
EQUATIONAL REASONING
FOR PROBABILISTIC PROGRAMMING

CHUNG-CHIEH SHAN, INDIANA UNIVERSITY

1. The fields

Programming Probability

Theoretical Induction Integral

Practical Interpreter Inference

2. The tasks

Whenever we’re unsure about something, represent our uncer-
tain knowledge as a distribution.

2.1. The table game. (Eddy 2004)

casino : MBool
casino 4= do {p¢ uniform 0 1;

a1 ¢ binomial 8 p;
()¢ guard (a1 = 5);
a2 ¢ binomial 3 p;
return (a2 ≥ 1)}

2.2. Inferring behavior from text-message data. (Davidson-
Pilon 2016)

texting : M (R+ × R+)
texting 4= do {r1 ¢ exponential 37;

r2 ¢ exponential 42;
t0 ¢ counting 1 70;
®c¢mapM

(
λt. poisson (if t < t0 then r1 else r2)

)
[1 . . 70];

()¢ guard (®c = [13, 24, . .]);
return (r1, r2)}

2.3. Observing a noisy draw from a normal distribution.

helloWrong : R→MR
helloWrong y0

4
= do {x ¢ normal 0 1;

y ¢ normal x 1;
()¢ guard (y = y0); -- WRONG!
z ¢ normal x 1;
return z}

helloRight : R→MR
helloRight y0

4
= do {x ¢ normal 0 1;

()¢ factor
e−(y0−x)2/2
√

2 · π
;

z ¢ normal x 1;
return z}

helloJoint : M (R × R)
helloJoint 4

= do {x ¢ normal 0 1;
y ¢ normal x 1;
z ¢ normal x 1;
return (y, z)} -- Ready to disintegrate

Date: January 8, 2018.
1

EQUATIONAL REASONING FOR PROBABILISTIC PROGRAMMING 2

3. The equations

3.1. Nondeterminism and weights.

binomial 2 p =
(
p � p � return 2

)
⊕(

p � (1 − p) � return 1
)
⊕(

(1 − p) � p � return 1
)
⊕(

(1 − p) � (1 − p) � return 0
)

(1)

=
(
p2 � return 2

)
⊕(

2p(1 − p) � return 1
)
⊕(

(1 − p)2 � return 0
) (2)

3.2. From rejection sampling to importance sampling.
(MacKay 1998)

casino = do {p¢ uniform 0 1;
a1 ¢ binomial 8 p;
()¢ guard (a1 = 5);
((1 − (1 − p)3) � return True) ⊕
((1 − p)3 � return False)}

(3)

= do {p¢ uniform 0 1;
()¢ factor (56 · p5 · (1 − p)3);
((1 − (1 − p)3) � return True) ⊕
((1 − p)3 � return False)}

(4)

In general, if m = r =� n, then we say that the function r is a
density or Radon-Nikodym derivative of m with respect to n. If we
know how to sample n, then r tells us how to importance-sample m
using the proposal distribution n.

3.3. Density facts. If r is a density of m with respect to n, then
r ◦ f −1 is a density of fmap f m with respect to fmap f n whenever
f is invertible.
If r is a density of m with respect to n, then recip◦ r is a density

of n with respect to m. Here recip is the reciprocal function

λx. 1/x, and a side condition is that the reciprocal must be defined
almost everywhere:

do {x ¢ n; guard ¬(0 < r x < ∞)} = fail (5)

3.4. Conjugate prior and density recognition.

casino = (1/9) � do {p¢ beta 6 4;
((1 − (1 − p)3) � return True) ⊕
((1 − p)3 � return False)}

(6)

helloRight y0 =
e−y

2
0/4

√
4 · π

� do {x ¢ normal (y0/2) (1/
√

2);
z ¢ normal x 1;
return z}

(7)

3.5. Variable elimination and integration.

casino = (1/9) �
(
((10/11) � return True) ⊕
((1/11) � return False)

)
(8)

helloRight y0 =
e−y

2
0/4

√
4 · π

� normal (y0/2)
√

3/2 (9)

3.6. From density to disintegration. (Shan and Ramsey 2017)

helloJoint = lebesgue (−∞) ∞ ⊗= helloRight (10)

Generalize helloRight to a Kalman filter, such as a function

f : State→ R→ State

(where State = R+ × R × R+) satisfying

interpret (f wcd y0) = do {x ¢ interpret wcd;
e−(y0−x)2/2
√

2 · π
� normal x 1}

(11)

(where interpret (w, c, d) = w � normal c d).

