
Vector Processors

Kavitha Chandrasekar
Sreesudhan Ramkumar

Agenda

• Why Vector processors
• Basic Vector Architecture
• Vector Execution time
• Vector load - store units and Vector memory

systems
• Vector length Control
• Vector stride

Limitations of ILP

• ILP:
– Increase in instruction width (superscalar)
– Increase in machine pipeline depth
– Hence, Increase in number of in-flight instructions

• Need for increase in hardware structures like
ROB, rename register files

• Need to increase logic to track dependences
• Even in VLIW, increase in hardware and logic is

required

Vector Processor
• Work on linear arrays of numbers(vectors)
• Each iteration of a loop becomes one element of the vector
• Overcoming limitations of ILP:

– Dramatic reduction in fetch and decode bandwidth.
– No data hazard between elements of the same vector.
– Data hazard logic is required only between two vector

instructions
– Heavily interleaved memory banks. Hence latency of

initiating memory access versus cache access is amortized.
– Since loops are reduced to vector instructions, there are

no control hazards
– Good performance for poor locality

Basic Architecture
• Vector and Scalar units
• Types:

– Vector-register processors
– Memory-memory Vector

processors
• Vector Units

– Vector registers (with 2
read and 1 write ports)

– Vector functional units
(fully pipelined)

– Vector Load Store unit(fully
pipelined)

– Set of scalar registers

VMIPS vector instructions

MIPS vs VMIPS
(DAXPY loop)

Execution time of vector instructions

• Factors:
– length of operand vectors
– structural hazards among operations
– data dependences

• Overhead:
– initiating multiple vector instructions in a clock cycle
– Start-up overhead (more details soon)

Vector Execution time (contd.)
• Terms:

– Convoy:
– set of vector instructions that can begin execution

together in one clock period
– Instructions in a convoy must not contain any structural or

data hazards
– Analogous to placing scalar instructions in VLIW
– One convoy must finish before another begins
– Chime: Unit of time taken to execute one convoy

• Hence for vector sequence m convoys executes in m
chimes

• Hence for vector length of n, time=m × n clock cycles

Example

Convoy

Start-up overhead

• Startup time: Time between initialization of
the instruction and time the first result
emerges from pipeline

• Once pipeline is full, result is produced every
cycle.

• If vector lengths were infinite, startup
overhead is amortized

• But for finite vector lengths, it adds significant
overhead

Startup overhead-example

Vector Load-Store Units and Vector
Memory Systems

• Start-up time: Time to get first word from
memory into a register

• To produce results every clock multiple memory
banks are used

• Need for multiple memory banks in vector
processors:
– Many vector processors allow multiple loads and

stores per clock cycle
– Support for nonsequential access
– Support for sharing of system memory by multiple

processors

Example

• Number of memory banks required:

Real world issues

• Vector length in a program is not always
fixed(say 64)

• Need to access non adjacent elements from
memory

• Solutions:
– Vector length Control
– Vector Stride

Vector Length Control
• Example:

• Here value of ‘n’ might be known only during runtime.
• In case of parameters to procedure, it changes even

during runtime
• Hence, VLR (Vector Length Register) is used to control

the length of a vector operation during runtime
• MVL (Maximum Vector Length) holds the maximum

length of a vector operation (processor dependent)

Vector Length Control(contd.)

• Strip mining:
– When vector operation is longer than MVL, this

concept is used

Execution time due to strip mining
• Key factors that contribute to the running time of a strip-mined
loop consisting of a sequence of convoys:

1. Number of convoys in the loop, which determines the number of
chimes.

2. Overhead for each strip-mined sequence of convoys. This
overhead consists of the cost of executing the scalar code for
strip-mining each block, plus the vector start-up cost for each
convoy.

• Total running time for a vector sequence operating on a vector of
length n,Tn:

Example

Vector Stride
• To overcome access to nonadjacent elements in memory
• Example:

• This loop can be strip-mined as a vector multiplication
• Each row of B would be first operand and each column of C would be

second operand
• For memory organization as column major order, B’s elements would be

non-adjacent
• Stride is distance(uniform) between the non-adjacent elements.
• Allows access of nonsequential memory elements

Vector processors - Contd.

