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Abstract. We introduce a typed version of Girard’s Geometry of In-
teraction, called Multiobject GoI (MGoI) semantics. We give an MGoI
interpretation for multiplicative linear logic (MLL) without units which
applies to new kinds of models, including finite dimensional vector spaces.
For MGoI (i) we develop a version of partial traces and trace ideals (re-
lated to previous work of Abramsky, Blute, and Panangaden); (ii) we do
not require the existence of a reflexive object for our interpretation (the
original GoI 1 and 2 were untyped and hence involved a bureaucracy of
domain equation isomorphisms); (iii) we introduce an abstract notion of
orthogonality (related to work of Hyland and Schalk) and use this to
develop a version of Girard’s theory of types, datum and algorithms in
our setting, (iv) we prove appropriate Soundness and Completeness The-
orems for our interpretations in partially traced categories with orthog-
onality; (v) we end with an application to completeness of (the original)
untyped GoI in a unique decomposition category.

1 Introduction

Geometry of Interaction (GoI) is a novel kind of semantics, introduced by Gi-
rard in a fundamental series of papers beginning in the late 80’s [13, 12, 14].
One of the goals was to provide a mathematical analysis of the dynamics of
proof normalization (cut-elimination) independently of logical syntax. To this
end, Girard introduced his Execution Formula, a power series representing a dy-
namical invariant for cut-elimination. Girard’s framework, based on C∗-algebras,
was studied in detail in several works of Danos and Regnier (for example in [9])
and by Malacaria and Regnier [27]. The GoI program has been applied to the
analysis of optimal reduction by Gonthier, Abadi, and Lévy [10], to complexity
theory [7], to game semantics and token machines [6, 25], etc.

Categorical foundations of GoI were initiated in the 90’s in lectures by M.
Hyland and by S. Abramsky. An early categorical framework was given in [5].



Recent work has stressed the role of Joyal-Street-Verity’s traced monoidal cate-
gories [24] (with additional structure). For example, Abramsky’s GoI situations
[1, 15, 3] provide a basic algebraic foundation for GoI for multiplicative, exponen-
tial linear logic (MELL). Recently, we used a special kind of GoI situation (with
traced unique decomposition categories) to axiomatize the details of Girard’s
original GoI 1 paper [18].

In our previous papers, we emphasized several important aspects of Girard’s
seminal work (at least in GoI 1 and 2).

1. The original Girard framework is essentially untyped: there is a reflexive ob-
ject U in the underlying model (with various retractions and/or domain iso-
morphisms, e.g. U⊗U�U). Proofs are interpreted in the monoid Hom(U,U).

2. Cut-elimination is interpreted by feedback, hence the use of traced monoidal
categories. The Execution Formula, defined via trace, provides an invariant
for cut-elimination.

3. Girard introduced an orthogonality operation ⊥ on endomaps of U together
with the notion of types (as sets of endomaps equal to their biorthogonal).

4. There are notions of data and algorithm encoded into this dynamical setting,
with fundamental connections between types, algorithms, and the Execution
Formula.

Points (1) and (2) above were already emphasized in the Abramsky program, as
well as in the work of Danos and Regnier [1, 3, 18, 9]. Orthogonalities have been
studied abstractly by Hyland and Schalk [22]. The points (1)–(4) are critical to
our view of GoI in [18, 19].

Unfortunately, Girard’s original GoI is not without its own share of bureau-
cracy. There are domain isomorphisms (of the reflexive object U) and an as-
sociated ∗-algebra of codings and uncodings. On the one hand, this means the
original GoI interpretation of proofs is essentially untyped (i.e. categorically,
proofs are interpreted in Hom(U,U), using the above-mentioned algebra) (see
[3, 18, ?]). On the other hand, this led Danos and Regnier ([9]) to study this
algebra in detail in certain concrete models, leading to their extensive analysis
of reduction paths in untyped lambda calculus.

Our aim in this paper is to move away from “uni-object GoI” to a typed ver-
sion. This permits us to both generalize GoI and axiomatize its essential features.
For example, by removing reflexive objects U , we also unlock the possibilities of
generalizing Girard-style GoI to more general tensor categories including cases
where the tensor is “product-like” in addition to “sum-like”.

The notion of categorical (parametrized) trace was introduced by Joyal,
Street and Verity in an influential paper [24]. The motivation for their work
arose in algebraic topology and knot theory, although after its publication, it
became clear that categorical trace also has many applications in Computer Sci-
ence, where it includes such notions as feedback, fixedpoints, iteration theories,
and so forth. For some history, see [3, 18].

