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Abstract

OMR (Optical Music Recognition) programs have been available for many years, but it is obvious that they still leave much to be desired in terms of accuracy. We set out to study the feasibility of achieving substantially better accuracy by using the output of several programs to “triangulate” and get better results than any of the individual programs; this multiple-recognizer approach has had some success with other media but, to our knowledge, had never been tried for music until recently. A serious problem is that the complexity of music notation is such that comparing two versions of a page of music in a meaningful way is extremely difficult for any but the simplest music or the most trivial differences. While there is some agreement among workers in the field on principles, there is essentially none on details, including standard test data. Together, these factors constitute a virtually insurmountable stumbling block, not only to developing a multiple-recognizer OMR system, but also to evaluating the accuracy of any OMR system. Existing programs have serious enough limitations that the multiple-recognizer approach is promising, but substantial progress on OMR evaluation seems essential before much progress on OMR itself can be made, regardless of the approach; it is certainly essential before anyone can know that much progress has been made.
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Introduction

This report is based on research, part of the recently concluded MeTAMuSE (Methodologies and Technologies for Advanced Musical Score Encoding) project, on a multiple-recognizer approach to improved OMR (Optical Music Recognition). To our knowledge, such an approach had never been tried with music before, though it has been in use for some time in other domains, in particular OCR (Optical Character Recognition). However, in our view, the most important result of the project is something that applies equally to all OMR, not just the exotic kind we were concerned with: the state of the art of evaluating OMR is so bad that, in general, there is no meaningful way to say how well a given system does, either in absolute terms or compared to another system. Substantial progress on evaluation is probably essential before much progress on OMR can be made, regardless of the approach; it is certainly essential before anyone can know that much progress has been made.

To some extent, this unfortunate situation is an outcome of the enormous complexity of music notation; but to a considerable extent, it results simply from a near-total absence of standards. No standard test databases exist, and no standards exist for judging the difficulty for OMR purposes of an image of some music, either in terms of graphic quality or of the complexity of the music itself. Standard ways of counting errors are also nonexistent, though this is undoubtedly due in part to the complexity of notation. There is no easy way to make music notation less complex, but standards are another matter, and we make some proposals in that direction.

The evaluation issues are so important in their own right and require so much background to explain that this article focuses almost completely on those issues. A report of our OMR work is available as described at the end of this article, under “Full report on MROMR results”.

We give examples of a number of problems with specific versions of various OMR programs, most of them quite old by now. Of course, more recent versions of these programs may avoid these problems in the cases we cite or similar cases; but we cite them to illustrate fundamental difficulties of OMR, and we doubt if any programs have overcome these difficulties in general.

For readers who want more background, the best introduction to the essential problems of OMR I know of is Bainbridge & Bell (2001). They include a brief historical survey of attempts to solve them, and draw attention to the difficulty of evaluation.

1.  OMR: Recognizers and Multiple Recognizers in Text and Music

The basis of an optical symbol-recognition system of any type is a recognizer, an algorithm that takes an image that the system suspects represents one or more symbols and decides which, if any, of the possible symbols to be recognized the image contains. The recognizer works by first segmenting the image into subimages, then applying a classifier, which decides for each subimage on a single symbol or none. The fundamental idea of a multiple-recognizer system is to take advantage of several pre-existing but imperfect systems by comparing their results to “triangulate” and get substantially higher accuracy than any of the individual systems. This is clearly a form of N-version programming, and it has been implemented for OCR by Prime Recognition. Its creators reported a very substantial increase in accuracy (Prime Recognition, 2005); they gave no supporting evidence, but the idea of improving accuracy this way is certainly plausible. The point of multiple-recognizer OMR (henceforth “MR” OMR or MROMR) is, of course, to do the same with music notation. (Of the many forms of music notation in existence, most OMR work focuses on Conventional Western Music Notation, and the current research considers only that form.) The basic question for a MROMR system is how best to merge the results of the constituent single-recognizer (henceforth “SR” OMR or SROMR) systems, i.e., how to resolve disagreements among them in the way that increases accuracy the most.

The simplest merging algorithm for a MR system is to take a “vote” on each symbol or sequence of symbols and assume that the one that gets the most votes is correct. This appears to be what the Prime Recognition system does, with voting on a character-by-character basis among as few as three or many as six SR systems. A slightly more sophisticated approach is to test in advance for the not-unlikely possibility that the SR systems’ average accuracies are different, and, if so, to weight the votes to reflect that.

