Other genomic signatures: DNA methylation patterns,
microRNA profiles, metabolite profiles, ...
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