In this paper we go one step further and look at partial traces. The idea of
generalizing the abstract trace of [24] to the partial setting is not new. For ex-
ample, partial traces are studied in work of Abramsky, Blute, and Panangaden



[2] and in unpublished lecture notes of Gordon Plotkin [28]. The guiding exam-
ple in [2] is the relationship between trace class operators on a Hilbert space
and Hilbert-Schmidt operators. This allows the authors to establish a close cor-
respondence between trace and nuclear ideals in a tensor ∗-category. Plotkin’s
work develops a theory of Conway ideals on biproduct categories, and an asso-
ciated categorical trace theory. In this paper, we develop a theory of trace ideals
sufficient for GoI.

The contributions of this paper can be summarized as follows:

– We introduce an axiomatization for partially traced symmetric monoidal
categories and provide examples based on Vecfd, finite dimensional vector
spaces, and CMet, complete metric spaces. We also provide illuminating
non-examples. Our axiomatization is different from that in [2], although
related in spirit.

– We introduce an abstract orthogonality [22], appropriate for GoI, on our
models.

– We introduce a multiobject version of Girard’s GoI semantics (MGoI) in par-
tially traced models with orthogonality, including Girard’s notions of types,
datum, algorithm and the execution formula. We give an MGoI interpreta-
tion for the multiplicative fragment of linear logic without units (MLL) and
show that the execution formula is an invariant of cut-elimination (see Sec-
tion 5 below). Note that Girard’s original GoI (as presented in [3] ) requires
a reflexive object U 6= {0}, i.e. a retraction U ⊕ U � U , which is impossible
in Vecfd.

– We prove a soundness and completeness theorem for our MGoI interpretation
of MLL in arbitrary partially traced categories with orthogonality relation.
As an application, we also prove a completeness result for untyped GoI
semantics of MLL in a traced UDC based GoI Situation.

The rest of the paper is organized as follows. In Section 2 we introduce
partially traced symmetric monoidal categories and discuss some examples. In
Section 3 we introduce the abstract orthogonality relation in a partially traced
symmetric monoidal category and discuss how it relates to the work in [22]. In
Section 4 we introduce our new semantics, MGoI, and give an interpretation
for MLL. Section 5 discusses the execution formula and the soundness theorem,
while in Section 6 we prove a completeness theorem for the MGoI interpretation
of MLL in a partially traced category with an orthogonality relation. As an ap-
plication, in Section 7 we prove a completeness result for untyped GoI semantics
of MLL in a traced UDC based GoI Situation. Finally, Section 8 contains some
thoughts about possible future directions, projects and links to related work in
the literature.

Note: The full proofs of the results will appear in the journal version.

2 Trace Ideals

We now give an axiomatization for partial parametric trace, or partial trace for
short, suitable for our purposes. Recall, following Joyal, Street, and Verity [24],



a parametric trace in a symmetric monoidal category (C,⊗, I, s) is an operator
TrU

X,Y : C(X ⊗ U, Y ⊗ U) → C(X, Y ), satisfying various well-known naturality
equations. A partial parametric trace requires instead that TrU

X,Y be a partial
map. The domain of this map, denoted TU

X,Y , is called a trace ideal and must
satisfy various closure conditions.

Definition 1 (Trace Ideal). Let (C,⊗, I, s) be a symmetric monoidal category.
A parametric trace ideal in C is a family of subsets, for each object U of C, of
the form

TU
X,Y ⊆ C(X ⊗ U, Y ⊗ U) for all objects X, Y of C

together with a family of operations, called a parametric partial trace, of the
form

TrU
X,Y : TU

X,Y → C(X, Y )

subject to the following axioms. Here the parameters are X and Y and a mor-
phism f ∈ TU

X,Y is said to be of trace class.

– Naturality in X and Y : For any f ∈ TU
X,Y and g : X ′ → X and h : Y → Y ′,

(h⊗ 1U )f(g ⊗ 1U ) ∈ TU
X′,Y ′ ,

and
TrU

X′,Y ′((h⊗ 1U )f(g ⊗ 1U )) = h TrU
X,Y (f) g

– Dinaturality in U : For any f : X ⊗ U → Y ⊗ U ′, g : U ′ → U ,

(1Y ⊗ g)f ∈ TU
X,Y iff f(1X ⊗ g) ∈ TU ′

X,Y ,

and
TrU

X,Y ((1Y ⊗ g)f) = TrU ′

X,Y (f(1X ⊗ g)).

– Vanishing I: TI
X,Y = C(X, Y ) and for f ∈ TI

X,Y

TrI
X,Y (f) = f.

– Vanishing II: For any g : X⊗U ⊗V → Y ⊗U ⊗V , if g ∈ TV
X⊗U,Y⊗U , then

g ∈ TU⊗V
X,Y iff TrV

X⊗U,Y⊗U (g) ∈ TU
X,Y ,

and
TrU⊗V

X,Y (g) = TrU
X,Y (TrV

X⊗U,Y⊗U (g)).