But music is so much more complex than text that such simple approaches appear doomed to failure. To clarify the point, consider an extreme example. Imagine that system A always recognizes notehead shapes and flags (in U.K. parlance, “tails”) on notes correctly; system B always recognizes beams correctly; and system C always recognizes augmentation dots correctly. Also say that each system does a poor job of identifying the symbols the others do well on, and hence a poor job of finding note durations. Even so, a MROMR system built on top of them and smart enough to know which does well on which symbols would get every duration right! System A might find a certain note—in reality, a dotted-16th note that is part of a beamed group—to have a solid notehead with no flags, beams, or augmentation dots; B, two beams connected (unreasonably) to a half-note head with two dots; C, an “x” head with two flags and one augmentation dot. Taking A’s notehead shape and (absence of) flags, B’s beams, and C’s augmentation dots gives the correct duration.  See Figure 1.
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Figure 1. Hypothetical OMR systems with very different strengths

For music, then, it seems clear that one should begin by studying the pre-existing SROMR systems in depth, not just measuring their overall accuracy, and looking for specific rules describing their relative strengths and weaknesses that an MROMR system can exploit. However, it must be noted that, as usual, having too little data brings a substantial risk of drawing the wrong conclusions, and music notation is so complex that anything less than hundreds of pages, if not thousands, is probably too little. That means that some kind of automatic comparison of the systems is almost certainly necessary; this is especially true because pre-existing systems are a moving target. We will say more about this later.
1.1  Alignment

Music as compared to text presents a difficulty of an entirely different sort. Before you can even think of comparing the symbolic output of several systems, regardless of the type of material, clearly you must know which symbols output by each system correspond, that is, you must align the systems’ output. (Note that we use the verb “to align” in the computer scientist’s symbol-matching sense, not the usual geometric sense.) Getting a computer to align two versions of the same text that differ only in the limited ways to be expected of OCR is very straightforward. But with music, even monophonic music, the plethora of symbols and of relationships among them (articulation marks and other symbols “belong” to notes; slurs, beams, etc., group notes horizontally, and chords group them vertically) makes the alignment process much harder. And, of course, most music of interest to most potential users is not monophonic. A fair amount of research has been done on aligning music in what might be called “semi-symbolic” form, where the only symbols are notes, and the only relationships are notes’ membership in logical voices plus temporal ordering within each voice; see for example Kilian & Hoos (2004) or Pardo & Sanghi. But little or no work has been done on alignment of music in fully-symbolic form. (Pardo’s 2005 dissertation probably comes closer than anything else, but, other than note pitch and rhythm, he considers only chord symbols, key signatures, section marks, repeat signs, and skips.) As a minimum, we need barlines to allow segmenting the material as well as the structure just mentioned. Unfortunately, current OMR programs miss barlines or add extra barlines—usually because of confusing note stems with them—often enough to cause serious problems (Knopke & Byrd 2007); we say more about this issue below.

1.2  Music Notation Semantics and OMR Evaluation

Obviously, the only way to really demonstrate the value of a MROMR system would be to implement one, test it, and obtain results showing its superiority. However, the evaluation of OMR systems (as opposed to their creation) has itself proven to be an extremely difficult problem: some fourteen years have passed since the groundbreaking study by Nick Carter and others at the CCARH (Selfridge-Field, Carter, et al, 1994), and it is not at all clear that much progress has been made since then. To appreciate the difficulties, we must begin with a phenomenon that is discussed more or less directly by Reed (1995), Bainbridge & Bell (2001), Droettboom & Fujinaga (2004), and Bellini et al (2007): document-recognition systems can be described at different levels, and they may behave very differently at each level. In particular, they may be far more accurate at one level than at another. Any optical recognition system can be described at the pixel level, but, to see how well a system does at recognizing things, clearly one must look at higher levels. OCR systems are usually evaluated at the character level, and for most text-recognition situations, that is satisfactory; if not, the word level nearly always suffices. With music, however, things are much more complex. The interesting levels begin with what might best be called (in the terminology of Bellini et al 2007) basic symbols (graphic elements: noteheads, flags, the letter “p”, etc.) and composite or complete symbols (things with semantics: eighth notes with flags, beamed eighth notes, chords, dynamic marks like “p”, “pp”, and “mp”, etc.). There is only a relative handful of basic symbols, but a huge number of composite symbols. Droettboom & Fujinaga comment:

In many classification problems the evaluation metric is fairly straightforward. For example at the character level of OCR, it is simply a matter of finding the ratio between correctly identified characters and the total number of characters. In other classification domains, this is not so simple, for example document segmentation, recognition of maps, mathematical equations, graphical drawings, and music scores. In these domains, there are often multiple correct output representations, which makes the problem of comparing a given output to highlevel groundtruth very difficult. In fact, it could be argued that a complete and robust system to evaluate OMR output would be almost as complex and error-prone as an OMR system itself. Symbol-level analysis may not be directly suitable for comparing commercial OMR products, because such systems are usually “black boxes” that take an image as input and produce a score-level representation as output.

