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The history of computing π offers a high-level view of several aspects of mathematics 
and its history. It also says something about aspects of computing and the history of 
computers. Beyond that, since the practical value of more accurate approximations to π 
was exhausted by the turn of the 18th century and the mathematical value of extremely 
high-precision approximations is very limited, it says something about human culture. 

In this article, I give background for and outline the four fundamentally different 
techniques (measurement and three methods of calculation) of finding approximations 
that have been used, and I discuss both the mathematics and the computer science behind 
computing π to the trillions of decimal places that are now known. I assume 
mathematical background about the level of what used to be called “college algebra” 
but is now known as precalculus. Two non-obvious conventions are: (1) Numbers of 
decimal places or approximate values for π in boldface italics indicate values that 
were world records when they were found.  (2) References giving only a page 
number are to Beckmann [2]. 

 
The record for accuracy in computing approximations to π now stands at 12.1 trillion decimal places 
[16]. There’s a great deal of history behind this remarkable feat. Indeed, Beckmann comments in his 
fascinating book A History of Pi [2], “The history of π is a quaint little mirror of the history of man.” 
(p. 3)1 But I’ll concentrate in this short paper exclusively on its mathematical history, a history that 
divides into periods—perhaps “phase” is a better term, since the last two overlap—surprisingly well. 

Phase 0 (before ca. 250 BCE): Measurement. In earliest times, of course, no method for actually 
computing π was known. The first values were found by the Egyptians, Babylonians, and others by 
measuring the circumferences and diameters of circles, and dividing the former by the latter. 

                                                        

1 My references are to the third (1974) edition of this book. However, based on what the preface to the 
third edition says, that “edition” is essentially just the second edition with some minor errors corrected. In 
fact, the title page of an old copy of what is actually the third edition—as indicated by the presence of the 
third-edition preface—claims it’s the second edition! A more recent copy of the alleged third edition 
simply removes that claim; the title page still does not say it’s the third edition, but it includes the same 
“third edition” preface as the old copy. 
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Phase 1 (ca. 250 BCE to 1654): The “method of exhaustion”, considering polygons circumscribed 
and inscribed in a circle and iterating over the number of sides (Archimedes and others). Borwein et 
al. [4] comment that “despite the long pedigree of the problem, all nonempirical calculations have 
employed, up to minor variations, only three techniques”; this was the first. 

Phase 2 (ca. 1665 to 1990): The discovery of increasingly efficient infinite series and iterative 
algorithms for computing π, starting with algorithms based on calculus (Newton, John Machin, Euler, 
and others) and ending with those based on the transformation theory of elliptic integrals (following 
up work by Gauss, Legendre, and Ramanujan). These are Borwein et al.’s second and third 
techniques, respectively. 

Phase 3 (ca. 1930 to the present, overlapping phase 2): The application of increasingly powerful 
digital computers (including electromechanical calculators, the immediate predecessors of digital 
computers) to the problem, using Borwein et al.’s second and third techniques. 

Needless to say, not much precision could be obtained by measurement; the most accurate value of 
Period 0 seems to have been 25/8 = 3.125, apparently known to the Babylonians by around 1800 BCE 
[14] (though they and other ancient peoples generally used less accurate values), and about 0.01659 
too low.2 

Even in the purely mathematical history of computing π, there is far more than can be covered in one 
article. I’ll say no more about the “measurement” phase, but will summarize the other phases, 
focusing on one or two major events or features of each. 

