
CTCS 2004 Preliminary Version

From Geometry of Interaction to Denotational

Semantics

Esfandiar Haghverdi 1

School of Informatics & Department of Mathematics
Indiana University Bloomington

Bloomington, Indiana USA

Philip Scott 2,3

Department of Mathematics and Statistics
University of Ottawa

Ottawa, Ontario Canada

Abstract

We analyze the categorical foundations of Girard’s Geometry of Interaction Program
for Linear Logic. The motivation for the work comes from the importance of viewing
GoI as a new kind of semantics and thus trying to relate it to extant semantics. In an
earlier paper we showed that a special case of Abramsky’s GoI situations–ones based
on Unique Decomposition Categories (UDC’s)–exactly captures Girard’s functional
analytic models in his first GoI paper, including Girard’s original Execution formula
in Hilbert spaces, his notions of orthogonality, types, datum, algorithm, etc. Here
we associate to a UDC-based GoI Situation a denotational model (a ∗-autonomous
category (without units) with additional exponential structure). We then relate
this model to some of the standard GoI models via a fully-faithful embedding into
a double-gluing category, thus connecting up GoI with earlier Full Completeness
Theorems.

Key words:
Geometry of Interaction, Denotational semantics, Linear logic,
*-autonomous categories, Unique decomposition categories.

1 Email: ehaghver@indiana.edu
2 Research Supported by an NSERC Discovery Grant
3 Email: phil@mathstat.uottawa.ca

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Haghverdi, Scott

1 Introduction

Girard introduced his Geometry of Interaction (GoI) programme in the late
80’s in a series of fundamental papers [9,8,10]. Girard’s goal in the original
GoI was to analyze the dynamics of cut-elimination, using sophisticated math-
ematical models arising from functional analysis. In the original papers, Gi-
rard established a kind of feedback equation (known as the Execution Formula)
which gives an intrinsic measure of “information flow” in the cut-elimination
process. In his detailed modelling of proofs, Girard also established that for a
large class of types (for example, strong enough to represent System F), the
Execution formula is an invariant for cut-elimination.

The GoI interpretation was extended to untyped λ-calculus by Danos in
[6]. In many subsequent works, Danos and Regnier and coauthors (e.g. [21,7])
further extended the GoI interpretation. They developed a theory of paths
in abstract nets (untyped or typed), with detailed comparisons with many
λ-calculus notions of path. After Girard’s original GoI papers appeared,
Joyal, Street, and Verity [19] introduced traced monoidal categories (TMC’s);
balanced monoidal categories with an abstract notion of “trace” or “feedback”.
These categories have proved useful in many areas ranging from topology and
knot theory to theoretical physics and computer science (see Section 2 below).
In Linear Logic, the theory of TMC’s led to an abstract formalisation of GoI
via the notion of GoI Situation, introduced by Abramsky in his Siena lecture
[2], based on earlier formalizations of GoI in [4], using domain theory. GoI
Situations give the essential categorical ingredients of GoI, at least for the
multiplicative and exponential (MELL) fragment. Abramsky’s programme
was sketched in [2] and completed in [11] and [3] (see also Section 2 below).

However two questions remained in [3]:

(i) How to compare the general algebraic framework of a GoI Situation with
the actual details of the functional-analytic models introduced by Girard
and studied by Danos & Regnier, et al?

(ii) How to compare GoI models with denotational models (of proofs)? In
the case of linear logic, this means we want to naturally connect up GoI
models with ∗-autonomous categories, with the additional structure to
model exponentials.

Re (1), in our first paper [14], we showed how the axiomatics of TMC’s in
GoI situations (see [3]), when restricted to Unique Decomposition Categories
(UDC’s) (see below and Section 3), allows us to categorically reconstruct
Girard’s first model. This model is based on the C∗-algebra of bounded linear
operators on the space �2 of square summable sequences [9]. Our categorical
approach permits an elegant derivation of Girard’s original execution formula
in his model, explicates his notion of type, datum, and algorithm and clarifies
the role of the later theory of TMCs in Girard’s original proofs.

Re (2), traditional semantics models cut-elimination by static equalities.

2



Haghverdi, Scott

This means that if Π, Π′ are proofs of a sequent Γ � A and if we have a
reduction Π � Π′ by cut-elimination, then in any categorical model their
interpretations − denote equal morphisms, i.e. Π = Π′ : Γ → A .
The goal of GoI is to provide a mathematical model of the dynamics of cut-
elimination, independent of the syntax.

In this paper, as in our paper [14], we restrict the abstract TMC’s to
a useful subclass: traced unique decomposition categories (Traced UDC’s)
with standard trace [11,12]. These are symmetric monoidal categories whose
homsets are enriched with certain infinitary partial sums, thus allowing us to
consider morphisms as matrices and the execution formula as an infinite sum.
Such categories are inspired from early categorical analyses of programming
languages by Elgot, Arbib and Manes, et al. ([20]).

We start with a UDC-GoI Situation and construct a denotational model for
MELL without units. It is a ∗-autonomous category without units, together
with an endofunctor satisfying certain axioms. We show this denotational
category may be fully and faithfully embedded in a double-gluing category
[11,18,24] built via the G construction of Abramsky (shown to be isomorphic
to JSV’s Int construction in [11].) This not only connects up our theory with
the known denotational models already studied in [3,11,12] but also connects
with fully complete MLL models arising from GoI [11,13]. The rest of the
paper is organized as follows: In Section 2 we recall the necessary definitions,
namely traced symmetric monoidal categories and GoI Situations, following
[11,3]. In Section 3 we recall the definition of a unique decomposition category
and give some examples. Section 4 briefly recalls the GoI interpretation for
MELL formulas and proofs taken directly from [14]. Section 5, is the main part
of the paper where we explain and detail the construction of a ∗-autonomous
category from a UDC-GoI Situation that we call the orthogonality construc-
tion. In Section 6 we relate this latter category to double-gluing categories
familiar from work in Full Completeness. Finally in section 7 we conclude by
discussing related and future work.

