This quiz has 3 questions, for a total of 30 points.

1. 9 points Suppose that \(L \) is a Python list (array) of length \(n \). Categorize the worst-case execution time of the below expressions as either

 1. constant time (takes the same amount of time no matter what \(n \) is).
 2. logarithmic time (takes time proportional to \(\lg n \)).
 3. linear time (takes time proportional to \(n \))
 4. quadratic (takes time proportional to \(n^2 \))

Label each operation with the above item number.

- \(L[n-1] \)
- \(0 \text{ in } L \)
- \(L + L \)

Solution:

- (1), \(L[n-1] \) is constant time, (3 points)
- (3), \(0 \text{ in } L \) is linear time, (3 points)
- (3), \(L + L \) is linear time, (3 points)

2. 12 points Complete the following implementation of the \texttt{insert_before} method in the following class that implements a doubly-linked list.

```python
class DLNode:
    def __init__(self, data):
        self.data = data
        self.next = None
        self.prev = None

class DoublyLinkedList:
    def __init__(self):
        self.head = None

    def insert_before(self, node, data):
        new_node = DLNode(a)
        if self.head == node:
            self.head = new_node
        ___(b)___ = node.prev
        new_node.next = ___(c)___
        node.prev = ___(d)___
```

2. 12 points Complete the following implementation of the \texttt{insert_before} method in the following class that implements a doubly-linked list.

```python
class DLNode:
    def __init__(self, data):
        self.data = data
        self.next = None
        self.prev = None

class DoublyLinkedList:
    def __init__(self):
        self.head = None

    def insert_before(self, node, data):
        new_node = DLNode(a)
        if self.head == node:
            self.head = new_node
        ___(b)___ = node.prev
        new_node.next = ___(c)___
        node.prev = ___(d)___
```
Solution:

(a) data (3 point)
(b) new_node.prev (3 point)
(c) node (3 point)
(d) new_node (3 point)

3. 9 points Let \(f(n) = 2n + 2 \) and \(g(n) = n \). Give the definition of Big-O and prove that \(f(n) \in O(g(n)) \). (Use the other side of this paper for the proof.)

Solution:

\[
O(g(n)) = \{ f(n) \mid \exists n_0. \forall n \geq n_0. \exists c. 0 \leq f(n) \leq c g(n) \}
\]

We need to choose a \(c \) such that \(cn \) becomes greater than \(2n + 2 \) at some point. We choose \(c = 3 \). Next we need to find out at what point \(3n \) is equal to or bigger than \(2n + 2 \), so we chart those out:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(2n + 2)</th>
<th>(3n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

So it looks like \(n_0 = 2 \) is a good choice. We are now ready to give the proof.

To show that \(2n + 2 \in O(n) \), we need to show that

\[
\exists n_0. \forall n \geq n_0. \exists c. 0 \leq 2n + 2 \leq c n
\]

We choose \(n_0 = 2 \) and \(c = 3 \). So we need to prove that

\[
\forall n \geq 2. 0 \leq 2n + 2 \leq 3 n
\]

We subtract \(2n \) from both sides to get the following

\[
\forall n \geq 2. 0 \leq 2 \leq n
\]

which is clearly true.