Infinite Series and Sequences and Rapidity of Convergence 
As I have said, the three known families of techniques for computing π all involve infinite series or 
iterative algorithms. For a sequence (produced by iteration) or a series to be usable for computing 
anything, it must, of course, converge. For practical use, it must converge fairly rapidly. And to 
compute something to billions of significant figures, much less the trillions to which π is now known, 
it must converge extremely rapidly. The history of computing π furnishes extraordinary 
demonstrations of this fact. To fully appreciate how much more quickly modern π-computing series 
converge than the earliest ones requires an idea from numerical analysis: order of convergence. 
Convergence with order 1—linear convergence—means that for each iteration you get the same 
number of new digits. For example, it might be 10 new correct digits per iteration: after one iteration, 
10 correct digits; after two iterations, 20 correct; after three, 30 correct, etc. Convergence with order 
2, quadratic convergence, means the number of new correct digits doubles with each iteration. Thus, 
the first iteration might provide 4 correct digits; the second, 8 new correct digits; the third, 16; and so 
forth. Cubic convergence means the number of new correct digits triples each time. These are 
examples of superlinear convergence, where the number of new correct digits per iteration grows 
without bound. By contrast, there is also sublinear convergence, where the number of iterations 
needed to get one new correct digit grows without bound. 

                                                        

2 Weisstein comments [14] that one early Egyptian value, 256/81 ≅ 3.160494, is more accurate than the 
Babylonians’ 25/8, but that’s not true; it’s actually slightly less accurate. 
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To sum up, with linear convergence, the amount of computation per digit is constant; with 
superlinear convergence, the computation per digit goes down and down; and with sublinear 
convergence, computation per digit goes up and up. (For technical details, see the Appendix: Rapidity 
of Convergence.) Here is a striking example of the contrast. The first π-computing series ever found, 
the Gregory (or Madhava or Leibniz) series, converges so slowly that, if an efficient implementation 
on the fastest supercomputer now in existence had started running at the Big Bang, it would have 
computed no more than about 65 decimal places so far3. On the other hand, a reasonable 
implementation of a state-of-the-art series running on an ordinary desktop computer can produce 
millions of digits of π in under 30 seconds.4 Each term of the Gregory series, though it can be 
computed very quickly, gives you very little information—in fact, less and less as you go on; by 
contrast, each successive term of a modern series, though it takes considerably more computation, 
gives you more information. In the terminology just discussed, the Gregory series exhibits sublinear 
convergence; the modern series, superlinear convergence. 

Phase	
  1.	
  The	
  Method	
  of	
  Exhaustion	
  
Around 250 BCE, Archimedes devised the first way to obtain π to any desired accuracy, given 
enough patience, by applying the method of exhaustion invented by Eudoxus a century earlier. 
Archimedes realized that the perimeters of regular polygons circumscribed about and inscribed within 
a circle give upper and lower bounds for π. The more sides the polygon has, the more closely it 
approximates the circle—“exhausting” the space between the circle and the polygon, hence the 
name—and the tighter the bounds. (Strogatz [12] gives an unusually clear and readable description, 
addressed to the layperson, of both this process and the way Archimedes used it to find the area of the 
circle.) The results can easily be computed without trigonometry; in the words of [4]: 

[Recursively] calculate the length of circumscribed and inscribed regular 6 x 2n-gons about a 
circle of diameter 1. Call these quantities an and bn , respectively. Then a0 := 2√3  and  b0 := 3 
and, as Gauss’ teacher Pfaff discovered in 1800, 

 

€ 

an+1 =
2anbn
an + bn

    and    

€ 

bn+1 = an+1bn  

                                                        

3 Beckmann [2] (p. 140) cites an estimate that “to obtain 100 decimal places, the number of necessary 
terms would be no less than 1050!” At first glance, that number seems far too low: the partial sums after 
1050 and 1050 + 1 terms differ by about 10–50 , i.e., after only about 50 decimal places. However, the 
arithmetic mean of two consecutive partial sums of the Gregory series is accurate to roughly the product of 
the last two terms, giving about twice as many correct decimal places. So, for 60 decimal places, 1030 
terms is a reasonable estimate; for 70 places, 1035 terms. Now, the age of the universe is around 4.3 x 1017 

sec. As of this writing, the fastest supercomputer in existence does about 34 petaFLOPS, i.e., 3.4 x 1016 
floating-point operations per sec. It’s not easy to convert this figure to an estimate of speed evaluating the 
Gregory series, but assuming the equivalent of 10 floating-point operations per 100-digit term —surely far 
too low—yields 3.4 x 1015 terms per sec. But even at that rate, fewer than 1.5 x 1033 terms could have been 
produced by now. 

