Position: Lightweight static resources

Sexy types for embedded and systems programming

Oleg Kiselyov (FNMOC)
Chung-chieh Shan (Rutgers University)

TFP 2007

Types provide static assurances

“Well-typed programs don’t go wrong.”

SNOWMASS VILLAGE

ESTABLISHED 1967
ELEVATION ~ 838
POPULATION 1822 Saws
TOTAL 057 | S

Number of extra copies of
the draft proceedings

Number of extra tickets
for dinner

Number of extra tickets
for NYC tour

Total Registration Fee

(US) $305

base registration fee of $360
plus $25 per extra draft copy
plus $30 per extra NYC Tour ticket

ORISK: The Consensus Security Vulnerability Alert
Vol. 6 No. 14

"A really bad week." That’s what the ORISK editor and
Tippingpoint vulnerability researcher, Rohit Dhamankar
wrote to us this morning. And the director of the Internet
Storm Center, Johannes Ullrich readily agreed. Why?

Two zero-day vulnerabilities. Active exploits. No effective
defenses. Windows had a zero-day that affects Vista as well
as older versions. So important that Microsoft is issuing a
special patch tomorrow and leaked it to a few folks today.
The other zero-day hit CA’s BrightStor. Holes in backup
software may be more damaging than holes in operating
systems because the vendors of backup software don’t have
the same level of automating patching that the operating
system vendors have, and many users have *never* patched
their backup software. And Lotus Domino users also had
multiple vulnerabilities, some critical.

Alan 5

Types provide static assurances

“Well-typed programs don’t go wrong.”
» Express more safety properties in a general-purpose language
(Haskell “sexy types”)
» Showcase: embedded and systems programming

> A safer and faster interface to raw hardware
» Code generation

» Resource-aware programming

» Types are static capabilities

Video RAM example (Diatchki & Jones)

0xb8000

80

25

Video RAM example (Diatchki & Jones)

type Screen = Array 25 (Array 80 ScreenChar)
type ScreenChar = Pair (Stored Byte) (Stored Byte)

25 :: Nat

Video RAM example (Diatchki & Jones)

type ScreenT = Array N25 (Array N80 ScreenCharT)
type ScreenCharT = Pair AWord8 AWord8

N25 . x%
instance Nat N25

Video RAM example (Diatchki & Jones)

type ScreenT = Array N25 (Array N80 ScreenCharT)
type ScreenCharT = Pair AWord8 AWord8

area videoRAM = 0xb8000 :: Ref Screen

Screen :: Area

Ref :: Area -> *

Video RAM example (Diatchki & Jones)

type ScreenT = Array N25 (Array N80 ScreenCharT)
type ScreenCharT = Pair AWord8 AWord8

data ScreenAbs = ScreenAbs
instance Property ScreenAbs APInHeap HFalse
instance Property ScreenAbs APARef (ARef N8 ScreenT)
instance Property ScreenAbs APReadOnly HFalse
instance Property ScreenAbs APOverlayOK HTrue
instance Property ScreenAbs APFixedAddr HTrue
videoRAM = area_at ScreenAbs

(nullPtr ‘plusPtr‘ 0xb8000)

Video RAM example (Diatchki & Jones)

type ScreenT = Array N25 (Array N80 ScreenCharT)
type ScreenCharT = Pair AWord8 AWord8

data ScreenAbs = ScreenAbs
instance Property ScreenAbs APInHeap HFalse
instance Property ScreenAbs APARef (ARef N8 ScreenT)
instance Property ScreenAbs APReadOnly HFalse
instance Property ScreenAbs APOverlayOK HTrue
instance Property ScreenAbs APFixedAddr HTrue
videoRAM = area_at ScreenAbs

(nullPtr ‘plusPtr‘ 0xb8000)

»> :type videoRAM
ARef N8 (AtArea ScreenAbs ScreenT)