– Superposing: For any f ∈ TU
X,Y and g : W → Z,

g ⊗ f ∈ TU
W⊗X,Z⊗Y ,

and
TrU

W⊗X,Z⊗Y (g ⊗ f) = g ⊗ TrU
X,Y (f).



– Yanking: sUU ∈ TU
U,U , and TrU

U,U (sU,U ) = 1U .

A monoidal category (C,⊗, I, s) with such a trace ideal is called a partially
traced category. In the case X and Y are chosen to be I (the unit of the tensor),
we say this defines a nonparametric trace.

Remark 1. As we mentioned earlier, the first definition of a partial parametric
trace is due to Abramsky, Blute and Panangaden in [2]. Our definition is different
but related to theirs. First, we have used the Yanking axiom in Joyal, Street and
Verity [24], whereas in [2] they use so-called “generalized yanking”; that is, for
f : X → U and g : U → Y , TrU

X,Y (sU,Y (f ⊗ g)) = gf whenever sU,Y (f ⊗ g)
is of trace class. It was shown in [15] that for traced monoidal categories the
two axioms of yanking and generalized yanking are equivalent in the presence
of all the other axioms. This equivalence remains valid for the partially traced
categories introduced here. In our examples sUU is traceable for all U ; on the
other hand, many examples in [2] do not have this property. Our Vanishing II
axiom differs from and is weaker than the one proposed in [2]. More importantly,
we do not require one of the ideal axioms in [2]. Namely, we do not ask that for
f ∈ TU

X,Y and any h : U → U , (1Y ⊗ h)f and f(1X ⊗ h) be in TU
X,Y . Indeed

in the next section we prove that the categories (Vecfd,⊕) of finite dimensional
vector spaces, and (CMet,×) of complete metric spaces are partially traced. It
can be shown that in both categories the above ideal axiom and vanishing II of
[2] fail and hence they are not traced in the sense of ABP. In defense of not
enforcing this ideal axiom, we observe that it is not required for any of the trace
axioms. Any partially traced category in the sense of ABP for which the yanking
axiom holds will be partially traced according to our definition.

By letting the parameters X and Y be the unit I of the tensor, we get the
nonparametric version of our partial trace, which is again different from the one
in [2].

2.1 Examples

(a) Finite Dimensional Vector Spaces

The category Vecfd of finite dimensional vector spaces and linear transforma-
tions is a symmetric monoidal, indeed an additive, category (see [26]), with
monoidal product taken to be ⊕, the direct sum (biproduct). Hence, given
f : ⊕IXi → ⊕JYj with |I| = n and |J | = m, we can write f as an m × n
matrix f = [fij ] of its components, where fij : Xj → Yi (notice the switch in
the indices i and j).

We give a trace ideal structure on the category (Vecfd,⊕,0) as follows. We
shall say an f : X ⊕U → Y ⊕U is of trace class iff (I − f22) is invertible, where
I and f22 have size dim(U). In that case, we write

TrU
X,Y (f) = f11 + f12(I − f22)−1f21.



Proposition 1. (Vecfd,⊕,0) is a partially traced category with trace ideal as
above.

We shall need the following standard results for the proof of this proposition.

Lemma 1. Let M =
[

A B
C D

]
be a partitioned matrix with blocks A (m×m),

B (m× n), C (n×m) and D (n× n). If D is invertible, then M is invertible iff
A−BD−1C is invertible.

Lemma 2. Given A (m×n) and B (n×m), (Im−AB) is invertible iff (In−BA)
is invertible. Moreover (Im −AB)−1A = A(In −BA)−1.

(b) Other Finite Dimensional Examples

The proof of Proposition 1 remains valid for the category (Hilbfd ,⊕) of finite
dimensional Hilbert spaces (under ⊕) and bounded linear maps. As discussed in
Remark 1, the category (Vecfd,⊕) is not partially traced in the sense of ABP.

(c) Metric Spaces

Consider the category CMet of complete metric spaces with non-expansive
maps. Define f : (M,dM ) → (N, dN ) to be non-expansive iff there is a fixed
0 ≤ α ≤ 1 such that dN (f(x), f(y)) ≤ αdM (x, y) for all x, y ∈ M . The great-
est lower bound of such α is called the Lipschitz constant of f . Note that the
tempting collection of complete metric spaces and contractions (α < 1) is not a
category: there are no identity morphisms! CMet has products, namely given
(M,dM ) and (N, dN ) we define (M ×N, dM×N ) with dM×N ((m,n), (m′, n′)) =
max{dM (m,m′), dN (n, n′)}.

We define the trace structure on CMet (where ⊗ = × ) as follows. We say
that a morphism f : X × U → Y × U is in TU

X,Y iff π2λu.f(x, u) : U → U has
a unique fixed point for every x ∈ X, in other words iff for every x ∈ X, there
is a unique u such that f(x, u) = (y, u), for some y. Note that contractions have
unique fixed points, by the Banach fixed point theorem.