Note particularly the last statement; their “symbols” are probably Bellini et al’s “basic symbols”, but their “score-level representation” is a level above Bellini et al’s “composite-symbol-level representation”. In fact, these problems of OMR directly reflect the intricate semantics of music notation. The first note in Figure 1 is a composite symbol consisting of notehead, augmentation dot, stem, and beams (the latter shared with the next note); its duration of a dotted-16th note is clear from the composite symbol. However, to see that its pitch is (in ISO notation) G5 requires taking into account the clef, which is an independent symbol; its pitch could also be affected by an octave sign, a key signature, and accidentals on preceding notes in its measure.

As another example of the context dependency of music-notation symbols, a dot following a notehead means one thing; a dot above or below a notehead means something much different.  In the third measure of Figure 2, certain programs misinterpret each of the staccato dots above the notes as an augmentation dot following the preceding note. This is a serious error because it gives these notes the wrong duration. (In our tests a few years ago, at least one well-known program—expecting the duration of every measure to agree with the time signature—concluded the last few notes of the measure didn’t belong and made things worse by discarding them!)
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Figure 2. Staccato dots, not augmentation dots

Bainbridge & Bell (2001) give a well-thought-out and well-written discussion of the problems. They comment that “Reed demonstrates the problem [of calculating accuracy] with an incisive example in which he presents, from the same set of data, two different calculations that yield accuracy levels of 11% and 95% respectively.“ Reed’s example (Reed 1995, p. 73) is Figure 3: the only problem in the reconstructed score is a single missing beam. The low accuracy rate is based on counting composite (high-level) symbols: notes and slurs (1 of 9 is correct); the high rate is from counting basic (low-level) symbols, namely stems, beams, noteheads, and slurs (19 of 20 correct). This example shows how a mistake in one basic symbol can cause numerous errors in composite symbols, and therefore (in this case) in note durations. But context dependence in music notation is not just a matter of basic vs. composite symbols. Mistaking one clef for another is likely to cause errors in note pitches for many following measures: perhaps dozens of notes, if not more.
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Figure 3. Level of description can affect accuracy measurements dramatically

To sum up, evaluating OMR systems presents at least four major problems.

1. Level of description for counting errors. Droettboom & Fujinaga (2004) point out that “a true evaluation of an OMR system requires a high-level analysis, the automation of which is a largely unsolved problem.” This is particularly true for the “black box” commercial SROMR programs, offering no access to their internal workings, against which we would need to evaluate the MROMR. And the manual techniques available without automation are, as always, costly and error-prone. So neither high-level nor lower-level evaluation is very satisfactory.

2. Number of errors vs. effort to correct. It is not clear whether an evaluation should consider the number of errors or the amount of work necessary to correct them. The latter is more relevant for many purposes, but it is very dependent on the tools available, e.g., for correcting the pitches of notes resulting from a wrong clef. As Ichiro Fujinaga has pointed out (personal communication, March 2007), it also depends greatly on the distribution and details of the errors: it is far easier to correct 100 consecutive eighth notes that should all be 16ths, than to correct 100 eighth notes whose proper durations vary sprinkled throughout a score. Finally (and closely related), should “secondary errors” clearly resulting from an error earlier in the OMR process be counted or only primary ones? For example, programs sometimes misrecognize a clef, and as a result get the wrong pitch for every note on its staff. Of course, if one is counting errors at Bellini et al’s “basic symbol” level, this is a non-issue. Bainbridge & Bell (2001) discuss counting errors in terms of operations for an imaginary music editor designed with OMR in mind; in an absolute sense, this might be the best method, but until such an editor exists, it may not be very helpful.

3. Relative importance of symbols. With media like text, it is reasonable to assume that all symbols and all mistakes in identifying them are equally important. With music, that is not even remotely the case. It seems clear that note durations and pitches are the most important things, but after that, nothing is obvious. Identifying the voice membership of notes (at least) is important in many cases but not all. How important are redundant or cautionary accidentals? Fingerings? Mistaking note stems for barlines and vice-versa are serious problems for OMR evaluation, but how serious are they for users?