Video RAM example (Diatchki & Jones)

type ScreenT = Array N25 (Array N80 ScreenCharT)
type ScreenCharT = Pair AWord8 AWord8

data ScreenAbs = ScreenAbs
instance Property ScreenAbs APInHeap HFalse
instance Property ScreenAbs APARef (ARef N8 ScreenT)
instance Property ScreenAbs APReadOnly HFalse
instance Property ScreenAbs APOverlayOK HTrue
instance Property ScreenAbs APFixedAddr HTrue
videoRAM = area_at ScreenAbs

(nullPtr ‘plusPtr‘ 0xb8000)

> :type size_of (aref_area videoRAM) -- undefined
U (U @ W@ WC@WTI@WCWCWC @
B1 B1) B1) B1) B1) BO) B1) BO) BO) BO) BO) BO

Video RAM example (Diatchki & Jones)

type ScreenT = Array N25 (Array N80 ScreenCharT)
type ScreenCharT = Pair AWord8 AWord8

data ScreenAbs = ScreenAbs
instance Property ScreenAbs APInHeap HFalse
instance Property ScreenAbs APARef (ARef N8 ScreenT)
instance Property ScreenAbs APReadOnly HFalse
instance Property ScreenAbs APOverlayOK HTrue
instance Property ScreenAbs APFixedAddr HTrue
videoRAM = area_at ScreenAbs

(nullPtr ‘plusPtr‘ 0xb8000)

» :type size_of (aref_area videoRAM) -- undefined

size_of :: SizeOf area n => area -> n
size_of = undefined

Video RAM example (Diatchki & Jones)

attrAt i j = afst (videoRAM @@ i @@ j)
charAt i j = asnd (videoRAM @@ i @@ j)

Video RAM example (Diatchki & Jones)

attrAt i j = afst (videoRAM @@ i @@ j)
charAt i j = asnd (videoRAM @@ i @@ j)

> :type attrAt
Ix N25 -> Ix N80 ->
ARef (U B1 BO) (AtArea ScreenAbs AWordS8)

» :type charAt
Ix N25 -> Ix N80 ->
ARef B1 (AtArea ScreenAbs AWord8)

Video RAM example (Diatchki & Jones)

attrAt i j = afst (videoRAM @@ i @@ j)
charAt i j = asnd (videoRAM @@ i @@ j)

» :type attrAt
Ix N25 -> Ix N80 ->
ARef (U B1 BO) (AtArea ScreenAbs AWordS8)

» :type charAt
Ix N25 -> Ix N80 ->
ARef B1 (AtArea ScreenAbs AWord8)

> :type (@Q)
(INDEXABLE arr count base totalsize,
GCD al n z, SizeOf base n) =>
ARef al arr -> Ix count -> ARef z base

Types provide static assurances

“Well-typed programs don’t go wrong.”

» Express more safety properties in a general-purpose language
(Haskell “sexy types”)
» Showcase: embedded and systems programming
> A safer and faster interface to raw hardware
» Code generation
» Resource-aware programming
» Custom kinds and predicates as type classes
» Type computation using functional dependencies
» Low notation overhead; “pay as you go”
» Types are static capabilities
» Assure safety properties, not full correctness
» Extend trust from small kernel to large sandbox

10

Custom kinds and predicates as type classes

> :type (@Q)
(INDEXABLE arr count base totalsize,
GCD al n z, SizeOf base n) =>
ARef al arr -> Ix count -> ARef z base

11

Custom kinds and predicates as type classes

» :type (@Q)
(INDEXABLE arr count base totalsize,
GCD al n z, SizeOf base n) =>
ARef al arr -> Ix count -> ARef z base

class NatO a where tolInt :: a -> Int
class (NatO x, NatO y, NatO z) => GCD x y z

11

Type computation using functional dependencies

» :type (@Q)
(INDEXABLE arr count base totalsize,
GCD al n z, SizeOf base n) =>
ARef al arr -> Ix count -> ARef z base

class NatO a where toInt :: a -> Int
class (NatO x, NatO y, NatO z) => GCD x y z
| xy -> z

» :type gcd (pred (pred nat8)) nat8 -- undefined
U B1 BO

Term notation for static computations: less scary?