Suppose f ∈ TU
X,Y . We define TrU

X,Y (f) : X → Y by TrU
X,Y (f)(x) = y, where

f(x, u) = (y, u) for the unique u. Equivalently, TrU
X,Y (f)(x) = π1f(x, u) where

u is the unique fixed point of π2λt.f(x, t).

Proposition 2. (CMet,×, {∗}) is a partially traced category with trace ideal
as above.

Lemma 3. Let A and B be two complete metric spaces and f : A → B and
g : B → A. Then, gf has a unique fixed point if and only if fg does. Moreover,
let a ∈ A be the unique fixed point of gf : A → A and b ∈ B be the unique fixed
point of fg : B → B. Then f(a) = b and g(b) = a.



Note that the proof above does not use the properties of a metric space; hence,
the proof remains valid for the category (Sets,×) of sets and mappings. The
latter then becomes a partially traced category with the same definition for trace
class morphisms as in CMet. However, this fails for the category (Rel,×), of sets
and relations: consider the sets A = {a}, B = {b, b′}, and let f = {(a, b), (a, b′)}
and g = {(b, a), (b′, a)}.

(d) Total Traces

Of course, all (totally-defined) traces in the usual definition of a traced monoidal
category yield a trace ideal, namely the entire homset is the domain of Tr. In
particular, all the examples in our previous work on uni-object GoI [18, 19], for
example based on unique decomposition categories, still apply here.

(e) Some Non-Examples

Let M be some class of morphisms of appropriate arity in CMet. We wish to
form trace ideals on the structure (CMet,×,M). Obviously, this depends on
a good theory of fixed points as we saw in the preceding example. However,
defining the trace class morphisms as f such that π2λu.f(x, u) : U → U is
a contraction for every x ∈ X, does not yield a partially traced category: all
axioms are true except for dinaturality and vanishing II. Thus, the collection M
= all contractions fails to be a trace ideal in our sense.

This suggests an oriented equality on some of the equations of a trace (e.g.
Vanishing II) and an alteration of the dinaturality axiom. This direction has been
pursued by Plotkin [28]. This approach fails for us, since one-sided (directed)
equations cause problems in applications to GoI. Given the well-developed theory
of fixed points in Banach Spaces, we hope to still find more examples of trace
classes in various categories of such spaces.

3 Orthogonality Relations

Girard originally introduced orthogonality relations into linear logic to model
formulas (or types) (e.g. in the phase semantics of the original paper [11] and
in GoI 1 [12]). Recently Hyland and Schalk gave an abstract approach to or-
thogonality relations in symmetric monoidal closed categories [22]. They also
point out that an orthogonality on a traced symmetric monoidal category can
be obtained by considering their axioms applied to Int(C) and then translating
them down to C. Below we give this translation (not explicitly calculated in
[22]), using the category G(C) [1, 15] instead of Int(C). The categories G(C) and
Int(C) are shown to be isomorphic in [15]. As we are dealing with partial trace
we need to take extra care in stating the axioms below, namely that an axiom
involving a trace should be read with the proviso: “whenever all traces exist”.

Definition 2. Let C be a traced symmetric monoidal category. An orthogonality
relation on C is a family of relations ⊥UV between maps u : V → U and x :
U → V

V
u−→ U ⊥UV U

x−→ V



subject to the following axioms:

(i) Isomorphism: Let f : U ⊗ V ′ → V ⊗U ′ and f−1 : U ′ ⊗ V → V ′ ⊗U be such
that TrV ′

(TrU ′
((1⊗1⊗sU ′,V ′)α−1(f ⊗f−1)α))) = sU,V and TrV (TrU ((1⊗

1⊗ sU,V )α−1(f−1 ⊗ f)α))) = sU ′,V ′ . Here α = (1⊗ 1⊗ s)(1⊗ s⊗ 1) with s
at appropriate types. Note that this simply means that f : (U, V ) → (U ′, V ′)
and f−1 : (U ′, V ′) → (U, V ) are inverses of each other in G(C).
Then for all u : V → U and x : U → V,

u ⊥UV x iff TrU
V ′,U ′(sU,U ′(u⊗ 1U ′)fsV ′,U ) ⊥U ′V ′ TrV

U ′,V ′((1V ′ ⊗ x)f−1)

(ii) Tensor: For all u : V → U , v : V ′ → U ′ and h : U ⊗ U ′ → V ⊗ V ′,

u ⊥UV TrU ′

U,V ((1V ⊗ v)h) and v ⊥U ′V ′ TrU
U ′,V ′(sU,V ′(u⊗ 1V ′)hsU ′,U )

implies

(u⊗ v) ⊥U⊗U ′,V⊗V ′ h

(iii) Implication: For all u : V → U , y : U ′ → V ′ and f : U ⊗ V ′ → V ⊗ U ′

u ⊥UV TrV ′

U,V ((1V ⊗ y)f) and TrV
V ′,U ′(sV,U ′f(u⊗ 1V ′)sV ′,V ) ⊥U ′V ′ y

implies

f ⊥V⊗U ′,U⊗V ′ (u⊗ y)

(iv) Identity: For all u : V → U and x : U → V

u ⊥UV x implies 1I ⊥II TrV
I,I(xu)

(v) Symmetry: For all u : V → U and x : U → V

u ⊥UV x iff x ⊥V U u

Remark 2.