2 Traced Monoidal Categories and GoI Situation

Joyal, Street and Verity [19] introduced the notion of an abstract trace on a
balanced monoidal category (a monoidal category with braiding and twist.)
This trace can be interpreted in various contexts where it could be called
feedback, parametrized fixed-point, Markov trace or braid closure. These cat-
egories have their origins in the analysis of braided tensor categories and in
knot theory. However the special case of traced symmetric monoidal cate-
gories have been particularly useful in some areas of theoretical computer
science, for example in cyclic lambda calculi [15], semantics of asynchronous
networks [22], full completeness theorems for multiplicative linear logic via
GoI [11,13], analysis of finite state machines [17], relational dataflow [16], and
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they independently arose in Stefanescu’s work in network algebra [23].

In what follows we only consider symmetric monoidal categories.

Definition 2.1 A traced symmetric monoidal category (TMC) is a symmetric
monoidal category (C,⊗, I, s) with a family of functions TrU

X,Y : C(X⊗U, Y ⊗
U) → C(X, Y ) called a trace, subject to the following axioms:

• Natural in X, TrU
X,Y (f)g = TrU

X′,Y (f(g ⊗ 1U)) where f : X ⊗U → Y ⊗U ,
g : X ′ → X,

• Natural in Y , gTrU
X,Y (f) = TrU

X,Y ′((g ⊗ 1U)f) where f : X ⊗ U → Y ⊗ U ,
g : Y → Y ′,

• Dinatural in U , TrU
X,Y ((1Y ⊗g)f) = TrU ′

X,Y (f(1X ⊗g)) where f : X ⊗U →
Y ⊗ U ′, g : U ′ → U ,

• Vanishing (I,II), TrI
X,Y (f) = f and TrU⊗V

X,Y (g) = TrU
X,Y (TrV

X⊗U,Y ⊗U(g))
for f : X ⊗ I → Y ⊗ I and g : X ⊗ U ⊗ V → Y ⊗ U ⊗ V ,

• Superposing,

TrU
X,Y (f) ⊗ g = TrU

X⊗W,Y ⊗Z((1Y ⊗ sU,Z)(f ⊗ g)(1X ⊗ sW,U))

for f : X ⊗ U → Y ⊗ U and g : W → Z,

• Yanking, TrU
U,U(sU,U) = 1U .

TMC’s admit a geometric diagram calculus that can be found in the references
(e.g. [11,3,19]).

Joyal, Street, and Verity [19] also introduced the Int construction on traced
symmetric monoidal categories C; Int(C) is a kind of “free compact closure”
of the category C. Int(C) is used in [19] to give a 2-categorical structure
theorem for TMC’s. Int(C) isolates the key properties of Girard’s GoI for
the multiplicative connectives; for example composition in Int(C) uses a ver-
sion of Girard’s Execution Formula applied to the GoI interpretation of the
cut rule. Abramsky [1] independently introduced the G construction which
associates a compact closed category to a traced symmetric monoidal one.
In [11] the two constructions are shown to yield isomorphic compact closed
categories starting with the same TMC. There are two problems: first, these
(isomorphic) constructions only yield “degenerate” compact closed models for
MLL (so tensor = par). Second is the problem of how to extend this to the
exponential connectives.

Re the second problem, in the Abramsky program (see [3]) this is achieved
by adding certain additional structure to a traced symmetric monoidal cat-
egory. This structure involves a monoidal endofunctor T , a reflexive object
U , and appropriate monoidal retractions, as introduced below, to yield a GoI
situation. It was shown in [3] that GoI situations endow the monoid C(U, U)
with the structure of a linear combinatory algebra. Such combinatory algebras
capture the appropriate computational meaning of the exponentials in linear
logic and model a Hilbert-style presentation of MELL.
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Re the first problem above, it is possible to construct a non-compact ∗-
autonomous category from a given compact closed one using the double glueing
construction of Hyland and Tan [24,18] on top of the compact closed category.
On the other hand, in this paper we start with a UDC-GoI Situation and
directly construct a ∗-autonomous category and an endofuctor ! on it to get
a denotational model for MELL. Here not only is the construction direct but
more importantly it exploits the structure of a GoI Situation. The Int (or G)
constructions do not take into account either the rôle of the reflexive object
U or the orthogonality relation defined on C(U, U) (see the definition below).
We believe that the latter two are among the most important and interesting
ingredients of the GoI interpretation.

Definition 2.2 A GoI Situation is a triple (C, T, U) where:

(i) C is a traced symmetric monoidal category

(ii) T : C → C is a traced symmetric monoidal functor with the following
retractions (note that the retraction pairs are monoidal natural transfor-
mations):
(a) TT � T (e, e′) (Comultiplication)
(b) Id � T (d, d′) (Dereliction)
(c) T ⊗ T � T (c, c′) (Contraction)
(d) KI � T (w, w′) (Weakening). Here KI is the constant I functor.

(iii) U is an object of C, called a reflexive object, with the specified retractions:
(a) U ⊗ U � U (j, k), (b) I � U (m, n), and (c) TU � U (u, v).

For examples of GoI Situations see Section 3. For our models of linear logic,
we will take the following definitions.

Definition 2.3 A symmetric monoidal category (C,⊗, I, s) is a ∗-autonomous
category if there exists a full and faithful functor (−)⊥ : Cop → C such that
there exists an isomorphism C(A⊗B, C⊥) → C(A, (B⊗C)⊥) natural in A, B
and C.

The models of multiplicative linear logic (MLL) are ∗-autonomous categories.
For the multiplicative and exponential fragment (MELL), we assume:

Definition 2.4 A denotational model of MELL consists of the following data:

(i) A ∗-autonomous category (C,⊗, I, s, (−)⊥),

(ii) A symmetric monoidal functor (!, ϕ, ϕI) : C → C.

(iii) Monoidal natural transformations:
(a) der :! =⇒ Id
(b) δ :! =⇒!!
(c) weak :! =⇒ KI where KI is the constant I functor
(d) con :! =⇒!⊗!
such that
• (!, der, δ) is a comonad.
• for each object A, the triple (!A, weakA, conA) is a commutative comonoid.
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• for each object A, the maps weakA and conA are maps of coalgebras.
• for each object A, the map δA is a map of commutative comonoids.

Finally, we remark that there are two “styles” of GoI Situations in the concrete
models studied in [3]: Sum style and Product style. These are determined by
the form of the tensor in the underlying TMC. Roughly, in sum style, the
tensor ⊗ is given by a disjoint union on objects; in product style, it is more
like a cartesian product. We shall exclusively consider Sum style models here,
corresponding to Girard’s GoI 1. Sum style GoI admits a semantics based on
“particles flowing through a network” [3,11].