11

Types are static capabilities: kernel

:type attrAt
Ix N25 -> Ix N80 ->
ARef (U B1 BO) (AtArea ScreenAbs AWord8)

Capabilities guard access to resources.

12

Types are static capabilities: kernel

:type attrAt
Ix N25 -> Ix N80 ->
ARef (U B1 BO) (AtArea ScreenAbs AWord8)

Capabilities guard access to resources.

» minBound :: Ix N8
Ix O

12

Types are static capabilities: kernel

:type attrAt
Ix N25 -> Ix N80 ->
ARef (U B1 BO) (AtArea ScreenAbs AWord8)

Capabilities guard access to resources.

» minBound :: Ix N8
Ix O
» maxBound :: Ix N8

Ix 7

12

Types are static capabilities: kernel

:type attrAt
Ix N25 -> Ix N80 ->
ARef (U B1 BO) (AtArea ScreenAbs AWord8)

Capabilities guard access to resources.

» minBound :: Ix N8
Ix O
» maxBound :: Ix N8
Ix 7
» ixSucc (maxBound :: Ix N8)

IxPlus 8 :: IxPlus

12

Types are static capabilities: kernel

:type attrAt
Ix N25 -> Ix N80 ->
ARef (U B1 BO) (AtArea ScreenAbs AWord8)

Capabilities guard access to resources.

» minBound :: Ix N8
Ix O

» maxBound :: Ix N8
Ix 7

» ixSucc (maxBound :: Ix N8)
IxPlus 8 :: IxPlus

» ixPred (maxBound :: Ix N8)
IxMinus 6 :: IxMinus N8

12

Types are static capabilities: kernel

:type attrAt
Ix N25 -> Ix N80 ->
ARef (U B1 BO) (AtArea ScreenAbs AWord8)

Capabilities guard access to resources.

» minBound :: Ix N8
Ix O
» maxBound :: Ix N8
Ix 7
» ixSucc (maxBound :: Ix N8)
IxPlus 8 :: IxPlus
» ixPred (maxBound :: Ix N8)
IxMinus 6 :: IxMinus N8
» (minBound :: Ix N8) <<= ixPred (maxBound ::

Just (Ix 6) :: Maybe (Ix N8)

Ix N8)

12

Types are static capabilities: kernel

:type attrAt
Ix N25 -> Ix N80 ->
ARef (U B1 BO) (AtArea ScreenAbs AWord8)

Capabilities guard access to resources.

» minBound :: Ix N8
Ix O
» maxBound :: Ix N8
Ix 7
» ixSucc (maxBound :: Ix N8)
IxPlus 8 :: IxPlus
» ixPred (maxBound :: Ix N8)
IxMinus 6 :: IxMinus N8
» (minBound :: Ix N8) <<= ixPred (maxBound ::

Just (Ix 6) :: Maybe (Ix N8)

» (minBound :: Ix N8) <<= ixPred (minBound ::

Nothing :: Maybe (Ix N8)

Ix N8)

Ix N8)

12

Types are static capabilities: sandbox

Indices are capabilities. Looping is not part of the trusted kernel!

forEachIx proc = loop minBound
where
loop ix = do
proc ix
maybe (return ())
loop
(ixSucc ix <<= maxBound ‘asTypeOf‘¢ ix)

The bound test often doubles as the loop termination criterion.

13

Types are static capabilities: sandbox

Indices are capabilities. Looping is not part of the trusted kernel!

forEachIx proc = loop minBound
where
loop ix = do
proc ix
maybe (return ())
loop
(ixSucc ix <<= maxBound ‘asTypeOf‘ ix)

The bound test often doubles as the loop termination criterion.
General recursion and nontermination are allowed.