1. It should be noted that for a (partially) traced symmetric monoidal cate-
gory, the axioms for Tensor and Implication are equivalent in the presence
of the other axioms: by dinaturality of trace we have TrV

V ′,U ′(sV,U ′f(u ⊗
1V ′)sV ′,V ) = TrU

V ′,U ′(sU,U ′(u⊗1U ′)fsV ′,U )), then use the Symmetry axiom.
Thus we shall drop the Implication axiom.

2. Our work on GoI reveals that one needs another axiom which we observe as
the converse of the Tensor axiom and relaxation of one of the premises, this
is related to abstract computation and the notion of datum in GoI. Hence,
we shall replace the Tensor axiom by the following the Strong Tensor axiom:

Strong Tensor: For all u : V → U , v : V ′ → U ′ and h : U⊗U ′ → V ⊗V ′,

v ⊥U ′V ′ TrU
U ′,V ′(sU,V ′(u⊗ 1V ′)hsU ′,U ) iff (u⊗ v) ⊥U⊗U ′,V⊗V ′ h,

whenever the trace exists. It can be shown that in the presence of the Strong
Tensor, Isomorphism, and Symmetry axioms, v ⊥U ′V ′ TrU

U ′,V ′(sU,V ′(u ⊗
1V ′)hsU ′,U ) implies u ⊥UV TrU ′

U,V ((1V ⊗ v)h), whenever all traces exist.



Definition 3. Let C be a traced symmetric monoidal category. A strong orthog-
onality relation is defined as in Definition 2 but with the Tensor Axiom replaced
by the Strong Tensor Axiom above, and the Implication axiom dropped.

In the context of GoI, we will be working with strong orthogonality relations
on endomorphism sets of objects in the underlying categories. Biorthogonally
closed (i.e. X = X⊥⊥) subsets of certain endomorphism sets are important as
they define types (GoI interpretation of formulae.) We have observed that all
the orthogonality relations that we work with in this paper can be characterized
using trace classes. This suggests the following, which seems to cover many
known examples.

Example 1 (Orthogonality as trace class) Let (C,⊗, I, T r) be a partially
traced category where ⊗ is the monoidal product with unit I, and Tr is the
partial trace operator as in Section 2. Let A and B be objects of C. For f : A → B
and g : B → A, we can define an orthogonality relation by declaring f ⊥BA g
iff gf ∈ TA

I,I .

Proof (of Example 1): See the Appendix.

Hence, from our previous discussion on traces, we obtain the following examples:

– Vecfd . Let A ∈ Vecfd . For f, g ∈ End(A), define f ⊥ g iff I − gf is
invertible.

– CMet. Let M ∈ CMet. For f, g ∈ End(M), define f ⊥ g iff gf has a unique
fixed point.

4 Multi-object GoI Interpretation

In this section we introduce the multiobject geometry of interaction (MGoI) se-
mantics for MLL in a partially traced symmetric monoidal category (C,⊗, I, T r,⊥
) equipped with an orthogonality relation ⊥ as in the previous section. Here ⊗
is the monoidal product with unit I and Tr is the partial trace operator as in
Section 2. We shall point out once again that we do not require that the category
C have a reflexive object, so uni-object GoI semantics may not be possible to
carry out in C.

Interpreting formulae:

Let A be an object of C and let f, g ∈ End(A). We say that f is orthogonal
to g, denoted f ⊥ g, if (f, g) ∈⊥. Also given X ⊆ End(A) we define X⊥ =
{f ∈ End(A) | f ⊥ g ∀g ∈ X}. We now define an operator on the objects of C as
follows: Given an object A, T (A) = {X ⊆ End(A) |X⊥⊥ = X}. We shall also
need the notion of usual denotational interpretation of the formulas. We define
an interpretation map − on the formulas of MLL as follows. Given the value
of − on the atomic propositions as objects of C, we extend it to all formulas
by:



– A⊥ = A
– A

.................................................
............
.................................. B = A⊗B = A ⊗ B .

We then define the MGoI-interpretation for formulas as follows. We use the
notation θ(A) for this interpretation.

– θ(α) ∈ T ( α ), where α is an atomic formula.
– θ(α⊥) = θ(α)⊥

– θ(A⊗B) = {a⊗ b | a ∈ θ(A), b ∈ θ(B)}⊥⊥
– θ(A .................................................