4 A Java version of T. Ooura’s program pi_css5, which is nowhere near the fastest program available [6], 
running on an 2.4 GHz MacBook found over 4 million places in 27 sec. See the table under Phase 3, 
below. 
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This process converges to π, with the bounds an and bn tightening by a factor of four on each iteration 
[3]. Thus, the sequence of means converges linearly, with a rate of convergence of 1/4. With 
polygons of 96 sides (i.e., n = 4 in the above formulation), Archimedes obtained 223/71 < π  < 22/7; 
in decimal form, roughly 3.140845 < π   < 3.142857 (average ≅ 3.141873).5 

For the next 1800 years, others improved on his results simply by using much larger numbers of 
sides. Among them, in the 5th century CE, the Chinese Tsu Ch’ung Chi found 7 decimal places; in 
1615, after years of effort, the Dutchman Ludolph van Ceulen found 35 places, using polygons of no 
less than 262 (roughly 4.6 • 1018) sides! A few years later (1621) another Dutchman, Willebrord 
Snellius, observed that using regular polygons to approximate circles in a different way makes it 
possible to bring the bounds for a given number of sides much closer together (p. 111). Where 
Archimedes had gotten only 2 decimal places from polygons of 96 sides, Snellius obtained 
3.1415926272 < π  < 3.1415928320, for 6 places. 

Phase	
  2.	
  Methods	
  from	
  Calculus	
  and	
  Transformations	
  of	
  Elliptic	
  Integrals	
  
The invention of differential calculus by Newton, Leibniz, and others in the mid-17th century led to 
the discovery of a long list of infinite series for computing π, all (or almost all) exploiting the Taylor 
series for trigonometric functions [1, 2]. Much later, the transformation theory of elliptic integrals 
provided a basis for a set of iterative methods to compute π. 

The earliest series for π is a special case of the series for arctangent, known to Indian mathematicians 
by the early 1500’s, but apparently discovered as early as 1400, probably by Madhava of 
Sangamagrama [7]. This work was unknown in the west until quite recently; the arctangent series was 
rediscovered in 1671 by James Gregory and a few years later by Leibniz (p. 132–133). The series is: 

 
  

€ 

arctan x = 1− x
3

3
+
x 5

5
−
x 7

7
+…+

(−1)n x 2n+1

2n +1
+ ... 

This is simply the Taylor series for arctangent, but Taylor’s work—extending Gregory’s—was still a 
few decades in the future. As Liebniz observed (it is not known if Gregory did), since arctan 1 = π/4, 
substituting 1 for x yields: 

 
  

€ 

π
4

= 1− 1
3

+
1
5
−
1
7

+…+
(−1)n

2n +1
+ ... 

Unfortunately, this elegant series—called by various combinations of the names Madhava, Gregory, 
and Leibniz, but we’ll call it the Gregory formula—converges sublinearly. In fact, as I have already 
said, it converges so slowly, it’s virtually useless for calculation. The number of terms needed to 
compute n decimal places increases exponentially, specifically as 10n/2, so that adding 12 decimal 
places (for example) requires increasing the number of terms by a factor of 106.  But there are many 
ways to get better performance from the Taylor series. 

The “digit hunters” (as [2] calls them) of the 17th and 18th centuries used the Taylor series, which they 
employed in different ways to accelerate its convergence, or a series for arctangent discovered by 

                                                        

5 Some evidence exists that Archimedes went further and obtained considerably more accurate results. See 
[1], p. 175, or [2], p. 66. 
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Euler (p. 154). About 1699, the astronomer Abraham Sharp computed 72 decimal places (p. 102) 

merely by using the Taylor series for π/6, i.e., 

€ 

x =
1
3

. After factoring out 

€ 

1
3

, this makes the 

general term 

€ 

(−1)n

3n × (2n +1)
. This series converges linearly, with a rate of 1/3. But another astronomer, 

one named Machin, did something much more far reaching. 