Agenda
• Enhancing Vector performance
• Measuring Vector performance
• SSE Instruction set and Applications
• A case study - Intel Larrabee vector processor
• Pitfalls and Fallacies

Enhancing Vector performance

• General
o Pipelining individual operations of one instruction
o Reducing Startup latency

• Addressing following hazards effectively
o Structural hazards
o Data hazards
o Control hazards

Pipelining & reducing Startup latency

Addressing Structural hazards - Multiple Lanes

Addressing Structural hazards - Multiple Lanes

• Addressed using pipelining and parallel lanes

Multiple Lanes - Contd.
• Registers & Floating point units are localized

within lanes

Addressing Data hazards - Flexible chaining
• Similar to Forwarding
• Chaining allows a vector operation to start as soon as the

individual elements of its vector source operand become
available

• Example:

Instruction Startup
time

(cycles)

Vector
length
(units)

MULV.D V1, V2, V3 7 64
ADDV.D V4, V1, V5 6 64

Flexible Chaining - Contd.

MULV.D V1, V2, V3
ADDV.D V4, V1, V5

Unchained Chained

Time (cycles) VLM + VLA +STM +
STA = 141

VLM/A + STM +
STA = 77

cycles / result 141 / 64 = 2.2 77 / 64 = 1.2

FLOPS / clock
cycle

128 / 141 = 0.9 128 / 77 = 1.7

Addressing Control hazards - Vector mask

• Instructions involving control statement can't run in vector
mode

• Solution:
o Convert control dependence into data dependence by

executing control statement and updating vector mask
register

o Run data dependent instructions in vector mode based on
value in value mask register

Vector mask - Contd.

Improving Vector mask - Scatter & Gather method

• Step 1: Set VM to 1 based on control condition
• Step 2: Create CVI - Create Vector Index based on VM

o Create an index vector which points to addresses of valid
contents

• Step 3: LVI - Load Vector Index (GATHER)
o Load valid operands based on step 2

• Step 4: Execute arithemetic operation on compressed vector
• Step 5: SVI - Store Vector Index (SCATTER)

o Store valid output based on step 2

Scatter & Gather - Contd.

Comparison - Basic vector mask &
Scatter - Gather

• Conclusion: Scatter & Gather will run faster if
less than one-quarter of elements are non
zero

Enhancing Vector performance - Summary

• General
o Pipelining individual operations of one instruction
o Reducing Startup latency

• Structural hazards
o Multiple Lanes

• Data hazards
o Flexible chaining

• Control hazards
o Basic vector mask
o Scatter & Gather

Measuring Vector Performance - Total
execution time

Scale for measuring performance:
• Total execution time of the vector loop - Tn

o Used to compare performance of different instructions on
processor

o Unit - clock cycles
o n - vector length
o MVL - maximum vector length
o Tloop - Loop overhead
o Tstart - startup overhead
o Tchime - unit of convoys

Measuring Vector Performance -
MFLOPS

• MFLOPS - Millions of FLoating point Operations Per Second
o Used to compare performance of two different processors

• MFLOPS - Rn

o Unit - operations / second
• MFLOPS - Rinfinity (theoritical / peak performance)

SSE Instructions
• Streaming SIMD Extensions (SSE) is a SIMD instruction set extension to

the x86 architecture
• Streaming SIMD Extensions are similar to vector instructions.
• SSE originally added eight new 128-bit registers known as XMM0

through XMM7
• Each register packs together:
 four 32-bit single -

precision floating
point numbers or

 two 64-bit double -
precision floating

point numbers or
 two 64-bit integers or
 four 32-bit integers or
 eight 16-bit short integers or
 sixteen 8-bit bytes or characters.

SSE Instruction set & Applications
• Sample instruction set for floating point operations

o Scalar – ADDSS, SUBSS, MULSS, DIVSS
o Packed – ADDPS, SUBPS, MULPS, DIVPS

• Example

• Applications - multimedia, scientific and financial applications

A Case study - Intel Larrabee
Architecture

•a many-core visual computing
architecture code

• Intel’s new approach to a GPU
•Considered to be a hybrid between a

multi-core CPU and a GPU
•Combines functions of a multi-core CPU

with the functions of a GPU

Larrabee - The Big picture

• in order execution (Execution is also more deterministic so
instruction and task scheduling can be done by the compiler)

• Each Larrabee core contains a 512-bit vector
processing unit, able to process 16 single precision floating
point numbers at a time.