3 Unique Decomposition Categories

We consider monoidal categories whose homsets allow the formation of cer-
tain infinite sums. These are monoidal categories enriched in Σ-monoids (see
below). In the case where the tensor is coproduct and Σ-monoids satisfy
an additional condition, such categories include the partially additive and it-
erative categories used in the early categorical analyses of flow charts and
programming languages by Bainbridge, Elgot, Arbib and Manes, et. al. (e.g.
[20]).

Definition 3.1 A Σ-monoid consists of a pair (M, Σ) where M is a nonempty
set and Σ is a partial operation on the countable families in M (we say that
{xi}i∈I is summable if

∑
i∈I xi is defined), subject to the following axioms:

(i) Partition-Associativity Axiom. If {xi}i∈I is a countable family and if
{Ij}j∈J is a (countable) partition of I , then {xi}i∈I is summable if and
only if {xi}i∈Ij

is summable for every j ∈ J and
∑

i∈Ij
xi is summable for

j ∈ J . In that case,
∑

i∈Ixi =
∑

j∈J(
∑

i∈Ij
xi)

(ii) Unary Sum Axiom. Any family {xi}i∈I in which I is a singleton is
summable and

∑
i∈I xi = xj if I = {j}.

Σ-monoids form a symmetric monoidal category (with product as tensor),
called ΣMon. A ΣMon-category C is a category enriched in ΣMon; i.e. the
homsets are enriched with a partial infinitary sum compatible with composi-
tion. Note that such categories have non-empty homsets and automatically
have zero morphisms, namely 0XY : X → Y =

∑
i∈∅ fi for fi ∈ C(X, Y ). For

details see [20,11].

Definition 3.2 A unique decomposition category (UDC) C is a symmetric
monoidal ΣMon-category which satisfies the following axiom:

(A) For all j ∈ I there are morphisms called quasi injections: ιj : Xj → ⊗IXi,
and quasi projections: ρj : ⊗IXi → Xj , such that

1. ρkιj = 1Xj
if j = k and 0XjXk

otherwise.

2.
∑

i∈I ιiρi = 1⊗IXi
.
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Proposition 3.3 (Matricial Representation) Given f : ⊗JXj → ⊗IYi in
a UDC with |I| = m and |J | = n, there exists a unique family {fij}i∈I,j∈J :
Xj → Yi with f =

∑
i∈I,j∈J ιifijρj, namely, fij = ρifιj.

Thus every morphism f : ⊗JXj → ⊗IYi in a UDC can be represented by a
matrix; for example f above (with |I| = m and |J | = n) is represented by the
m× n matrix [fij ]. Composition of morphisms in a UDC then corresponds to
matrix multiplication.

Proposition 3.4 (Standard Trace Formula) Let C be a unique decompo-
sition category such that for every X, Y, U and f : X ⊗ U → Y ⊗ U , the sum
f11 +

∑∞
n=0 f12f

n
22f21 exists, where fij are the components of f 4 . Then, C is

traced and TrU
X,Y (f) = f11 +

∑∞
n=0f12f

n
22f21.

The trace formula above is called the standard trace, and a UDC with such
a trace is called a traced UDC with standard trace. Note that a UDC can be
traced with a trace different from the standard one. In this paper all traced
UDCs are the ones with the standard trace.

The following examples have standard trace, as above.

Examples 3.5 (Traced UDC’s) (For details see [3,11,13]).

(i) Any partially-additive category (see [20]). This includes:
Rel+ (sets and relations). Here ⊗ = � (disjoint union, which is a biprod-
uct). In Rel+, all countable families are summable, and

∑
i∈I Ri =

∪iRi.
Pfn (sets and partial functions), with ⊗ = �. Define a countable fam-
ily of partial functions {fi}i∈I to be summable iff they have pairwise
disjoint domains. Then (

∑
i∈I fi)(x) = fj(x) iff x ∈ Dom(fj), for some

j ∈ I, otherwise undefined.
SRel, the category of stochastic relations. Here the objects are measur-
able spaces (X,FX) and maps f : (X,FX) → (Y,FY ) are stochastic
kernels, i.e. f : X × FY → [0, 1] such that f(x, .) is a subproba-
bility measure and f(., B) is a bounded measurable function, for all
x ∈ X and B ∈ FY . Composition gof(x, C) =

∫
Y

g(y, C)f(x, dy),
where f(x, .) is the measure for integration. This category has finite
and countable coproducts (which form the tensor). A family {fi}i∈I is
summable iff

∑
i∈I fi(x, Y ) ≤ 1 for all x ∈ X.

(ii) PInj (sets and partial injective functions). Here ⊗ = �; this is not a
coproduct, indeed PInj does not have coproducts. The UDC structure is

Xj
ιj−→ �i∈IXi with ιj(x) = (x, j), and �i∈IXi

ρj−→ Xj with ρj(x, j) = x
and ρj(x, i) undefined for i �= j. Summable families are as in Pfn but
with disjoint domains & codomains.

(iii) Hilb2. Consider the category Hilb of Hilbert spaces and linear contrac-
tions (norm ≤ 1). Barr [5] defined a contravariant faithful functor

4 Here X1 = X, Y1 = Y, X2 = Y2 = U . So f11 : X → Y, f12 : U → Y , etc.
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�2 :PInjop →Hilb by: for a set X, �2(X) is the set of all complex valued
functions a on X for which the (unordered) sum

∑
x∈X |a(x)|2 is finite.

�2(X) is a Hilbert space with norm given by ||a|| = (
∑

x∈X |a(x)|2)1/2

and inner product given by < a, b >=
∑

x∈X a(x)b(x) for a, b ∈ �2(X).
Given f : X → Y in PInj, define �2(f) : �2(Y ) → �2(X) by �2(f)(b)(x) =
b(f(x)) if x ∈ Dom(f) and = 0, otherwise.

This gives a correspondence between partial injective functions and
partial isometries on Hilbert spaces (see also [10,1].) Let Hilb2 = �2[PInj].
Its objects are �2(X) for a set X and morphisms u : �2(X) → �2(Y ) are of

the form �2(f) for some partial injective function Y
f−→ X. Hence, Hilb2

is a nonfull subcategory of Hilb. It forms a traced UDC with respect to
⊕, where �2(X) ⊕ �2(Y ) ∼= �2(X � Y ) is a tensor product in Hilb2 (but
is a biproduct in Hilb) with the necessary structure induced by �2 from
PInj.