............
.................................. B) = {a⊗ b | a ∈ θ(A)⊥, b ∈ θ(B)⊥}⊥

Facts:

– It is an easy consequence of the definition that (θA)⊥ = θA⊥ for any formula
A.

– For any formula A, θ(A) ⊆ End( A ).

Interpretation of Proofs:
We define the MGoI interpretation for proofs of MLL without the neutral

elements, similarly to [18]. Every MLL sequent will be of the form ` [∆], Γ
where Γ is a sequence of formulas and ∆ is a sequence of cut formulas that have
already been made in the proof of ` Γ (see [13, 18]). This device is used to keep
track of the cuts in a proof of ` Γ . A proof Π of ` [∆], Γ is represented by a
morphism Π ∈ End(⊗ Γ ⊗ ∆ ). With Γ = A1, · · · , An, ⊗ Γ stands for
A1 ⊗· · ·⊗ An , similarly for ∆. We drop the double brackets wherever there

is no danger of confusion. We also define σ = s ⊗ · · · ⊗ s (m-copies) where s is
the symmetry map at different types (omitted for convenience), and |∆| = 2m.
The morphism σ represents the cuts in the proof of ` Γ , i.e. it models ∆. In the
case where ∆ is empty (that is for a cut-free proof), we define σ : I → I to be
1I where I is the unit of the monoidal product in C.

Let Π be a proof of ` [∆], Γ . We define the MGoI interpretation of Π,
denoted by Π , by induction on the length of the proof as follows.

1. Π is an axiom ` A,A⊥, Π := sV,V where A = A⊥ = V .
2. Π is obtained using the cut rule on Π ′ and Π ′′ that is

Π ′ Π ′′

...
...

` [∆′], Γ ′, A ` [∆′′], A⊥, Γ ′′

` [∆′,∆′′, A, A⊥], Γ ′, Γ ′′ (cut)

Define Π as follows: Π = τ−1( Π ′ ⊗ Π ′′ )τ , where τ : Γ ′ ⊗ Γ ′′ ⊗
∆′⊗∆′′⊗A⊗A⊥ → Γ ′⊗A⊗∆′⊗A⊥⊗Γ ′′⊗∆′′ is a permutation, (double
brackets and ⊗ are dropped for the sake of readability.)



3. Π is obtained using the exchange rule on the formulas Ai and Ai+1 in Γ ′.
That is Π is of the form

Π ′

...
` [∆], Γ ′

` [∆], Γ
(exchange)

where Γ ′ = Γ ′
1, Ai, Ai+1, Γ

′
2 and Γ = Γ ′

1, Ai+1, Ai, Γ
′
2. Then, Π is obtained

from Π ′ by interchanging the rows i and i + 1. So, Π = τ−1 Π ′ τ ,
where τ = 1Γ ′

1
⊗ s⊗ 1Γ ′

2⊗∆.
4. Π is obtained using an application of the par rule, that is Π is of the form:

Π ′

...
` [∆], Γ ′, A, B

` [∆], Γ ′, A
.................................................

............
.................................. B

(.................................................
............
.................................. )

. Then Π = Π ′ .
5. Π is obtained using an application of the times rule, that is Π is of the form

:

Π ′ Π ′′

...
...

` [∆′], Γ ′, A ` [∆′′], Γ ′′, B

` [∆′,∆′′], Γ ′, Γ ′′, A⊗B
(times)

. Then Π = τ−1( Π ′ ⊗
Π ′′ )τ ,

where τ : Γ ′ ⊗ Γ ′′ ⊗ A ⊗ B ⊗∆′ ⊗∆′′ → Γ ′ ⊗ A ⊗∆′ ⊗ Γ ′′ ⊗ B ⊗∆′′ is a
permutation, (double brackets and ⊗ are dropped for the sake of readability.)
This corresponds exactly to the definition of tensor product in Abramsky’s
G(C) (see [1, 15].)

Example 1. (a) Let Π be the following proof:

` A,A⊥ ` A,A⊥

` [A⊥, A], A, A⊥ (cut)

Then the MGoI semantics of this proof is given by

Π = τ−1(s⊗ s)τ = sV⊗V,V⊗V

where τ = (1⊗ 1⊗ s)(1⊗ s⊗ 1) and A = A⊥ = V .
(b) Now consider the following proof

` B,B⊥ ` C,C⊥

` B,C,B⊥ ⊗ C⊥

` B,B⊥ ⊗ C⊥, C

` B⊥ ⊗ C⊥, B, C

` B⊥ ⊗ C⊥, B
.................................................

............
.................................. C .



Its denotation is given by sV⊗W,V⊗W where B = B⊥ = V and C =
C⊥ = W .