4. Variability of complexity. Some music inherently presents far greater challenges for OMR than does other music, independent of the printing quality and condition of the page image. Again, this factor hardly applies to text.  One of the few people who have studied the effect of complexity on OMR is Bill Clemmons, who for years taught a section of a class “where we consider various methods of on music data input.  That is, manually punching notes in (Simple Entry), playing them in (Speedy Entry), sequencing, transcribing MIDI, scanning and so forth.” (personal communication, July 2005) The “scanning”—i.e., OMR—portion of the class involved several graded exercises, the easiest using a Barenreiter edition of the Bach G major ‘cello suite (Figure 4) and the most difficult using a piano reduction of the Prelude to Parsifal. Clemmons commented further:
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Figure 4. Music that is graphically simple (Bach)

The cello suite scans in almost perfectly the first time through.  It takes very little to set it up and minimal tweaking… [But} the Parsifal score is an exercise that is designed to bring failure. No student has ever successfully scanned in these pages and made them work. One simple example is the orchestral tremolo, which is notated as an oscillation of the pianist's hand.  It has the funny notation of, for instance, beamed half notes, where the beam is, perhaps a sixteenth or thirty-second note beaming.  This type of notation just drives the software crazy.  Another is where the pianist has two lines on a single staff, both with their own beaming and flagging, sometimes with flags going the same direction and at other times in opposite directions, but which are [sensible] to the player in context.  SmartScore just gives up.  Another is a clef change in the middle of a beamed group…
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Figure 5. Music that is graphically very complex (Wagner)

Figure 5, from the 1902 Schott piano/vocal score of Parsifal, illustrates some of these difficulties. In fairness, it should be pointed out that Clemmons’ observations refer to the SmartScore of several years ago (version 3.0). The latest version may well do better, but the point about the vast differences in difficulty applies just as strongly to current programs.

In conclusion, two interesting recent attempts to make OMR evaluation more systematic that should be better known are Ng et al (2005) and especially Bellini et al (2007). Bellini et al attempt to reach meaningful conclusions by distinguishing carefully between basic symbols and composite or complete symbols, as defined above. They then use the results of a survey of experts to assign weights to different errors. Ng et al describe methodologies for OMR evaluation in different situations, based on (apparently, a preliminary version of) Bellini et al’s conclusions.

2.  MROMR Research

2.0.1  Related Work

Towards the end of the MeTAMuSE MROMR project, one OMR system appeared that actually claims to use MROMR: the commercial program PhotoScore Ultimate. The publisher says that it incorporates the recognition engines of SharpEye (which they had acquired rights to) and the previous version of PhotoScore. However, almost no details of its operation are available; it is a “black box” program, like nearly all commercial programs.  In any case, their situation is very different from and a great deal simpler than ours. Only two SR systems are involved, and the developers of PhotoScore Ultimate undoubtedly had access to the source code for both, so for them, there were no black boxes. 
We know of no previous work that is closely related to ours. Classifier-combination systems have been studied in other domains, but recognition of music notation involves major issues of segmentation as well as classification, so our problem is substantially different.

2.1  Methodology

2.1.1  Test Data and Procedures

While (in the words of Droettboom & Fujinaga 2004) “a true evaluation of an OMR system” would be important for a working MROMR system, determining rules for designing one is rather different from the standard evaluation situation. The idea here is not to say how well a system performs by some kind of absolute measures, but—as we have pointed out—to say in as much detail as possible how the SROMR systems compare to each other.

We adopted a strategy of using as many approaches as possible to gathering the data. Following criteria laid out in our working document “Guidelines for MeTAMuSE MROMR Test Pages (and factors affecting OMR accuracy)”, for a first study (2005), we assembled a test collection of about five full pages of “artificial” examples, including the fairly well-known “OMR Quick-Test” (Ng & Jones, 2003), and 20 pages of real music from published editions. In 2008, we did a second study, using the heterogeneous collection just described plus a much more homogeneous collection: music for solo recorder from Der fluyten lust-hof, by the Baroque composer Van Eyck.

We also considered documentation for the programs and statements by expert users. With respect to the latter, we asked experts on each program for the optimal settings of their parameters, among other things, intending to rely on their advice for our experiments. However, as time went on, it became more and more evident that there was no systematic way to choose optimal settings; see the discussion of black and white vs. grayscale settings below.

