Introduction

In my view, Informatics is an emerging academic field that aims to assemble what one needs to know to understand what happens when computing artifacts are actually used. Viewed thusly, Social Informatics aims to account for what happens in these circumstances. As requested by the majority of students responding to an email solicitation of interest, the subject of this term’s Social Informatics (SI) Advanced Seminar II will be the place of STS in Social Informatics. Science, Technology, and Society—or Science and Technology Studies, the more recent term—is an academic specialization that arose in the 1970s. First developing in the North America and Europe, STS perspectives have since spread around the world. STS is also sometimes called Science Studies or Techno-science Studies.

In response to the report on our SI program of a committee that visited the IU School of Informatics and Computing in the fall of 2009, we in the SI group identified our program as being strongly grounded in an STS perspective—in essence, as focusing on the STS study of digital technologies. Thus, it makes sense to devote one of our track seminars to the study of STS.

While there are different basic perspectives in STS, as in any relatively mature academic endeavor, I think three core ideas are shared by most who identify with the field. One is that, rather than being distinct phenomena, science and technology are closely related and often separable only provisionally. A second idea concerns the relationship of techno-science and broader social phenomena, that their relationship is the dialectical one of co-constructing each other. A third core idea, sometimes called the equivalence principle, is more epistemological than ontological: that what have come to be taken as correct scientific or technical ideas cannot be presumed to be so because of their “correctness” or “correspondence to Reality.” Rather, their being so conceived must be accounted for in terms of other factors, especially the social ones shaping the distinct path taken to get to where they now are. That is, techno-science “facts” are like all others in being socially constructed.

It is this third core idea which is most difficult to accept for those deeply enculturated into a natural science perspective, as it is the idea which often leads to something of a gulf between SI and other approaches in Informatics/Computer Science. Differences regarding how to get knowledge are also often at the core of different approaches within STS (e.g., those between Latourian Actor Network Theory (ANT) and the Social Construction of Technology (SCOT)).

Course Structure

The primary resource to the STS of SI we will use is The STS Handbook (2nd ed), prepared and revised recently by leading scholars in the field. Initially, each week’s discussion will focus on some articles from this, the discussion to be prompted by two students’ specification of five questions prompted by the article or articles. Toward the
end of the semester, we will take a similar approach to Dourish’s and Bell’s *Divining a Digital Future: Mess and Mythology in Ubiquitous Computing*. We will use this book to test how well we have developed a shared understanding of STS in SI.

Student Responsibilities:

1. Participate actively in class discussion (25% of grade)
2. With another student, on at least two occasions, select five questions about the assigned reading and use them to lead a discussion on the readings’ relevance to SI (25%); and
3. Submit an 8-12 page paper in which you specify and evaluate the STS perspective on an important issue in SI. The paper must include at least five STS resources as well as others from SI. If you wish, you and other students may pick the same issue and work on it together, but each of you must write an individual paper (50%).

Use the following outline:

1. The issue in SI on which you wish to focus;
2. Why this issue is important to SI;
3. The array of STS perspectives that you see as relevant to this issue;
4. The STS perspective or perspectives from this this array that you find most helpful to framing, understanding, and/or resolving this issue, as well as why you choose it or them; and
5. What the specification of the STS perspective on this issue suggests about the general value of STS perspectives to SI.

Every effort will be made to stick to the following schedule of classes

<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Topic</th>
<th>Readings</th>
<th>Assignments Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/11</td>
<td>Introductory Class</td>
<td>Visitors’ Report, Social Informatics Group’s Response</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1/25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2/8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2/15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2/22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2/29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3/7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10. 3/14 No Class; Spring Break
11. 3/21
12. 3/28
13. 4/4
14. 4/11
15. 4/18
16. 4/25
17. 5/2