EQUATIONAL REASONING FOR PROBABILISTIC PROGRAMMING 3

3.7. Markov chain Monte Carlo. (MacKay 1998; Tierney 1998;
McElreath 2017)

Suppose we want samples from a given target distribution
p : Mα

but it is inefficient or weighted as a sampler. To use Markov chain
Monte Carlo, we seek a transition kernel

k : α→Mα,
and iterate it to perform a random walk in the state space α.
Our k should return a probability measure that is efficient and
unweighted as a sampler. Moreover, it should satisfy detailed
balance:

p ⊗= k = k =⊗ p (12)
(Intuition: if p ⊗= k = k =⊗ p then p�= k = p.)

Metropolis-Hastings is a way to construct k from a proposal
distribution

q : α→Mα.
Like the k we want, the q we provide should return a probability
measure that is efficient and unweighted as a sampler, but q
need not satisfy detailed balance (in other words, it is fine if
p ⊗= q , q =⊗ p).
To use Metropolis-Hastings given q, first find a density r of

p ⊗= q with respect to q =⊗ p. That is, find

r : (α × α) → R+
such that

p ⊗= q = r =� (q =⊗ p). (13)
Then let

α(x, y) = min{1, r(x, y)} (14)
k old = do {new¢ q old;

accept¢ bernoulli (α(new, old));
return (if accept then new else old)}

(15)

4. The interpretations: What are we equating?

4.1. Denotational semantics. (Culpepper and Cobb 2017; Sta-
ton 2017; Heunen et al. 2017; Ścibior et al. 2018)
Good for declaring what we want to compute. Equality is a

congruence.
Measures are equivalent to integrators. Easy to understand as

continuation-passing style.

4.2. Operational semantics: samplers. Good for implement-
ing algorithms. But what kind of samplers?

4.2.1. Randomized samplers (“Monte Carlo methods”) vs deter-
ministic code.

• Randomized samplers, such as Eddy’s (2004) samplers.
• Deterministic code, such as Eddy’s (2004) exact formula.

4.2.2. Weighted vs unweighted results.
• Weighted results, as from importance sampling, are su-
perposed over time.
Example use: histograms and other forms of expecta-

tion estimation.
• Unweighted results, as from rejection sampling, are used
committally.
Example use: deciding how to drive or where to visit

next in a graph.
• Converting unweighted result stream to weighted is trivial.
• Converting weighted result stream to unweighted requires
bound on weight.

4.2.3. Efficient vs inefficient algorithms.
• Sure we want samples fast, but slower samples can be
more accurate.

EQUATIONAL REASONING FOR PROBABILISTIC PROGRAMMING 4

5. The language

return : α→Mα

�= (>>=) : Mα→ (α→M β) →M β m�= k = do {x ¢ m; y ¢ k x; return y}

� (>>) : Mα→M β→M β m� n 4
= do {_¢ m; y ¢ n; return y}

=� (=>>) : (β→Mα) →M β→M β k =� n 4
= do {y ¢ n; _¢ k y; return y}

⊗= (<>=) : Mα→ (α→M β) →M (α × β) m ⊗= k 4
= do {x ¢ m; y ¢ k x; return (x, y)}

⊗ (<>) : Mα→M β→M (α × β) m ⊗ n 4
= do {x ¢ m; y ¢ n; return (x, y)} = do {y ¢ n; x ¢ m; return (x, y)}

=⊗ (=<>) : (β→Mα) →M β→M (α × β) k =⊗ n 4
= do {y ¢ n; x ¢ k y; return (x, y)}

fmap : (α→ β) →Mα→M β fmap f m 4
= m�= (return ◦ f)

⊕ (<+>) : Mα→Mα→Mα

fail : Mα

guard : Bool→MUnit guard b 4
= if b then return () else fail

factor : R+ →MUnit
� (*>) : R+ →M β→M β p � n 4

= factor p� n

=� (=*>) : (β→ R+) →M β→M β r =� n 4
= (factor ◦r) =� n

bernoulli : [0, 1] →MN bernoulli p =
(
p � return 1

)
⊕

(
(1 − p) � return 0

)
binomial : N→ [0, 1] →MN binomial i p = fmap sum

(
replicateM i (bernoulli p)

)
counting : N→ N→MN
geometric : [0, 1] →MN geometric p =

(
λi. (1 − p) · pi) =� counting 0∞

poisson : R+ →MN poisson r :
(
λi. r i/er/i!

)
=� counting 0∞

lebesgue : R→ R→MR
uniform : R→ R→MR uniform x y =

(
1/(y − x)

)
� lebesgue x y

beta : R+ → R+ →M [0, 1] beta a b =
(
λp. pa−1 · (1 − p)b−1/B(a, b)

)
=� lebesgue 0 1

exponential : R+ →MR+ exponential l = do {x ¢ lebesgue 0∞; e−x � return (l · x)}
normal : R→ R+ →MR normal c d = do {x ¢ lebesgue (−∞) ∞; (e−x2/2/

√
2 · π) � return (c + d · x)}

EQUATIONAL REASONING FOR PROBABILISTIC PROGRAMMING 5

6. The laws

6.1. �= and return form a commutative monad.
return x �= k = k x (16)

m�= return = m (17)
(m�= k) �= l = m�= λx. (k x �= l) (18)

do {x ¢ m; y ¢ n; k x y} = do {y ¢ n; x ¢ m; k x y} (19)
(Generalize ⊗= to countable products?)