• uses extended x86 architecture set with additional features
like scatter / gather instructions and a mask register
designed to make using the vector unit easier and more
efficient.

Larrabee VPU Architecture
• 16 wide vector ALU in one core
• executes interger, single precision,

float and double precision float
instructions

• choice of 16 - Tradeoff between
increased computational density and
difficulty of high utilization with wider
one

• suports swizzling and replication
• Mask register and index register

operations

Larrabee Data types

• 32 512-bit vector registers & 8 16-bit vector mask registers
• Each element of vector register can be

o 8 wide - to store 16 float 32's or 16 int 32's
o 16 wide - to store 8 float 64's or 8 int 64's

Larrabee Instruction set

• vector arithmetic, logic and shift
• vector mask generation
• vector load / store
• swizzling

> Vector multiply - add, multiply - sub instructions

Past, Present & Future of Vector
processors

• Past
o Cray X1
o Earth simulator

• Present
o Cray Jaguar
o Larrabee

• Future: AVE (Advanced Vector Extensions)
o Sandy Bridge (Intel)
o Bulldozer (AMD)

Pitfalls and Fallacies

• Pitfalls:
o Concentrating on peak performance and ignoring start up

overhead (on memory-memory vector architecture)
o Increasing Vector performance, without comparable

increase in scalar performance
• Fallacy

o You can get vector performance without providing memory
bandwidth (by reusing vector registers)

Recap

• Why Vector processors
• Basic Vector Architecture
• Vector Execution time
• Vector load - store units and Vector memory systems
• Vector length - VLR
• Vector stride
• Enhancing Vector performance
• Measuring Vector performance
• SSE Instruction set and Applications
• A case study - Intel Larrabee vector processor
• Pitfalls and Fallacies

References

• Computer Architecture - A quantitative approach 4th edition (Appendix A, F &
G, chapter 2 & 3)

• Cray X1 http://www.supercomp.org/sc2003/paperpdfs/pap183.pdf
• Larrabee official page on intel http://software.intel.com/en-

us/articles/larrabee/
• Larrabee http://www.gpucomputing.org/drdobbs_042909_final.pdf
• http://www.vizworld.com/2009/05/new-whitepapers-from-intel-about-larrabee/

http://www.supercomp.org/sc2003/paperpdfs/pap183.pdf�
http://software.intel.com/en-us/articles/larrabee/�
http://software.intel.com/en-us/articles/larrabee/�
http://www.gpucomputing.org/drdobbs_042909_final.pdf�
http://www.vizworld.com/2009/05/new-whitepapers-from-intel-about-larrabee/�

Thank you.

	Vector Processors
	Agenda
	Limitations of ILP
	Vector Processor
	Basic Architecture
	VMIPS vector instructions
	MIPS vs VMIPS �(DAXPY loop)
	Execution time of vector instructions
	Vector Execution time (contd.)
	Example�
	Start-up overhead
	Startup overhead-example
	Vector Load-Store Units and Vector Memory Systems
	Example
	Real world issues
	Vector Length Control
	Vector Length Control(contd.)
	Execution time due to strip mining
	Example
	Vector Stride
	Vector processors - Contd.�
	Agenda�
	Enhancing Vector performance�
	Pipelining & reducing Startup latency
	Addressing Structural hazards - Multiple Lanes
	Addressing Structural hazards - Multiple Lanes
	Multiple Lanes - Contd.
	Addressing Data hazards - Flexible chaining
	Flexible Chaining - Contd.
	Addressing Control hazards - Vector mask
	Vector mask - Contd.
	Improving Vector mask - Scatter & Gather method
	Scatter & Gather - Contd.
	Comparison - Basic vector mask & Scatter - Gather
	Enhancing Vector performance - Summary
	Measuring Vector Performance - Total execution time
	Measuring Vector Performance - MFLOPS
	SSE Instructions
	SSE Instruction set & Applications
	A Case study - Intel Larrabee Architecture
	Larrabee - The Big picture
	Larrabee VPU Architecture
	Larrabee Data types
	Larrabee Instruction set
	Past, Present & Future of Vector processors
	Pitfalls and Fallacies
	Recap
	References
	Thank you.