The above examples yield GoI situations (C, T, U) with T an additive functor
([3,11]):

• (Rel+, T, N), (Pfn, T, N), and (PInj, T, N) with T = N ×−.

• (Hilb2, T, �2) with T = �2 ⊗−, where �2 = �2(N).

• (SRel, T, NN), where T (X,FX) = (N×X,FN×X), where FN×X is the σ-field
generated by

⊎
N

X.

4 The GoI Interpretation for MELL

We remind the reader of definitions and results pertaining to the GoI inter-
pretation of MELL that we shall be using in the sequel. These are crucial for
a proper understanding of the results in this paper. For more details see [9]
for the original definitions and our [14] for the categorical version. We follow
[14].

In the sequel C is a traced UDC with standard trace, T an additive endo-
functor and U an object of C, such that (C, T, U) forms a GoI Situation. We
interpret proofs in the homset C(U, U) and formulas (= types) are interpreted
as certain subsets of C(U, U).

Convention: We write 1Γ instead of 1Un, where |Γ| = n and where Un denotes
the n-fold tensor product of U with itself. The retraction pairs are fixed once
and for all using the names in Definition 2.2. j1, j2 and k1, k2 denote the
components of j and k respectively. If A and B are square matrices of size
n× n and m×m, resp., then A⊗B denotes the n + m× n + m block matrix
with A and B on the “main diagonal” and the rest zeros.

Definition 4.1 Let f, g ∈ C(U, U). We say that f is nilpotent if fk = 0 for
some k ≥ 1. We say f is orthogonal to g, denoted f ⊥ g if gf is nilpotent.
Orthogonality is a symmetric relation, well-defined since 0UU exists. Also,
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0 ⊥ f for all f ∈ C(U, U).

Given a subset X of C(U, U), we define

X⊥ = {f ∈ C(U, U)|∀g(g ∈ X ⇒ f ⊥ g)}

A type is any subset X of C(U, U) such that X = X⊥⊥. Note that types are
inhabited, since 0UU belongs to every type.

Definition 4.2 Consider a GoI Situation (C, T, U). Let A be an MELL for-
mula. We define the GoI interpretation of A, denoted θA, inductively as
follows:

(i) If A ≡ α that is A is an atom, then θA = X an arbitrary type.

(ii) If A ≡ α⊥, θA = X⊥, where θα = X is given by assumption.

(iii) If A ≡ B ⊗ C, θA = Y ⊥⊥ where Y = {j1ak1 + j2bk2|a ∈ θB, b ∈ θC}.
(iv) If A ≡ B ................................................

............
................................... C, θA = Y ⊥ , where Y = {j1ak1 + j2bk2|a ∈ (θB)⊥, b ∈

(θC)⊥}.
(v) If A ≡!B, θA = Y ⊥⊥ , where Y = {uT (a)v|a ∈ θB}.
(vi) If A ≡?B, θA = Y ⊥ , where Y = {uT (a)v|a ∈ (θB)⊥}.
It is an easy consequence of the definition that (θA)⊥ = θA⊥ for any formula
A.

Every MELL sequent will be of the form � [∆], Γ where Γ is a sequence of
formulas and ∆ is a sequence of cut formulas that have already been made in
the proof of � Γ (e.g. A, A⊥, B, B⊥). This is used to keep track of the cuts.
Suppose |Γ| = n, |∆| = 2m formulas. Then the GoI interpretation of a proof Π
of � [∆], Γ is represented by a pair ( Π , σ), where Π ∈ C(Un+2m, Un+2m)
and the morphism σ : U2m → U2m which models the cuts ∆ in � [∆], Γ is
defined as σ = s⊗ · · · ⊗ s (m-copies) where s is the symmetry map, the 2× 2
antidiagonal matrix [aij ], where a12 = a21 = 1; a11 = a22 = 0. In the case
where ∆ is empty, the proof is cut-free, we define σ : I → I to be 1I = 0II .
Note that U0 = I where I is the unit of the tensor in the category C. It is
much more convenient to work in C(Un+2m, Un+2m) (matrices on C(U, U)),
although by the retractions we can equally work in C(U, U).

Let Π be a proof of � [∆], Γ. We define the GoI interpretation of Π, denoted
by Π , by induction on the length of the proof as follows. For lack of room,
we only give three cases and refer to [14] for details and the associated (block)
matrix representation. Pictorially picture Π as an I/O box, with n + 2m
wires (labelled by the formulas in Γ, ∆) coming in and out. The wires are the
interface.

(i) Π is an axiom � A, A⊥, then m = 0, n = 2 and Π = s.
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(ii) Π is obtained using the cut rule on Π′ and Π′′ that is

Π′
....

� [∆′], Γ′, A

Π′′
....

� [∆′′], A⊥, Γ′′

� [∆′, ∆′′, A, A⊥], Γ′, Γ′′ (cut)

Define Π as follows: Π = τ−1( Π′ ⊗ Π′′ )τ , where τ is a permu-
tation “rearranging the interface” (pictorially, stack one I/O box on top
of the other; τ permutes the wires to put all the cut formulas adjacent.)

A similar interpretation holds for the times and par rules.

(iii) Π is obtained from Π′ by the contraction rule, that is Π is of the form

Π′
....

� [∆], Γ′, ?A, ?A

� [∆], Γ′, ?A
(contraction)

Then Π = (1Γ′ ⊗ ucU(v ⊗ v) ⊗ 1∆) Π′ (1Γ′ ⊗ (u ⊗ u)c′Uv ⊗ 1∆), where
T ⊗ T � T (c, c′).

Definition 4.3 (Girard[9]) We are in a traced UDC-GoI situation. Let Γ =
A1, · · · , An. A datum of type θΓ is a morphism M : Un → Un such that for
any β1 ∈ θ(A⊥

1 ), · · · , βn ∈ θ(A⊥
n ), (β1 ⊗ · · ·⊗ βn)M is nilpotent. An algorithm

of type θΓ is a morphism M : Un+2m → Un+2m for some non-negative integer
m such that for σ : U2m → U2m defined in the usual way, EX(M, σ) is a finite
sum and a datum of type θΓ, where

EX(M, σ) = TrU2m

Un,Un((1Un ⊗ σ)M)

is known as the Execution Formula for M .

