This quiz has 3 questions, for a total of 30 points.

1. **9 points** Suppose that \(L \) is a Python “list” (array) of length \(n \) where \(n > 1 \). Categorize the worst-case execution time of each of the below operations as either

1. constant time (takes the same amount of time no matter what \(n \) is).
2. logarithmic time (takes time proportional to \(\log n \)).
3. linear time (takes time proportional to \(n \))
4. quadratic (takes time proportional to \(n^2 \))

Label each operation with the above item number.

- \(L.\text{insert}(n/2, 42) \)
- \((2,1) \text{ in } L \)
- \(L[0] \)

Solution:

- (3), \(L.\text{insert}(n/2, 42) \) is linear time, (3 points)
- (3), \((2,1) \text{ in } L \) is linear time, (3 points)
- (1), \(L[0] \) is constant time, (3 points)

2. **12 points** Complete the following implementation of the `delete` method in the following class that implements a doubly-linked list.

```python
class DLNode:
    def __init__(self, data):
        self.data = data
        self.next = None
        self.prev = None

class DoublyLinkedList:
    def __init__(self):
        self.head = None

    def delete(self, node):
        if node.prev:
            ___(a)___ = node.next
        else:
            self.head = ___(b)___
        if ___(c)___:
            node.next.prev = ___(d)___
```

Solution:

(a) \(\text{node.prev.next} \) (3 points)
(b) node.next (3 points)
(c) node.next (3 points)
(d) node.prev (3 points)

3. 9 points Let \(f(n) = \frac{n}{2} - 1 \) and \(g(n) = n \). Give the definition of \(\Omega \) and prove that \(f(n) \in \Omega(g(n)) \). (Use the other side of this paper for the proof.)

Solution:

\[
\Omega(g(n)) = \{ f(n) \mid \exists n_0. \forall n \geq n_0. \exists c. 0 \leq c g(n) \leq f(n) \}
\]

We need to choose a \(c \) such that \(cn \) becomes less than \(\frac{n}{2} - 1 \) at some point. We choose \(c = \frac{1}{4} \). Next we need to find out at what point \(\frac{1}{4}n \) is equal to or less than \(\frac{n}{2} - 1 \), so we chart those out:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\frac{n}{2} - 1)</th>
<th>(\frac{1}{4}n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.5</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>(\frac{5}{4})</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>(\frac{3}{2})</td>
</tr>
</tbody>
</table>

So it looks like \(n_0 = 4 \) is a good choice. We are now ready to give the proof.

To show that \(\frac{n}{2} - 1 \in \Omega(n) \), we need to show that

\[
\exists n_0. \forall n \geq n_0. \exists c. 0 \leq c n \leq \frac{n}{2} - 1
\]

We choose \(n_0 = 4 \) and \(c = \frac{1}{4} \). So we need to prove that

\[
\forall n \geq 4. 0 \leq \frac{n}{4} \leq \frac{n}{2} - 1
\]

We multiple both sides by 4 to get the following

\[
\forall n \geq 4. 0 \leq n \leq 2n - 4
\]

We can prove this by induction. For the base case, we have \(n = 4 \). So \(0 \leq 4 \leq 4 \).

For the induction step, we may assume that \(0 \leq k \leq 2k - 4 \) for some \(k \geq 4 \). We add 1 to both sides to get

\[
k + 1 \leq 2k - 3
\]

We need to show that \(k + 1 \leq 2(k + 1) - 4 \). But \(2(k + 1) - 4 = 2k - 2 \), and \(2k - 3 \leq 2k - 2 \), so the proof is complete.