6.2. ⊕ and fail form a commutative monoid.
fail ⊕ m = m (20)

= m ⊕ fail (21)
(m ⊕ n) ⊕ o = m ⊕ (n ⊕ o) (22)

m ⊕ n = n ⊕ m (23)
(Generalize ⊕ to countable sums?)

6.3. ⊕ and fail distribute over�=.

(m ⊕ n) �= k = (m�= k) ⊕ (n�= k) (24)
m�= λx. (k x ⊕ l x) = (m�= k) ⊕ (m�= l) (25)

fail�= k = fail (26)
m� fail = fail (27)

6.4. factor is an isomorphism between R+ and MUnit.

factor p� factor q = factor (p · q) (28)
factor p ⊕ factor q = factor (p + q) (29)

return () = factor 1 (30)
fail = factor 0 (31)

(Treat R+ as synonym for MUnit?)

6.5. Conjugate priors. (derived by algebra)(
λp. pa′ · (1 − p)b

′)
=� beta a b =

B(a + a′, b + b′)
B(a, b)

� beta (a + a′) (b + b′) (32)(
λx.

e−(x−c′)2/d ′2/2
√

2 · π · d′

)
=� normal c d =

e−(c−c′)2/(d2+d ′2)/2√
2 · π · (d2 + d′2)

� normal
c · d−2 + c′ · d′−2

d−2 + d′−2
1

√
d−2 + d′−2

(33)

6.6. Probability measures. (derived by integral calculus)
bernoulli p� n = n (34)

geometric p� n = n (35)
poisson r � n = n (36)

uniform x y � n = n (37)
beta a b� n = n (38)

exponential l � n = n (39)
normal c d � n = n (40)

6.7. Change of variables. (derived by integral calculus)
fmap (λx.− log x) (uniform 0 1) = exponential 1 (41)
fmap (λx. c + d · x) (lebesgue a b)

= (1/d) � lebesgue (c + d · a) (c + d · b) (42)

EQUATIONAL REASONING FOR PROBABILISTIC PROGRAMMING 6

References

Culpepper, Ryan, and Andrew Cobb. 2017. Contextual equiv-
alence for probabilistic programs with continuous random
variables and scoring. In Programming languages and systems:
Proceedings of ESOP 2017, 26th European symposium on
programming, ed. Yang Hongseok, 368–392. Lecture Notes in
Computer Science 10201, Berlin: Springer.

Davidson-Pilon, Cameron. 2016. Bayesian methods for hackers:
Probabilistic programming and Bayesian inference. Boston:
Addison-Wesley.

Eddy, Sean R. 2004. What is Bayesian statistics? Nature
Biotechnology 22(9):1177–1178.

Heunen, Chris, Ohad Kammar, Sam Staton, and Hongseok Yang.
2017. A convenient category for higher-order probability theory.
In LICS 2017: Proceedings of the 32nd symposium on logic
in computer science, 1–12. Washington, DC: IEEE Computer
Society Press.

MacKay, David J. C. 1998. Introduction to Monte Carlo methods.
In Learning and inference in graphical models, ed. Michael I.
Jordan. Dordrecht: Kluwer. Paperback: Learning in Graphical
Models, MIT Press.

McElreath, Richard. 2017. Markov chains: Why walk when
you can flow? http://elevanth.org/blog/2017/11/28/
build-a-better-markov-chain/.

Ścibior, Adam, Ohad Kammar, Matthijs Vákár, Sam Staton,
Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss,
Chris Heunen, and Zoubin Ghahramani. 2018. Denotational
validation of higher-order Bayesian inference. In POPL ’18:
Conference record of the annual ACM symposium on principles
of programming languages. New York: ACM Press.

Shan, Chung-chieh, and Norman Ramsey. 2017. Exact Bayesian
inference by symbolic disintegration. In POPL ’17: Confer-
ence record of the annual ACM symposium on principles of

programming languages, 130–144. New York: ACM Press.
Staton, Sam. 2017. Commutative semantics for probabilistic
programming. In Programming languages and systems: Pro-
ceedings of ESOP 2017, 26th European symposium on pro-
gramming, ed. Yang Hongseok, 855–879. Lecture Notes in
Computer Science 10201, Berlin: Springer.

Tierney, Luke. 1998. A note on Metropolis-Hastings kernels for
general state spaces. The Annals of Applied Probability 8(1):
1–9.