Proposition 3. Let Π be an MLL proof of ` [∆], Γ where |∆| = 2m and |Γ | =
n (counting the occurrences of propositional variables), then Π is a fixed-point
free involutive permutation on n + 2m objects of C. That is Π : V1 ⊗ · · · ⊗
Vn+2m → V1 ⊗ · · · ⊗ Vn+2m induces a permutation π on {1, 2 · · · , n + 2m} such
that

– π2 = 1
– For all i ∈ {1, 2, · · · , n + 2m}, π(i) 6= i.
– For all i ∈ {1, 2, · · · , n + 2m}, Vi = Vπ(i).

4.1 Dynamics

Dynamics is at the heart of the GoI interpretation as compared to denotational
semantics and it is hidden in the cut-elimination process. The mathematical
model of cut-elimination is given by the so called execution formula defined as
follows:

EX( Π ,σ) = Tr⊗∆
⊗Γ,⊗Γ ((1⊗ σ) Π ) (1)

where Π is a proof of the sequent ` [∆], Γ , and σ = s⊗· · ·⊗s (m times) models
∆.

Note that EX( Π ,σ) is a morphism from ⊗Γ → ⊗Γ , when it exists. We
shall prove (see Theorem 2 below) that the execution formula always exists for
any MLL proof Π.

Example 2. Consider the proof Π in Example 1 above. Recall also that σ = s in
this case (m = 1). Then EX( Π ,σ) = Tr((1⊗ sV,V )sV⊗V,V⊗V ) = sV,V .

Note that in this case we have obtained the MGoI interpretation of the cut-
free proof ` A,A⊥, obtained by applying Gentzen’s Hauptsatz to the proof Π.

5 Soundness of the Interpretation

In this section we shall prove one of the main results of this paper: the soundness
of the MGoI interpretation. We show that if a proof Π is reduced (via cut-
elimination) to another proof Π ′, then EX( Π ,σ) = EX( Π ′ , τ); that is,
EX( Π ,σ) is an invariant of reduction. In particular, if Π ′ is cut-free (i.e. a
normal form) we have EX( Π ,σ) = Π ′ . Intuitively this says that if one
thinks of cut-elimination as computation then Π can be thought of as an
algorithm. The computation takes place as follows: if EX( Π ,σ) exists then
it yields a datum (cf. cut-free proof). This intuition will be made precise below
(see Theorems 2,3).



Lemma 4 (Associativity of cut). Let Π be a proof of ` [Γ,∆], Λ and σ and
τ be the morphisms representing the cut-formulas in Γ and ∆ respectively. Then

EX( Π ,σ ⊗ τ) = EX(EX( Π , τ), σ) = EX(EX((1⊗ s) Π (1⊗ s), σ), τ),

whenever all traces exist.

Definition 4. Let Γ = A1, · · · , An and Vi = Ai . A datum of type θΓ is a
morphism
M : ⊗iVi → ⊗iVi such that for any βi ∈ θ(A⊥

i ), ⊗iβi ⊥ M , and M .β1 :=
TrV1(s−1

⊗iVi,V1
(β1⊗ 1V2 ⊗ · · ·⊗ 1Vn

)Ms⊗iVi,V1) exists. (In Girard’s notation [13],
M .β1 corresponds to ex(CUT (β1,M)) ).

An algorithm of type θΓ is a morphism M : ⊗iVi ⊗ ∆ → ⊗iVi ⊗ ∆
for some ∆ = B1, B2, · · · , B2m with m a nonnegative integer and Bi+1 = B⊥

i

for i = 1 · · · , 2m − 1 such that for σ : ⊗2m
j=1 Bj → ⊗2m

j=1 Bj defined by
⊗2m−1

j=1 s Bj , Bj+1
, EX(M,σ) exists and is a datum of type θΓ . σ is defined

to be 1I for m = 0.

Lemma 5. Let Γ = A2, · · · , An, Vi = Ai , and M : ⊗iVi → ⊗iVi, for i =
1, · · · , n. Then, M is a datum of type θ(A1, Γ ) iff for every a1 ∈ θ(A⊥

1 ), M .a1

(defined as above) exists and is in θ(Γ ).

Theorem 2 (Proofs as algorithms). Let Γ be an MLL sequent, and Π be a
proof of ` [∆], Γ . Then Π is an algorithm of type θΓ .

Corollary 1 (Existence of Dynamics). Let Π be an MLL proof of a sequent
` [∆], Γ . Then Ex( Π ,σ) exists.

Theorem 3 (EX is an invariant). Let Π be a proof of a sequent ` [∆], Γ in
MLL. Then,

– If Π reduces to Π ′ by any sequence of cut-eliminations, then EX( Π ,σ) =
EX( Π ′ , τ). So EX( Π ,σ) is an invariant of reduction.

– In particular, if Π ′ is any cut-free proof obtained from Π by cut-elimination,
then EX( Π ,σ) = Π ′ .