Machin’s Formula and Its Derivation 
In 1706, John Machin, a professor of astronomy in London, came up with a strategy that both made 
the series for π converge much more rapidly than Sharp’s approach, and simplified the calculations it 
required.  His formula states: 

 

€ 

π
4

= 4 tan−1 1
5
− tan−1 1

239
 

Substituting the Taylor series for the arctangents gives: 

 
  

€ 

π
4

= 4 1
5
−

1
3× 53

+
1

5 × 55
−…

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

1
239

−
1

3× 2393
+

1
5 × 2395

−…
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

As Beckmann ([2], p. 145) says, “This was a neat little trick, for the second series converges very 
rapidly, and the first is well suited for decimal calculations.”  True. In fact, both series converge 

linearly, the first with a rate of  

€ 

1
25

,  the second with a rate of  

€ 

1
2392

=
1

57,121
 . But where does 

Machin’s formula come from? Deriving it requires only the tangent double-angle and subtraction 
identities plus a bit of algebra. 

Let tan β = 1/5. Then we have 

 

€ 

tan2β =
2 tan β

1− (tan β)2
=

2
5

1− 1
25

=
2
5
24
25

=
5
12

 

and 

 

€ 

tan 4β =
2 tan2β

1− (tan2β)2
=

2( 512)
1− ( 512)

2 =
10
12
119
144

=
120
119

 

Now, tan (π/4) = 1, so tan–1(4β) is already very nearly π/4; and 

€ 

tan(u − v) =
tan u − tan v
1− tan u tan v

  . 

Therefore 

€ 

tan(π
4
− 4β) =

tan π
4
− tan 4β

1+ tan π
4
tan 4β
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€ 

=
1− tan 4β
1+ tan 4β

=
1− 120

119

1+ 120
119

=
− 1
119
239
119

= −
1
239

 

Continuing with some elementary algebra: 

 

€ 

tan 4β − π
4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1
239

      , or, equivalently,      

€ 

4β − π
4

= tan−1 1
239

 , hence 

 

€ 

4β − tan−1 1
239

=
π
4

 

Finally, since tan β = 1/5, we have the desired formula: 

 

€ 

4 tan−1 1
5
− tan−1 1

239
=
π
4

 

Machin used his new formula to compute π to 100 decimal places (p. 145), and in 1873, William 
Shanks used it to find a remarkable 527 places (p. 103), a record that stood till 1946. (Shanks actually 
calculated 707 places, but only the first 527 were correct.) 

Transformation Theory of Elliptic Integrals 
According to [4], “the third technique, based on the transformation theory of elliptic integrals, 
provides the algorithms for the most recent set of computations.” Elliptic integrals are so called 
because they were originally studied in connection with finding the arc lengths of ellipses. Since a 
circle is an ellipse, their connection to π is plausible. Some of these algorithms are based on the early 
19th-century work of Gauss and Legendre with the arithmetic/geometric mean; the state-of-the art 
algorithms come from the more recent work of Srinivasa Ramanujan. 

The arithmetic/geometric mean (AGM) is an interesting thing. Unlike the more familiar means—the 
arithmetic, geometric, and harmonic—there is no closed-form expression for the AGM of two 
numbers; instead it must be computed iteratively from the arithmetic and geometric means. Work by 
Gauss and Legendre relating the AGM to the complete elliptic integral led to the formula discovered 
in 1976 independently by Salamin [11] and Brent: 

 

€ 

π =
[2AGM (1,2−1 / 2)]2

1 − 2n+1
n−1

∞

∑ (an − bn )
2

 

where  an  and  bn  are the two numbers in the nth AGM iteration. Implementations of this formula 
converge quadratically, i.e., with order 2, so that each iteration doubles the number of correct digits. 
[3] offers “a mathematically intermediate perspective and some bits of the history” of computing π 
and various elementary functions using the AGM. 