13

Types are static capabilities: sandbox

Clear screen by writing words into video memory.

cls = forEachIx (\i -> write_area (vr @@ i) blank)
where
vr = as_area videoRAM
(mk_array_t undefined
(undefined: :BEA_Int16))
nat0
_ = size_of (aref_area videoRAM) ‘asTypeOf‘
size_of (aref_area vr)

14

Types are static capabilities: sandbox

Clear screen by writing words into video memory.

cls = forEachIx (\i -> write_area (vr @@ i) blank)

where
vr = as_area videoRAM
(mk_array_t undefined
(undefined: :BEA_Int16))
nat0
_ = size_of (aref_area videoRAM) ‘asTypeOf‘
size_of (aref_area vr)

ScreenAbs area declared with APReadOnly property HFalse.

14

Types are static capabilities: sandbox

Clear screen by writing words into video memory.

cls = forEachIx (\i -> write_area (vr @@ i) blank)
where
vr = as_area videoRAM
(mk_array_t undefined
(undefined: :BEA_Int16))
nat0
_ = size_of (aref_area videoRAM) ‘asTypeOf‘
size_of (aref_area vr)

ScreenAbs area declared with APReadOnly property HFalse.
ScreenAbs area declared with APOverlayOK property HTrue.

14

Types are static capabilities: sandbox

Clear screen by writing words into video memory.

cls = forEachIx (\i -> write_area (vr @@ i) blank)
where
vr = as_area videoRAM
(mk_array_t undefined
(undefined: :BEA_Int16))
nat0
_ = size_of (aref_area videoRAM) ‘asTypeOf°
size_of (aref_area vr)

ScreenAbs area declared with APReadOnly property HFalse.
ScreenAbs area declared with APOverlayOK property HTrue.

Term notation triggers static relational computation of loop bounds.

14

Types are static capabilities: sandbox

Clear screen by writing words into video memory.

cls = forEachIx (\i -> write_area (vr @@ i) blank)
where
vr = as_area videoRAM
(mk_array_t undefined
(undefined: :BEA_Int16))
natO
_ = size_of (aref_area videoRAM) ‘asTypeOf‘
size_of (aref_area vr)

ScreenAbs area declared with APReadOnly property HFalse.
ScreenAbs area declared with APOverlayOK property HTrue.

Term notation triggers static relational computation of loop bounds.

Replacing nat0 by nat1 reports misalignment.

14

Constraints over time

Types can express time and protocol constraints as a state machine.
» Same number of ticks consumed along every execution path
» Maximum number of ticks consumed in any execution path

» Protocol constraints

> file open and close
> lock acquire and release
» interrupt disable and enable

A parameterized monad is a stateful notion of computation.
(Infer types like VST I0 NO (U (U B1 BO) B1) Int)

15

Constraints over time

Types can express time and protocol constraints as a state machine.
» Same number of ticks consumed along every execution path

» Maximum number of ticks consumed in any execution path
> Protocol constraints

> file open and close
> lock acquire and release
» interrupt disable and enable

A parameterized monad is a stateful notion of computation.
(Infer types like VST I0 NO (U (U B1 BO) B1) Int)

Particularly useful with staging (program extraction).

15

Conclusion

Types provide static assurances

» Improve performance and reliability across all program runs

» Integrated assertion language with explicit stage separation
Lightweight approach: use a general-purpose language

> Practical experience for high-assurance low-level programming

> Our library statically assures control and data constraints

Long live low-level assurances in high-level languages!
http://pobox.com/~oleg/ftp/Computation/resource-aware-prog/

Programming Languages Meet Program Verification
http://www.plpv.org/ (ICFP 2007, 5 October 2007)

16

http://pobox.com/~oleg/ftp/Computation/resource-aware-prog/
http://www.plpv.org/