2.1.2  The MROMR Process and The Strategy for Finding Rules

The MROMR process depends on a set of rules for merging the results of the SROMR programs involved into a single version of the music more accurate than any of the individual programs’ versions. We refer later to possible rules developed in our research, but will say little in this article about how we developed them.

2.1.3  Programs Tested

A table of OMR systems is given by Byrd (2008). We did two studies, one with three of the leading commercial programs available in spring 2005, and one with four of the leading programs (including updated versions of two of the 2005 ones) and a larger amount of music in spring and summer 2008. For the first study, we used PhotoScore 3.10, SmartScore 3.3 Pro, and SharpEye 2.63. For the second, we worked with Capella-Scan 6.1, PhotoScore Ultimate 5.5, SmartScore 5.3 Pro, and SharpEye 2.67. All are distributed more-or-less as conventional “shrink wrap” programs, effectively “black boxes” as the term is defined above. In 2005 we also considered Gamut/Gamera, one of the leading academic-research systems (MacMillan, Droettboom, & Fujinaga, 2002); for the second study, we tested Audiveris, a new open-source program. Aside from its excellent reputation, Gamut/Gamera offered major advantages in that its source code was available to us, along with deep expertise on it, since Ichiro Fujinaga and Michael Droettboom, its creators, were our consultants. However, Gamut/Gamera is fully user-trainable for the “typography” of any desired corpus of music. Of course, this flexibility would be invaluable in many situations, but, at the time, training data was available only for 19th-century sheet music; 20th-century typography for classical music is different enough that the results were too inaccurate to be useful, and it was felt that re-training it would have taken “many weeks” (Michael Droettboom, personal communication, June 2005). And we simply encountered too many problems with Audiveris to be able to use it: not too surprising for a new open-source program of such complexity.

2.1.4  Automatic Comparison and Its Challenges

We have already argued that comparing large amounts of music notation, and therefore automatic comparison of music notation, is a requirement for research on MROMR. Fortunately, we need only to compare versions of the identical page of music, so that the issues that have led many researchers (see for example Clifford et al 2006) to abandon string matching for geometric algorithms—algorithms that are inevitably much less efficient—are largely irrelevant. Nonetheless, the problem is not a simple one. As we have described before (Knopke & Byrd 2007), we investigated comparison of MusicXML files generated by the programs via approximate string matching, and found that various features of the MusicXML format mean that the output of two OMR systems may differ substantially even when the musical information they intend to represent is identical. One problem is that, as we have said, current OMR programs miss barlines or add extra barlines fairly often, so measure-by-measure alignment does not work well. We implemented global alignment with a large penalty for aligning notes and barlines. This technique gave reasonably good results, and there are obvious ways to fine-tune the algorithm that we didn’t have time to test. Given this automation, we had expected to be able to test a large amount of music, following the strategy described above; but by the time it was working, it was too late to do so. A recent paper by Szwoch (2008) describes a similar approach; it gives few details, but it appears that he essentially measure-by-measure alignment with added features to catch and correct missing or added barlines.

A related issue is visualization. Of course being able to see what you have—in this case, to see the MusicXML output of each program in music-notation form—is tremendously helpful. But, as with any research involving music in notation, visualization in OMR research is still a major issue because it invariably takes a great deal of time. We chose to invest the time; using Lilypond to generate snippets of notation, we spent much effort on visualization aids (Knopke & Byrd 2007; Knopke 2008). There is no doubt in our minds the time was well-spent, not only because of its value for the MROMR project, but because such work may eventually lead to a practical “MusicDiff” utility (as Knopke & Byrd 2007 suggests).

2.1.5  Hand Error Count, 2005

The first hand count of errors, in three pages of artificial examples and eight of published music, was relatively coarse-grained in terms of error types. We distinguished only seven types of errors, namely:

· Wrong pitch of note (even if due to extra or missing accidentals)

· Wrong duration of note (even if due to extra or missing augmentation dots)

· Misinterpretation (symbols for notes, notes for symbols, misspelled text, slurs beginning/ending on wrong notes, etc.)

· Missing note (not rest or grace note)

· Missing symbol other than notes (and accidentals and augmentation dots)

· Extra symbol (other than accidentals and augmentation dots)

· Gross misinterpretation (e.g., missing staff)

For consistency, we evolved a fairly complex set of guidelines for counting errors, listed in the “Procedures and Conventions” working document mentioned above.