Lemma 4.4 Let M : Un → Un and a : U → U . Define CUT (a, M) =
(a ⊗ 1Un−1)M : Un → Un. Then M = [mij ] is a datum of type θ(A, Γ) iff
for any a ∈ θA⊥, am11 is nilpotent and the morphism ex(CUT (a, M)) =
TrA(s−1

Γ,ACUT (a, M)sΓ,A) ∈ θ(Γ). Here sΓ,A is the symmetry morphism.

The following is due to Girard [9], and proved categorically in our [14]:

Theorem 4.5 (Girard) Let Π be a proof of a sequent � [∆], Γ in MELL with
|∆| = 2m and |Γ| = n. Then

(i) Π is an algorithm of type θΓ, in particular EX( Π , σ) is a finite sum.

(ii) If Π reduces to Π′ by any sequence of cut-eliminations and ”?” does not oc-
cur in Γ, then EX( Π , σ) = EX( Π′ , τ). So EX( Π , σ) is an invariant
of cut-elimination.

(iii) If Π′ is the normal form of Π under cut-elimination, then EX( Π , σ) =
Π′ .

10
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(iv) In Hilb2, EX( Π , σ) = ((1− σ̃2)
∑∞

n=0 Π (σ̃( Π ))n(1− σ̃2))n×n. Here
(A)n×n denotes the n × n submatrix of the matrix A consisting of the first
n rows and the first n columns of A and σ̃ is the n + 2m square matrix
0n ⊗ σ, where 0n is n× n zero matrix and σ is the 2m× 2m square matrix
associated with the cuts ∆.

5 Orthogonality Construction

We explain the orthogonality construction which given a UDC-GoI Situation
yields a ∗-autonomous category without units and an endofunctor on it form-
ing a denotational model of MELL without units. In the sequel we have
omitted many of the routine and tedious verifications (these will appear in
the long version). However, in each and every case we explain the reasoning
behind the definition, so that the reader would not get the wrong impression
that the definitions are somehow arbitrary. The general intuition behind this
construction is to use the GoI interpretation for formulae to define the objects
and to use the GoI interpretation of a cut-free proof of � A⊥, B to define a
morphism f : A → B. In Girard’s terminology above, kfj is a datum of type
θ(A⊥, B).

Given a UDC-GoI Situation (C, T, U), we define the category O(C) as
follows:

• Objects: An object A is a subset of C(U, U) such that A⊥⊥ = A. Recall that
these are the types (GoI interpretation for formulae) defined in the previous
section.

• Arrows: An arrow f : A → B is a morphism f in C(U, U) such that for
every a ∈ A, f .a =def TrU

U,U(sU,U(a ⊗ 1U)(kfj)sU,U) is in B.

Note that as we are working in a traced UDC, we have

f .a = k2fj2 +
∑
n≥0

k2fj1(ak1fj1)
nak1fj2.

The intuition is that we think of f : A → B as the interpretation of a cut-
free proof of � A⊥, B, or in other words we think of kfj as a datum of type
θ(A⊥, B), see Definition 4.3 and Theorem 4.5 above. As a matter of fact for
those familiar with Girard’s work, this definition is exactly ex(CUT (a, kfj))
formulated in terms of categorical trace explained in [14] and cited in Lemma
4.4 in the previous Section.

• Identity: The identity morphism on A, denoted 1A, is given by jsU,Uk ∈
C(U, U). Note that for any a ∈ A, 1A.a = TrU

U,U(sU,U(a⊗1U )(kjsU,Ukj)sU,U) =
TrU

U,U(sU,U(a ⊗ 1U)sU,UsU,U) = a ∈ A. The latter equality is known as gener-
alized yanking in TMC’s (see [11,12].) The intuition is that we use the GoI
interpretation of the cut-free proof of � A⊥, A.

• Composition: Composition is defined as follows: given f : A → B and

11
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g : B → C in O(C),

gf = j TrU⊗U
U⊗U,U⊗U((1 ⊗ 1 ⊗ s)τ−1(kfj ⊗ kgj)τ)k.

where τ = (1 ⊗ 1 ⊗ s)(1 ⊗ s ⊗ 1). The motivation comes from the GoI
interpretation as follows: we take the cut-free proofs of � A⊥, B and � B⊥, C
and apply the GoI interpretation for the cut rule to these two proofs, hence
we get a proof with cuts in it, namely we get a proof of � [B, B⊥], A⊥, C. But
we need a cut-free proof so we apply the execution formula to this latter proof
to get the GoI interpretation of a cut-free proof of � A⊥, C. Our definition
precisely reflects these operations.

Note that gf ∈ C(U, U). As we are working in a traced UDC we have

gf = j Tr




k1fj1 0 k1fj2 0

0 k2gj2 0 k2gj1

0 k1gj2 0 k1gj1

k2fj1 0 k2fj2 0




k

If a ∈ A then (gf).a ∈ C; this follows from the construction and Theorem
4.5 which implies that k(gf)j is a datum of type θ(A⊥, C). Hence gf is a
well-defined morphism in O(C).

Note that this is essentially the same as the formula for composition in
G(C) (called symmetric feedback in [1]), see [11,1], and of course this is no
surprise as the definition of composition in G(C) is also motivated by the
execution formula applied to the cut of two proofs. This is discussed further
in Section 6 below.

Proposition 5.1 Let (C, T, U) be a UDC-GoI Situation with the additional
requirement that U ⊗ U ∼= U (j, k). Then, O(C) is a category.

Proof. As mentioned above the composition and identity morphisms are
similar to those in G(C) and hence the associativity and unit equations hold
true. However just to illustrate, let’s look at 1Bf = f for f : A → B.

1Bf = j Tr




k1fj1 0 k1fj2 0

0 0 0 1

0 1 0 0

k2fj1 0 k2fj2 0




k = j





 k1fj1 0

0 0


 +


 0 k1fj2

k2fj1 k2fj2




 k = f

�

We next define the ∗-autonomous structure. Given A and B objects in O(C),
define:

12
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• Tensor: A ⊗ B = {j1ak1 + j2bk2|a ∈ A, b ∈ B}⊥⊥. Given f : A → B
and g : A′ → B′ we define

f ⊗ g = j(j ⊗ j)(1 ⊗ s ⊗ 1)(kfj ⊗ kgj)(1 ⊗ s ⊗ 1)(k ⊗ k)k.

