## Trigonometric Functions Review (Chapter 6)

### 6.1 Angles

Angles: parts, positions, quadrants, types
Angle measurement in degrees: degrees/minutes/seconds \& decimal degrees
Angle measurement in radians; converting degrees to/from radians

### 6.2 Trigonometric Functions of Angles

Definitions of trigonometric functions, for an acute angle of a right triangle
"SOH CAH TOA" mnemonic

## A. Special Right Triangles

Fundamental Identities: reciprocal; tangent / cotangent; Pythagorean
B. Unit Circle (chart) [shows values for special angles]
C. Summary of Features of the Trigonometric Functions (chart)

Definitions of trigonometric functions of any angle
Signs of the functions by quadrant (table) [\& mnemonic "A Smart Trig Class"]

### 6.3 Trigonometric Functions of Real Numbers

Definitions of trigonometric functions of real numbers
Geometric interpretation
Periodic functions
D. Sine, cosine, \& tangent graphs

Formulas for negatives
Even \& Odd trigonometric functions

### 6.4 Values of the Trigonometric Functions

E. Reference angles in each quadrant
F. Signs of trigonometric functions by quadrant (table) [\& mnemonic]
G. Finding angles with a calculator (via the inverse functions)

### 6.5 Trigonometric Graphs

General Equations of sine \& cosine variants: $y=a \sin (b x+c)$ and $y=a \cos (b x+c)$
$a, b, c$ related to amplitude, period, phase shift

### 6.7 Applied Problems

Solving a triangle
Angle of elevation; angle of depression
Directions (bearings) in navigation \& surveying
Directions (bearings) in air navigation

## A. Special Right Triangles

The $45-45-90^{\circ}$ triangle is constructed by slicing a square along its diagonal.
The $30-60-90^{\circ}$ triangle is constructed by slicing an equilateral triangle down the middle.


## B. Unit Circle chart (with special angles)



## C. Summary of Features of the Trigonometric Functions

| Feature | $y=\sin x$ | $y=\cos x$ | $y=\tan x$ | $y=\cot$ <br> $x$ | $y=\sec x$ | $y=\csc x$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Domain | $\mathbf{R}$ | $\mathbf{R}$ | $x \neq \frac{\pi}{2}+\pi n$ | $x \neq \pi n$ | $x \neq \frac{\pi}{2}+\pi n$ | $x \neq \pi n$ |
| Vertical <br> asymptotes | none | none | $x=\frac{\pi}{2}+\pi n$ | $x=\pi n$ | $x=\frac{\pi}{2}+\pi n$ | $x=\pi n$ |
| Range | $[-1,1]$ | $[-1,1]$ | $\mathbf{R}$ | $\mathbf{R}$ | $(-\infty,-1] \cup[1, \infty)$ | $(-\infty,-1] \cup[1, \infty)$ |
| x-intercepts | $\pi n$ | $\frac{\pi}{2}+\pi n$ | $\pi n$ | $\frac{\pi}{2}+\pi n$ | none | none |
| y-intercept | 0 | 1 | 0 | none | 1 | none |
| Period | $2 \pi$ | $2 \pi$ | $\pi$ | $\pi$ | $2 \pi$ | $2 \pi$ |
| Even or odd | odd | even | odd | odd | even | odd |
| Symmetry | origin | y-axis | origin | origin | y-axis | origin |

(from Swokowski \& Cole, p. 388)

## D. Sine, cosine, \& tangent graphs





## E. Reference angles in each quadrant

With $0^{\circ}<\theta<360^{\circ}$ or $0<\theta<2 \pi$ :
(b) Quadrant II

$\theta_{\mathrm{R}}=180^{\circ}-\theta$
$=\pi-\theta$
(c) Quadrant III

(d) Quadrant IV


If $\theta$ is greater than $360^{\circ}$ or less than $0^{\circ}$, first find the coterminal angle $\theta$ with $0^{\circ}<\theta<360^{\circ}$ or $0<\theta<2 \pi$.

## F. Signs of Trigonometric Functions

Functions that have positive values in each quadrant are shown.

| II | I |
| :---: | :---: |
| Sin, csc | ALL |
| III | IV |
| Tan, cot | Cos,sec |

Mnemonic: "A Smart Trig Class" = All, Sin, Tan, Cos. (Functions and their reciprocals always have the same sign, so the mnemonic ignores the reciprocals.)

## G. Finding angles with a calculator (via the inverse functions)

| Equation | Values of $k$ | Calculator <br> solution | Interval containing $\theta$ if calculator is used <br> (in radians, in degrees) |
| :---: | :---: | :---: | :---: |
| $\sin \theta=k$ | $-1 \leq k \leq 1$ | $\theta=\sin ^{-1} k$ | $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$, or $-90^{\circ} \leq \theta \leq 90^{\circ}$ |
| $\cos \theta=k$ | $-1 \leq k \leq 1$ | $\theta=\cos ^{-1} k$ | $0 \leq \theta \leq \pi$, or $-0^{\circ} \leq \theta \leq 180^{\circ}$ |
| $\tan \theta=k$ | any $k$ | $\theta=\tan ^{-1} k$ | $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$, or $-90^{\circ} \leq \theta \leq 90^{\circ}$ |