2.1.6   “Feel” Evaluation, 2005

We also did a completely subjective “feel” evaluation of a subset of the music used in the hand error count, partly as a so-called reality check on the other results, and partly in the hope that some unexpected insight would arise that way. The eight subjects were music librarians and graduate-student performers affiliated with a large university music school. We gave them six pairs of pages of music—an original, and a version printed from the output of each OMR program of a 300-dpi scan—to compare. There were two original, with the three OMR versions of each making a total of six pairs.

Based on results of the above tests, we also created and tested another page of artificial examples, “Questionable Symbols”, intended to highlight differences between the programs (Figure 6).
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Figure 6. Symbols some programs recognize and some don’t 

2.1.7  Hand Error Count, 2008

The second hand count of errors involved considerably more music, totaling 23 pages: three pages of artificial examples and 20 of published music. We distinguished the same types of errors, but we were much more careful to avoid counting secondary errors.

2.2  Intellectual Property Rights and Publication Dates

An important consideration for any serious music-encoding project, at least for academic purposes, is the intellectual-property status of the publications to be encoded. Obviously the safest approach, short of potentially spending large amounts of time and money to clear the rights, is to use only editions that are clearly in the public domain. In general, to cover both Europe and the U.S., this means that the composer must have been dead for more than 70 years, and the edition must have been published before 1923. This restriction is somewhat problematic because music-engraving practice has changed gradually over the years, perhaps less gradually since the advent of computer-set music, and the commercial OMR programs are probably optimized for relatively recent editions.

For our research, we used a mixture of editions from the public-domain and non-public-domain periods, plus some very recent computer-set examples.

3.  Results

Thanks to our difficulties with the fully automatic system, we ended up relying almost entirely on the hand error counts, plus expert opinions and documentation. Most of the results are irrelevant to issues of OMR evaluation; we mention just a few points here.

3.1  Hand Error Count Results, 2005

Some of the main points:

· With our test pages, the higher resolution didn’t really help. This was as expected, given that none of the test pages had very small staves. One surprise was that one program (PhotoScore) sometimes did better at the higher resolution, sometimes worse.

· The programs generally had more trouble with more complex and more crowded pages. This was also as expected.

· Despite its generally good accuracy and its high rating in the “feel” evaluation (see below), SharpEye made many errors on note durations. Most of these were because of its problems recognizing beams: see Conclusions below for details.

· By the guidelines of Byrd (2004), which seem reasonable for high-quality encodings, all three programs were well above acceptable limits in terms of note pitch and duration for multiple pages. For example, SharpEye had error rates for note duration over 1% on several of our test pages, and over 4% on one. Byrd’s guidelines say 0.5% is the highest acceptable rate. For note pitch, SharpEye had an error rate over 1% for one test page and nearly 1% for another, while Byrd’s limit for pitch error is only 0.2%.

We also did a more detailed count of errors in a few specific symbols other than notes: C clefs, text, hairpin dynamics, pedal-down marks, and 1st and 2nd endings. 

3.2  “Feel” Evaluation Results, 2005

As a “reality check”, this confirmed the hand error count results showing that SharpEye was the most accurate of the three programs. One surprise was that the subjects considered SmartScore the least accurate, but not by much: its rating and PhotoScore’s were very close. The gap from SharpEye to PhotoScore was not great either, but it was considerably larger.

The rating scale of 1(very poor) to 7 (excellent) was presented to the subjects as follows:

very poor
poor
fair
fairly good
good
very good
excellent


1
2
3
4
5
6
7

For OMR accuracy on this scale, SharpEye averaged 3.41 (halfway from “fair” to “fairly good”) across both pages; SmartScore, 2.88 (a bit below “fair”), and PhotoScore, 3.03 (barely above “fair”). For the full results, see working document “‘Feel’ Evaluation Summary”.

3.3  Hand Error Count Results, 2008

As already mentioned, hand error counts in this second study involved newer versions of two of the three original programs plus one new program. In theory, the error-counting rules were only slightly different. In practice, however, we discovered that we had been considerably too lenient in applying the “don’t count secondary errors” principle in 2005. This time, we were much stricter; as a result, the numbers are not directly comparable. The statistics seemed to show a dramatic reduction in errors from the earlier study, but that was more appearance than reality.

3.4  Black & White vs. Grayscale Images, 2008

Surprisingly, black and white vs. grayscale images turned out to be a major issue with two of our four programs, PhotoScore Ultimate and SmartScore.