Notice that the tensor product used on the right hand side is the one in
C. Here is the proof that motivates this definition (ignoring the exchange rule
hereafter):

� A⊥, B , � A′⊥, B′

� A⊥, A′⊥, B ⊗ B′ times

� A⊥................................................
............
................................... A′⊥, B ⊗ B′

par

• “Tensor Unit”: The candidate for the unit of tensor is given by I =
{1U}⊥⊥. Below we shall show that it falls short; instead we get A � A⊗ I for
every object A.

• Symmetry: The symmetry sA,B : A ⊗ B → B ⊗ A is defined as

sA,B = j(j ⊗ j)(s ⊗ 1 ⊗ 1)(1 ⊗ s ⊗ 1)(s ⊗ s)(1 ⊗ s ⊗ 1)(s ⊗ 1 ⊗ 1)(k ⊗ k)k.

Here is the proof that motivates this definition:

� B⊥, B , � A⊥, A

� B⊥, A⊥, B ⊗ A
times

� A⊥, B⊥, B ⊗ A
exchange

� A⊥ .................................................
............
.................................. B⊥, B ⊗ A

par

• Duality: Given A define

A⊥ = {f ∈ C(U, U)|f ⊥ g, for all g ∈ A}.

Note that A = A⊥⊥ by definition of objects in O(C).

• Par product: Given A and B objects of O(C) we define

A .................................................
...........
................................... B = {j1ak1 + j2bk2|a ∈ A⊥, b ∈ B⊥}⊥.

• “Par Unit” The candidate for unit of par is of course ⊥= {1U}⊥,
however as pointed out above for the case of tensor, ⊥ fails to be the unit of
par.

Theorem 5.2 Let (C, T, U) be a UDC-GoI Situation with the additional re-
quirement that U ⊗ U ∼= U (j, k). Then O(C) is a ∗-autonomous category
without units.

Proof. First we show that tensor is a bifunctor: note that 1A ⊗ 1B =

j


 0 j1k1 + j2k2

j1k1 + j2k2 0


 k = jsk = 1A⊗B. This uses the fact that jk =

13
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1U . It can also be shown that f ′f ⊗ g′g = (f ′ ⊗ g′)(f ⊗ g), for f, g, f ′, g′ of
appropriate types using similar matrix calculations.

We define the structure morphisms as follows: ρA : A⊗I → A is defined by
ρA = j(j1⊗k1)sk = j2

1k2 + j2k
2
1 and ρ′

A : A → A⊗ I = j(k1⊗ j1)sk = j1k1k2 +
j2j1k1. λA : I ⊗ A → A = j(j2 ⊗ k2)sk, and λ′

A : A → I ⊗ A = j(k2 ⊗ j2)sk.
Finally αA,B,C : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C is defined as

αA,B,C = j(j ⊗ 1)(1⊗ j ⊗ j)(1U2 ⊗ s⊗ 1)(1U2 ⊗ j ⊗ 1U2)(1⊗ s⊗ 1U3)(s⊗ s⊗ s)

(1 ⊗ s ⊗ 1U3)(1U2 ⊗ k ⊗ 1U2)(1U2 ⊗ s ⊗ 1)(1 ⊗ k ⊗ k)(k ⊗ 1)k.

This is motivated by the proof below:

� A⊥, A � B⊥, B

� A⊥, B⊥, (A ⊗ B) � C⊥, C

� A⊥, B⊥, C⊥, (A ⊗ B) ⊗ C

� A⊥, B⊥ .................................................
...........
................................... C⊥, (A ⊗ B) ⊗ C

� A⊥ .................................................
............
.................................. (B⊥ .................................................

............
.................................. C⊥), (A ⊗ B) ⊗ C

We shall show below that the maps ρA and ρ′
A are indeed O(C) morphisms

and that they form a retraction pair (ρ′
A, ρA) : A � A ⊗ I. First note that

ρA : U → U . Let m ∈ A⊗ I = {j1ak1 + j2bk2 | a ∈ A, b ∈ I}⊥⊥, one computes
ρA.m = k1mj1, now let p ∈ A⊥, then j1pk1(j1ak1+j2bk2) = j1pak1 is nilpotent
and hence j1pk1 ∈ (A⊗I)⊥, therefore m ⊥ j1pk1 which implies that k1mj1 ⊥ p
and thus ρA.m ∈ A⊥⊥ = A. Similarly one gets that ρ′

A, λA and λ′
A are O(C)

morphisms. Finally one computes that ρ′
AρA = j2j1k

2
1 + j2

1k1k2 �= 1A⊗I , on the
other hand ρAρ′

A = j2k1 + j1k2 = 1A.

We omit the details of the verification of the coherence axioms and the
naturality of ρA and λA in A.

Next we show that O(C) is symmetric and that the duality defined above
on objects can be made into a full and faithful functor on O(C). Indeed

after lengthy computations one gets sB,AsA,B = j


 0 j1k1 + j2k2

j1k1 + j2k2 0


 k

which is 1A⊗B, since jk = 1U .

Given f : A → B we define f⊥ : B⊥ → A⊥ as f⊥ = js(kfj)sk.
(1A)⊥ = js(kjskj)sk = jsk = 1A⊥ and for f : A → B and g : B → C,
(gf)⊥ = js(kgfj)sk = jsTr((1 ⊗ 1 ⊗ s)τ−1(kfj ⊗ kgj)τ)sk = jTr((1 ⊗
1 ⊗ s)τ−1(k(jskgjsk)j ⊗ k(jskfjsk)j)τ)k = f⊥g⊥ showing that (−)⊥ is a
functor. Now let f, g ∈ O(C)(A, B) such that f⊥ = g⊥ then js(kfj)sk =
js(kgj)sk which implies that s(kfj)s = s(kgj)s and hence f = g. Now let
g ∈ O(C)(B⊥, A⊥), let f = js(kgj)sk, it is immediate that f⊥ = g. Hence
(−)⊥ is full and faithful.