In 1914, Ramanujan published no fewer than 19 new infinite series for 1/ π; perhaps the best known 
is this “amazing sum” [4]: 
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€ 

1
π

=
8

9801
(4n)!
(n!)4n= 0

∞

∑ [1103+ 26390n]
3964n

 

Following up his work many years later led to series for π that converge with stunning rapidity, series 
that converge with order 4 (quadrupling the number of correct digits with every term) or order 5 
(quintupling the number of correct digits with every term).6 However, the mathematics involved is far 
from simple, and discussing it is beyond the scope of this article. 

Phase	
  3.	
  Digital	
  Computers	
  
The advent of digital computers made the ease of base-10 computation of Machin’s series irrelevant, 
but its rapid convergence was advantage enough, and several “Machin-like” formulae dominated the 
computation of π from the time of its discovery through the 1970’s [6]. In the late 1940’s, Shanks’ 
record was broken repeatedly by Ferguson and Wrench, who used Machin-like formulae with desk 
calculators—essentially, electromechanical computers with extremely limited programmability—to 
find several values, from 710 to 1,120 places. Then fully electronic digital computers became 
available and things changed dramatically. From a 2,037-place value computed in 1949 by one of the 
first such computers, the ENIAC (the project was suggested by John von Neumann [10]), the record 
shot up to 1,001,250 places in 1973, thanks to one of the first supercomputers, the CDC 7600 [6]. 

Since then, programs based on the transformation theory of elliptic integrals have wiped out all 
competition, producing first billions and then trillions of digits of π. The first programs of this type 
used the so-called Gauss-Legendre formula; the more recent programs are based on Ramanujan’s 
work. The current record of 12.1 trillion decimal places was set in 2013 by Shigeru Kondo and 
Alexander Yee, with the Ramanujan-based Chudnovsky formula for “main computation” [16]. But 
the phrase “main computation” implies that some other kind of computation is involved; what is it? 

Other Factors in Computation 
Computing π to an enormous number of decimal places obviously means doing arithmetic with 
enormously long numbers. Doing that accurately and efficiently brings up questions of numerical 
analysis and especially of analysis of algorithms, two areas that are close to the boundary between 
mathematics and theoretical computer science. Aside from the “main computation” using series that 
converge incredibly rapidly, a major factor in the speed of the latest generation of π-computing 
programs is simply that they perform multiplication of numbers billions or trillions of digits long via 
unusual and extraordinarily efficient methods. Conventional multiplication has a time complexity of 
O(n2); that is, the number of operations necessary to multiply two numbers of n digits each increases 
asymptotically as n2, so that doubling the number of digits quadruples the number of operations 
necessary. This is probably what most people would intuitively expect, but it’s possible to do a great 
deal better. The well-known Fast Fourier Transform (FFT) is one example of an algorithm that can do 
much better (Borwein 1989), though it’s rarely used for this purpose.  Kondo and Yee’s 12.1 trillion 
decimal-place calculation relied on Yee’s program “y-cruncher”, which is essentially a framework for 
computing irrational numbers to extremely high precision with great efficiency. Indeed, y-cruncher 
uses the FFT as well as several other algorithms to do arithmetic [16]. In addition to π, it has been 

                                                        

6 These series appear in [4], which also comments that convergence with order 5 is close to the theoretical 
optimum. 
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used to compute e to a trillion digits, and several other constants—the square root and natural log of 
2, Apéry’s constant, etc.—to many billions of digits. 

It seems unlikely that most of the programs based on Machin-like formulae do arithmetic in unusual 
ways. But writing a program to compute anything very accurately involves other practical 
considerations, for example, avoiding fractions for as long as possible in order to minimize roundoff 
error. With Machin’s formula, one implication is the need to substitute cot–1(5) and cot–1(239) for the 
original tan–1(1/5) and tan–1(1/239). 