The publisher of PhotoScore Ultimate recommends grayscale, and we ran four test pages in both black and white and grayscale to see what the difference would be. Much to our surprise, grayscale gave worse results with all four, and with two of them, the results were much worse. The program's Help explains why grayscale is preferred, namely that “If you are scanning in gray, … PhotoScore will automatically make the page level without loss of detail. It will not be rotated if scanning in black & white, … thus giving less accurate recognition results.” However, the publisher's Support web page is more ambivalent on the question (see http://www.neuratron.com/faq/UnexpectedBehaviourScanning.htm#Poor_results):

Why do I get poor results from a clear piece of music?

The following may help to improve the accuracy: ... 6) In general, ensure you are scanning in 256 shades of gray... However, with some scanners you may achieve better results by scanning in 2 colors - also called 'b/w drawing', or '1-bit gray' - and manually adjusting the brightness setting so that there are no broken lines or smudged objects.

With previous versions of SmartScore, the publisher recommended black and white; with SmartScore 5, they recommend grayscale. But again, the recommendation is questionable: in our tests, grayscale seemed to give worse results. In 2008, their web page “SmartScore X Scanning Notes and Scanner Compatibility” (http://www.musitek.com/scanningnotes.html) said:

If you are scanning in “Black and White” in your scanner's software and SmartScore's recognition results are particularly poor (e.g. 50-75% accuracy), most likely the image created by your scanner was “dithered”… Dithering is fine for photographs, but it plays havoc with images intended for OCR. This is why we recommend you ALWAYS SCAN IN GRAY.

In February of 2010, it said exactly the same thing. All of this suggests that even the publishers of commercial programs know no systematic way to decide even something as basic as whether black and white or grayscale images will make their programs give better results. And this would seem to be another indication of the difficulty of OMR evaluation!

4.  Conclusions

4.1  Prospects for Building a Useful MROMR System

Based on our 2005 research, we developed a set of 17 possible “rules” for an MROMR system. These rules are far too vague to be used as they stand; they might be better described as “rule concepts”. In addition, they apply to only a very limited subset of situations encountered in music notation; 100 rules would be a more reasonable number. Both the vagueness and the limited situations covered are direct results of the fact that we inferred the rule concepts by inspection of just a few pages of music and OMR versions of those pages, and from manually-generated statistics for the OMR versions. Finding a sufficient number of truly useful rules is not likely without examining a much larger amount of music—at a minimum, say, ten times the 15 or so pages in our collection that we gave more than a passing glance.  By far the best way of doing this is with automatic processes.

This is especially true because building MROMR on top of independent SROMR systems involves a moving target. In 2005, SharpEye was more accurate than the other programs on most of the features we tested; thus, with these systems, the question reduces to whether it is practical to improve on SharpEye’s results by much. One way in which it clearly is practical is for note durations. A more precise statement, in procedural form, of one our rule concepts is something like “when SharpEye finds a series of notes of quarter-note or longer duration but the other programs agree on durations shorter than a quarter, get the notes’ duration from the other programs”. This rule would cut SharpEye’s note-duration errors by a factor of three, improving its average performance for this type of error from the worst of the three programs to by far the best. However, after the conclusion of that study, major upgrades to both SmartScore and PhotoScore were released; then PhotoScore Ultimate was released, which—as previously mentioned—is claimed by its publisher to actually incorporate the recognition engine of SharpEye (which they had acquired rights to) as well as the previous version of PhotoScore. The new PhotoScore is indeed much more accurate than the previous version, and that might make the rules for a MROMR system more balanced. On the other hand, it is quite possible that before such a system could be completed, SmartScore would be upgraded enough that it would be better on almost everything! And, of course, a new program might do well enough to be useful.

Leaving aside the vagueness and limitations of our rules, and the question of alignment before they could be applied, more work will be needed to make it clear how much rules like these could actually help. But it is clear that help is needed, even with the most basic aspects of notation: as we have said, in our tests, all of the programs repeatedly went well beyond reasonable limits for error rates for note pitch and note duration.