We define A .................................................
............
.................................. B = (A⊥ ⊗ B⊥)⊥ and need to show the required isomor-

phism. Let f ∈ O(C)(A⊗B, C⊥). Define θ(f) = j(1⊗j)(k⊗1)(kfj)(j⊗1)(1⊗
k)k and θ′(g) = j(j⊗1)(1⊗k)(kgj)(1⊗j)(k⊗1)k for g ∈ O(C)(A, B⊥ ................................................

............
................................... C⊥).
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Consider θ′(θ(f)) = j(j⊗1)(1⊗k)(kj(1⊗ j)(k⊗1)(kfj)(j⊗1)(1⊗k)kj)(1⊗
j)(k ⊗ 1)k = f . Similarly θ(θ′(g)) = g and hence θ′ = θ−1. Thus O(C) is a
∗-autonomous category. �

Note that in this way we have constructed a model of MLL without units
out of a UDC-GoI Situation. We now proceed to construct a model of MELL
without units.

Theorem 5.3 Let (C, T, U) be a UDC-GoI Situation with T = (T, ψ, ψI) and
additional property that

• U ⊗ U ∼= U (j, k) and TU ∼= U (u, v),

• (T, d′, e′) is a comonad,

• (TA, w′
A, c′A) is a commutative comonoid for each A ∈ C,

• e′A is a map of commutative comonoids,

• w′
A and c′A are maps of coalgebras.

Then there is an endofunctor (!, ϕ, ϕI) on O(C) such that (O(C), !) is a de-
notational model of MELL without units.

Proof.

! : O(C) → O(C) is defined as follows. !(A) = {uT (a)v | a ∈ A}⊥⊥ which
clearly is an object in O(C) and for f : A → B define

!f = j(ueU ⊗ u)ψ−1T ((dU ⊗ 1)(kfj)(d′
U ⊗ 1))ψ(e′Uv ⊗ v)k

We show that ! is a functor: !(1A) = jsk = 1!A which can be shown using
a simple matrix calculation and the fact that eUT (dU) = 1TU and T (d′

U)e′U =
1TU and that uv = 1U . Similarly it can be shown that !(gf) =!g!f , using the
facts above, vu = 1TU and properties of trace.

We next define the monoidal natural transformations:

• der :! =⇒ Id by derA :!A → A = j(udU ⊗ 1)s(d′
Uv ⊗ 1)k. The definition is

motivated by:

� A⊥, A

�?A⊥, A
dereliction

• δ :! =⇒!! by δA :!A →!!A = j(ueU ⊗ueU)ψ−1T ((eU ⊗1)ψ−1T ((dU ⊗1)s(d′
U ⊗

1))ψ(e′U ⊗ 1))ψ(e′Uv ⊗ e′Uv)k, motivated by the proof:

� A⊥, A

�?A⊥, A
dereliction

�?A⊥, !A
ofcourse

�?A⊥, !!A
ofcourse

• weak :! → KI by weakA :!A → I = j(uwU ⊗m)(1I ⊗ 1I)(w
′
Uv ⊗ n)k = 0UU ,

motivated by the proof

� 1
�?A⊥, 1

weakening
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Here I � U (m, n), 1 is the unit of tensor in MELL and 1I = 0II as I is the
zero object in C.

• con :! =⇒!⊗! by conA :!A →!A⊗!A = j(ucU ⊗ j)(1 ⊗ s ⊗ 1)(h ⊗ h)(1 ⊗
s ⊗ 1)(c′Uv ⊗ k)k where h = (eU ⊗ u)ψ−1T ((dU ⊗ 1)s(d′

U ⊗ 1))ψ(e′U ⊗ v),
motivated by the proof

� A⊥, A

�?A⊥, A
der

�?A⊥, !A
ofcourse

� A⊥, A

�?A⊥, A
der

�?A⊥, !A
ofcourse

�?A⊥, ?A⊥, !A⊗!A
times

�?A⊥, !A⊗!A
contraction

All the necessary conditions for ! follow from the conditions on T . The well-
definedness of monoidal natural transformations above follows from Theorem
4.5. �

6 Double Glueing and Orthogonality

6.1 GoI Construction

In this section we recall Abramsky’s G construction [1]. This is related to
the Geometry of Interaction interpretation for MLL in that the composition
in the G(C) uses a version of Girard’s execution formula applied to the GoI
interpretation of the cut rule. We will describe this construction and then
remark that it is equivalent to the Int construction of Joyal, Street, and Verity.
However, it is more natural to relate O(C) to G(C).

Definition 6.1 (The Geometry of Interaction construction) Given a traced
symmetric monoidal category C we define a new category G(C), as follows:

• Objects: Pairs of objects from C, e.g. (A+, A−) where A+ and A− are
objects of C.

• Arrows: An arrow (A+, A−)
f−→ (B+, B−) in G(C) is A+⊗B− f−→ A−⊗B+

in C. The identity is given by 1(A+,A−) = sA+,A−.

• Composition: Composition is given by symmetric feedback. Given f :
(A+, A−) → (B+, B−) and g : (B+, B−) → (C+, C−), gf : (A+, A−) →
(C+, C−) is given by gf = TrB−⊗B+

A+⊗C−,A−⊗C+(β(f ⊗ g)α) where α and β are
permutations.

• Tensor: (A+, A−)⊗ (B+, B−) = (A+ ⊗B+, A−⊗B−) and for (A+, A−)
f−→

(B+, B−) and (C+, C−)
g−→ (D+, D−), f ⊗ g = (1A− ⊗ sB+,C− ⊗ 1D+)(f ⊗

g)(1A+ ⊗ sC+,B− ⊗ 1D−) and the tensor unit is (I, I).

Proposition 6.2 Let C be a traced symmetric monoidal category. Then G(C)
defined as in Definition 6.1 is a compact closed category. Moreover, N : C →
G(C) with N(A) = (A, I) and N(f) = f is a full and faithful embedding.
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Proposition 6.3 ([11]) Let C be a traced symmetric monoidal category, then
G(C) ∼= Int(C).

6.2 Double Glueing

The double glueing construction we recall here is due to Tan and Hyland.
Given a compact closed category, this construction produces a ∗-autonomous
category which makes tensor and par distinct. The presentation here follows
[24] (see also [18]).

Let C = (C,⊗, I, s, (−)∗) be a compact closed category. Let H denote the
covariant hom functor C(I,−) : C → Set and K denote the contravariant
functor C(−, I) ∼= C(I, (−)∗) : Cop → Set.