6 Completeness

In this section we prove a completeness theorem for MLL in a partially traced
category equipped with an orthogonality relation, under MGoI semantics. Mo-
tivated by this result we prove a completeness theorem for MLL in any traced
Unique Decomposition Category with a reflexive object, under (uniobject) GoI
semantics [18], which we present in the next section.

Theorem 4 (Completeness). Let M be a fixed-point free involutive permu-
tation from V1 ⊗ · · · ⊗ Vn → V1 ⊗ · · · ⊗ Vn (induced by a permutation µ on
{1, 2, · · · , n}) where n > 0 is an even integer, Vi = Ai , and Vi = Vµ(i) for all
i = 1, · · · , n. Then there is a provable MLL formula ϕ built from the Ai, with a
proof Π such that Π = M .



7 Completeness For Uni-GoI Semantics

The above theorem may be applied to give a completeness theorem for the
untyped (i.e. uni-object) GoI semantics for MLL, as discussed in our papers [18,
19]. The theorem below is related to work of Danos and Regnier. We hope in
future work to detail these connections.

In what follows we consider variables j1, j2, k1, k2 which are the components
of the retraction U⊗U �U (j, k) where U is a reflexive object in a traced UDC C
(see [18] for details about GoI semantics in UDCs.) In Girard’s terminology [13]
j1 = p, j2 = q, k1 = p∗, k2 = q∗. We define ( )∗ on words built on the alphabet
Σ = {0, 1, j1, j2, k1, k2} as follows: 0∗ = 0, 1∗ = 1, j∗1 = k1, j

∗
2 = k2, k

∗
1 = j1

and k∗2 = j2. 1 is the neutral element and 0 the null element (annihilator) for
juxtaposition. (wα)∗ = α∗w∗ for w a word on Σ and α ∈ Σ. Note that words w
on Σ cannot have k’s occurring after j’s because of equations k1j1 = k2j2 = 1
and k2j1 = k1j2 = 0. Thus words w on Σ are of the form w = uv where v is a
word on Σ consisting of k1, k2 only and u a word on Σ consisting of j1, j2 only,
either u or v can be 1. We call v the k-part and u, the j-part of w. For example,
the k part of j1j2k2k

2
1 is k2k

2
1 and its j-part is j1j2.

Theorem 5. Consider the polynomial ϕ ∈ F2[j1, j2, k1, k2] where F2 is the finite
field of characteristic 2. Then, ϕ is the denotation of an MLL proof iff

– ϕ has an even number n of summands,
– For each summand w, w2 = 0 and w∗ is a summand in ϕ,
– No two summands have identical k-parts.

Lemma 6. Let Γ be an MLL sequent of length (counting the occurrences of
propositional variables) n and Π be a proof of ` Γ , then Π = J Π MK,
where Π and Π M are the GoI and MGoI interpretations of Π, respectively,
J : Un → U is a morphism built from j and 1U by tensoring and composition,
and K = J∗.

8 Conclusion and Future Work

In this work we introduce a new semantics called multiobject Geometry of In-
teraction (MGoI). The definition of this semantics, while inspired by GoI, differs
from it in many significant points. Namely, we deal with many objects in the
underlying category, we make use of a denotational semantics to define the inter-
pretation for the formulas and the execution formula is based on partial traces
and trace ideals. Moreover, the orthogonality relation is linked to the notion of
trace class. We are thus able to carry out our interpretation in the categories
of finite dimensional vector spaces and the other examples of trace ideal men-
tioned above. This is not possible for the earlier theory of uniobject GoI as none
of these categories have non-trivial reflexive objects. We are currently working



on interpreting our MGoI on Banach spaces and related categories, by finding
appropariate classes of trace ideals.

An obvious direction for future research is to extend our interpretation to
the exponentials and additives. Also there are many new directions that open
up due to the introduction of partial trace and abstract orthogonality into the
world of GoI semantics. In particular, we shall pursue further research along
the correspondence of trace class/nuclear morphisms as achieved in [2] for their
examples. The notion of nuclearity, intuitively captures the notion of finiteness,
for example every finite dimensional vector space is nuclear, but this is with
respect to the tensor product of vector spaces as the monoidal product. Our
monoidal product is the direct sum and it would be very illuminating to know
what the nuclear objects and morphisms are and what is being characterized by
them. In particular, are they characterizing a class of proof denotations, etc.?

Another point of interest is to further probe the trace class/orthogonality
interplay. In particular, we have shown that the orthogonality relations we deal
with can all be nicely characterized as trace class morphisms, and that this
defined orthogonality satisfies Hyland-Schalk axioms. It is natural to seek ex-
amples of traces that are induced by other notions of orthogonalities, especially
those arising in functional analysis. We hope this may lead to new classes of GoI
models, perhaps connected to current work in operator algebras.
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