Finally, of course, the programming language and (to a lesser extent) compiler used can make a big 
difference. Yee’s y-cruncher is written in C++, which generally runs very quickly as compared to 
more recent languages like Java, C-sharp, and Python. A major reason that these “more recent 
languages” tend to run slowly is that they are generally compiled to instructions for a virtual machine, 
not for the actual computer hardware; then those instructions are interpreted. In fact, y-cruncher was 
originally in Java.  Though Yee doesn’t say, it seems likely the rewrite was motivated primarily by 
the desire for more speed. 

Comparison of Three Methods and Programs 
Here’s a simple comparison of three ways to compute π and a program for each. The programs are: 

• CalcPiGregory: my own straightforward implementation of the Gregory series, written in Java, with 
Java’s standard arithmetic. 

• CalcPiMachin: my adaptation of a straightforward implementation of Machin’s formula, written in 
Java, and doing arithmetic via BigDecimal, the standard Java arbitrary-precision arithmetic package. 

• pi_fftcs (also known as pi_css5): an implementation of the Gauss-Legendre formula by T.Ooura, 
using FFTs for arithmetic, converted to Java by Hazeghi [5]. Despite its overwhelming increase in 
efficiency over even Machin’s formula, recall that algorithms based on Ramanujan’s work can be 
even faster. 

The first two programs are available at http://www.informatics.indiana.edu/donbyrd/Teach/math/  . 
pi_fftcs is available at http://www.kurims.kyoto-u.ac.jp/~ooura/pi_fft.html . 

Timings were done on an 2010-vintage MacBook with a 2.4 GHz Intel Core 2 Duo CPU and 2 GB of 
RAM, averaging three runs for each. 
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Method Terms for 
100 dec. 
places 

Terms for 
100K dec. 
places 

Implementation Approx. 
lines of 
code 

Execution time 
for 100K 
places 

Madhava-
Gregory series 

≥1050 1050,000(?) CalcPiGregory 100 -- 

Machin’s 
formula 

77 + 23 71,537 + 
21,024 

CalcPiMachin: in Java, with 
Java’s standard arbitrary-
precision arithmetic 

120 40.5 sec. 

Gauss-Legendre 
formula, AGM 

3 (176 
places) 

13 (131,072 
places) 

pi_fftcs/pi_css5: in Java, 
with arithmetic via FFT 

2,300 1.62 sec. 

	
  

Conclusions	
  
The obvious question is: Why would anyone wish to compute thousands or millions of digits of π, 
much less 12.1 trillion? Certainly not for any ordinary scientific or technical purpose. In the words of 
the American astronomer Simon Newcomb, “Ten decimal places of π are sufficient to give the 
circumference of the earth to a fraction of an inch, and thirty decimal places would give the 
circumference of the visible universe to a quantity imperceptible to the most powerful microscope.”  
(This statement is widely attributed to Newcomb and, as far as I know, never to anyone else; but I’ve 
been unable to find a reliable source for it.) Since Newcomb’s death in 1909, microscope technology 
has improved tremendously, and the “visible universe” is larger as well, so nowadays we’d need to 
work harder to elude the scrutiny of “the most powerful microscope”: 40 decimal places should 
suffice.  But, as I have said, π was known to far greater accuracy than that—71 places—by the 
beginning of the 18th century.7 

The closest thing to a real-world application of vast numbers of digits of π is probably testing newly-
developed or overclocked processors. In the words of Wikipedia (2011), “Overclocking is the process 
of operating a computer component at a higher clock rate (more clock cycles per second) than it was 
designed for or was specified by the manufacturer. This is practiced more by enthusiasts than 
professional users seeking an increase in the performance of their computers, as overclocking carries 
risks of less reliable functioning and damage.” The program SuperPi has been popular for this 
application for years. But it should be pointed out that, while testing such hardware requires an 

                                                        