4.2  Advancing the State of the Art

More pressing than developing a practical MROMR system is the issue of OMR evaluation. It is clear that the state of that art is dismal, and one reason, we have argued, is that it is inherently very difficult. An appropriate evaluation metric  is, to put it mildly, not straightforward; it is so far from being straightforward that automatic evaluation (other than at Droettboom & Fujinaga (2004)’s “micro” level) is almost out of the question in the near future. As a first step, the existence of a standard testbed— i.e., some reasonable (even if very imperfect) evaluation metrics, and a set of carefully selected music page images to apply them to—would at least allow some meaningful comparisons of OMR programs. But, to our knowledge, there are absolutely no standards of any kind in general use; that is the second reason current OMR evaluation is so unsatisfactory. For example, the guidelines we developed for the MeTAMuSE project include a list of factors that seem likely to affect OMR accuracy (see Appendix: Factors Affecting Accuracy); this is the only such list in existence, as far as we know. If program A is tested with one collection of music and program B is tested with a different collection, and there is no basis for saying which music is more challenging, how can the results possibly be compared? What if one system is evaluated at a low level and the other at a high level? That alone might lead to a very different error rate.  As things stand, there’s no way to know if any OMR system, conventional or multiple-recognizer, really is more accurate than any other for any given collection of music, much less for music in general.

Another possible avenue of progress is suggested by the quotation from Droettboom & Fujinaga (2004) in Section 1.2 mentioning some other domains with difficult evaluation problems: document segmentation, recognition of maps, mathematical equations, and graphical drawings. It seems likely that work on evaluating document-recognition systems in domains like these would have useful ideas for music recognition. We know of no attempts to investigate this idea so far.

We plan to make our test methods, collections (the files of scanned images, groundtruth files, and OMR-program output files), and findings available to the community. The music informatics world now has an annual forum for comparing research in various areas, namely MIREX (the “Music Information Retrieval Evaluation eXchange”). It is not hard to imagine a MIREX track for OMR employing the comparison technology, guidelines for choosing test pages, and music collections we have developed, perhaps with the evaluation methods of Bellini et al (2007). We have also discussed with Stephen Downie of the University of Illinois, director of MIREX, making some or all of the music collections we assembled for our OMR research publicly available, and have begun discussion of an OMR track for a future MIREX.

Finally, we believe that the idea of a MusicDiff—both as a comparison engine and with a user interface— has great potential for a wide range of applications, and we intend to pursue it as part of the General Temporal Workbench project (Byrd 2010).
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Appendix: Factors Affecting Accuracy

(This is an excerpt from our working document “Guidelines for MeTAMuSE MROMR Test Pages (and factors affecting OMR accuracy)”.)

We know or suspect the factors below are significant in terms of the recognition accuracy of OMR programs; they should therefore be considered in choosing test pages. For MeTAMuSE tests, we generally want to minimize problems resulting from typographic style and image quality.

1. CMN complexity

In general, more complex notation is likely to get worse results, as one would expect; but this topic is complex enough to deserve a document of its own. See OMRNotationComplexityDefs.txt.

2. Typographic style

"Engraving" quality. Music of “engraved” quality is likely to give the best results. Music of lower quality, but still with fixed-shape symbols (noteheads, rests, flags, accidentals, clefs, etc., as opposed to beams, slurs, etc.)  having consistent shapes, is next best. Getting decent results with manually-produced (“manuscript” quality) images is probably hopeless.

Use of movable type or not. Music set from movable type—with staff lines that have numerous tiny breaks— is likely to be much harder for programs to handle.

Conventions for shapes and positions of symbols. The standard “modern” symbol shapes and positions are likely to give much better results. Some problem cases:

· Early 18th century editions, e.g., LeCene's of Vivaldi, with clefs significantly different from modern ones, sharps rotated 45 degrees, downstemmed half-noteheads on the wrong side of the stem, etc., are not likely to work at all well, though it'd be interesting to try (LeCene for David Lasocki). (Is LeCene's style typical of early 18th-cent. editions? Probably so. Cf. e.g. Rastall's book.)

· Bach Gesellschaft editions, which use half-note heads as whole notes: probably OK, and too important to give up without a fight.

· Novello editions not set from movable type, with backwards bass clefs, backwards eighth rests used for quarter rests, etc.

Looseness of spacing. Music with very tight spacing, either horizontally or vertically (e.g., our Beethoven Trio test page), is likely to give worse results.

3. Image quality

Print quality. Problems are likely to result from:
· Inferior quality reproduction, with breaks in stems, little holes in solid noteheads, etc.

· Poor contrast

· Bleedthrough (from the other side of the page)

· Markings written on the copy, typically by students and teachers

Geometry of image. Curvature or other distortion of the image may lead to worse results. This seems most likely to be a problem at the left and right edges, but the only occurrence in our collections we know of is at the top of page 9 of Haydn Symphony no. 1. (But NB: This is more likely to be an artifact of the scanning process than of the printed page!)
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