Define a new category GC, the double glueing category of C, whose objects
are triples A = (|A|,As,At) where |A| is an object of C, As ⊆ H(|A|) =
C(I, A), is a set of points of A, and At ⊆ K(|A|) = C(A, I) ∼= C(I, A∗) is a
set of copoints of A.

A morphism f : A → B in GC is a morphism f : |A| → |B| in C such
that Hf : As → Bs and Kf : Bt → At. Given f : A → B and g : B → C in
GC, the composite gf : |A| → |C| is induced by the morphism gf in C. The
identity morphism on A is given by the identity morphism on |A| in C.

We will denote the underlying object of A by A, etc. Given objects A and
B we define the tensor product as follows: | A ⊗ B |= A ⊗ B, (A ⊗ B)s =
{σ ⊗ τ | σ ∈ As, τ ∈ Bs}, and (A ⊗ B)t = GC(A,B⊥). where given A,
A⊥ = (A∗,At,As). We define A −◦ B = (A⊗B⊥)⊥ and A .................................................

...........
................................... B = (A⊥⊗B⊥)⊥.

Proposition 6.4 (Tan) For any compact closed category C, GC is a *-
autonomous category with tensor ⊗ as above and unit 1 = (I, {idI}, C(I, I)).

Remark 6.5 Note that GC is a non-degenerate categorical model of MLL.
That is, the tensor and par products are always distinct. For example, (I, ∅, ∅)⊗
(I, ∅, ∅) = (I, ∅, C(I, I)) while (I, ∅, ∅) ................................................

............
................................... (I, ∅, ∅) = (I, C(I, I), ∅).

In a logical setting one can think of an object A of GC as an object A in
C together with a collection of proofs of A (the collection As) and a collection
of disproofs or refutations of A (the collection At.)

Proposition 6.6 There is a fully faithful monoidal (−)⊥–preserving embed-
ding F : O(C) → G(GC).

Proof. Note that an object in G(GC) consists of a triple ((A, B),As,At)
where A, B are objects in C, As ⊆ C(B, A) and At ⊆ C(A, B)

The functor F is defined as follows: Given an object A ∈ O(C), F (A) =
((U, U), A, A⊥) and given a morphism f : A → B in O(C), F (f) = kfj. We
shall verify that kfj is indeed a morphism from ((U, U), A, A⊥) to ((U, U), B,
B⊥). Clearly kfj : U ⊗ U → U ⊗ U . Now let g ∈ A; then GC(I, kfj)g =
(kfj)g = Tr((1 ⊗ g)s(kfj)s) = Tr(s(g ⊗ 1)(kfj)s) = f .g, and we know that
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f .g ∈ B as g ∈ A. Next, let g ∈ B⊥, GC(kfj, I)g = g(kfj) = Tr((1 ⊗
g)(kfj)) = Tr(s(g ⊗ 1)s(kfj)ss) = f⊥.g. Recall that f : A → B and hence
f⊥ : B⊥ → A⊥ and so f⊥.g ∈ A⊥. This verifies that F (f) is a G(GC)
morphism.

Next we shall verify that F is indeed a functor, F (1A) = F (jsk) =
k(jsk)j = s = 1FA. Let f : A → B and g : B → C, F (gf) = F (j TrU⊗U

U⊗U,U⊗U(

(1 ⊗ 1 ⊗ s)τ−1(kfj ⊗ kgj)τ)k) = TrU⊗U
U⊗U,U⊗U((1 ⊗ 1 ⊗ s)τ−1(kfj ⊗ kgj)τ) =

F (g)F (f). Here τ = (1 ⊗ 1 ⊗ s)(1 ⊗ s ⊗ 1).

Clearly F is injective on objects. Let f, g : A → B and F (f) = F (g). Then
kfj = kgj and so f = g. Also given g : ((U, U), A, A⊥) → ((U, U), B, B⊥),
h := jgk : A → B is an O(C)-morphism and F (h) = g, hence F is a
full and faithful embedding. Observe that (FA)⊥ = ((U, U), A, A⊥)⊥ =
((U, U), A⊥, A) = F (A⊥) and given f : A → B, and F (f⊥) = F (js(kfj)sk) =
kjs(kfj)skj = s(kfj)s = (Ff)⊥. As for the monoidal structure define
ϕI : ((I, I), {1I}, C(I, I)) → ((U, U), {1U}⊥⊥, {1U}⊥) by ϕI = 1U . Note that
F (A ⊗ B) = ((U, U), A ⊗ B, (A ⊗ B)⊥) and F (A) ⊗ F (B) = ((U ⊗ U, U ⊗
U),As,At) where As = {a ⊗ b | a ∈ A, b ∈ B} and At = G(GC)(FA, (FB)⊥).
Define ϕA,B : F (A) ⊗ F (B) → F (A ⊗ B) by ϕA,B = (1 ⊗ s)(s ⊗ 1)(j ⊗ k). �

7 Conclusion and Future Work

In this paper we have used the UDC-GoI Situation to construct a denota-
tional model for MELL without units, thus relating the GoI Semantics to
denotational semantics in the case of MELL. While this is fine for “sum” or
“particle-style” GoI, the next natural step is to generalize to any GoI Situ-
ation: this work is currently in progress. The most important aspect of this
new work will be the axiomatization of the orthogonality relation (cf. [18])
that will include the nilpotency based definition of Girard as an example. In
this way one also hopes to include other categorical implementations of GoI,
including “product”-style, like the one by Abramsky and Jagadeesan [4], that
do not fit the UDC framework.

In [10], Girard extended the geometry of interaction to the full case, in-
cluding the additives and constants. He also proved a nilpotency theorem
for this semantics and its soundness with respect to a slight modification of
familiar sequent calculus in the case of exponential-free conclusions. This too
constitutes one of the main parts of our future work and thus construction of
denotational models for full LL.

One of the most intriguing questions is full-completeness. While we have
given precise connections with the fully complete double-gluing GoI models of
MLL in [11], the actual lifting of Hyland-Tan-style full completeness theorems
to our setting here appears to be not so straightforward, and is left for future
work.

Last but certainly not least, we believe that GoI could be further used in
its capacity as a new kind of semantics to analyze PCF and other fragments of
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functional and imperative languages and be compared to usual denotational
and operational semantics through full abstraction theorems.
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