7 It seems reasonable to equate Newcomb’s “visible universe” with what is now called the “observable 
universe”. The diameter of the observable universe is estimated at about 100 billion light years (this is 
possible despite the fact that only about 13 billion years have elapsed since the Big Bang because 
expansion of the early universe was not strictly limited by the speed of light). On the other end of the 
scale, transmission electron microscopy has a resolution limit of around 0.05 nanometers.  A light year is 
about 9.46 × 1015 meters, so 1011 light years is about 9.46 × 1026 meters; the ratio of that distance to 5 × 
10–11 meters is less than 1038. One could argue that the appropriate “yardstick” at the small end of the scale 
is not the resolution of any existing microscope but the Planck distance; that brings in another 20 or so 
orders of magnitude, which still limits the number of decimal places of π needed to only 60 or so. [8] 
quotes several other estimates of the number of useful places of π. 
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enormous amount of computation, and while calculating π is a handy example of a process that does 
that, it is by no means the only task that does so. 

On the purely mathematical side, people have been wondering for a long time about issues such as 
whether π is a normal number, or at least a normal number in base 10: that is, whether it has 
asymptotically equal distribution of digits and of all digit sequences of a given lengths in base 10. (Several 
papers on various of the record-breaking calculations discuss this point, and it appears to have been 
Neumann’s motivation for the calculation described in [10].) Of course no computation to a finite number 
of digits can decide questions like this, but they can provide hints that might lead eventually to proofs one 
way or the other. To my knowledge, all evidence so far suggests that π is normal. Wagon’s paper [13], 
from 1985, considers only the first 10 million digits; but more recent publications, e.g., [1], seem to agree. 

A more detailed and discussion of this topic appears under the heading “Why do we care?” in 
Offner’s very interesting article [8]. 

Challenges	
  for	
  Students	
  
The expansion of π to a large number of decimal places fascinates many people. While teaching high-
school algebra, I once offered extra credit to any student who memorized from 20 to 50 decimals 
place. Quite a few took me up on the offer, and several clearly enjoyed it. But there are several ways 
in which computing π could be used in either the mathematics or the computer-programming 
classroom. 

• For elementary calculus, of course, it offers many examples of convergent infinite series, 
some simple and similar to well-known series, some less so. 

• For numerical analysis, the rapidity of convergence of series is an important topic. 

• For programming, implementing almost any algorithm in “standard” precision in any 
language is fairly straightforward. Implementing in arbitrary precision is more challenging, 
and implementing an algorithm in such a way as to be able to compute, say, billions of 
decimal places in a reasonable amount of time is considerably more so. 
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Appendix:	
  Rapidity	
  of	
  Convergence	
  
The following discussion refers to sequences, while we are equally interested in infinite series; but we 
can apply the same terminology simply by considering the sequence of partial sums of each series. 
The terms below (except perhaps for “sublinear”) are standard in numerical analysis; see any 
textbook, or [15]. 
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The speed at which a convergent sequence approaches its limit is described by its order of 
convergence and, in many cases, its rate of convergence. In particular, suppose that the sequence {xk} 
converges to the number L. We say that this sequence converges linearly to L if there exists a 
number μ with  0 < μ < 1 such that 

 

€ 

lim
k→∞

| xk+1 − L |
| xk − L |

= µ  . 

If we think of  | xk – L |  as the error at term k, the ratio in the above expression is the factor by which 
the error is changing at that point; the smaller the ratio, the faster the error is disappearing. The 
number µ is called the rate of convergence. However, if 

• μ = 0, then we say the sequence converges superlinearly; 
• μ = 1, then we say the sequence converges sublinearly. 

Furthermore, we say that a superlinearly-convergent sequence converges with order q to L for q > 1 if 

 

€ 

lim
k→∞

| xk+1 − L |
| xk − L |q

= µ | µ > 0  . 

In addition, convergence with order 

• q = 2 is called quadratic convergence, 
• q = 3 is called cubic convergence, 
• q = 4 is called quartic convergence, 
• etc. 

Of course, linear convergence is convergence with order 1. This is somewhat counterintuitive, since 
every geometric sequence that converges has linear convergence, but it’s linear in that the number of 
new correct digits per term is constant. 

Another term that is sometimes used is exponential convergence. Quadratic convergence is closely 
related to and implies exponential convergence [3]. 

 


