Vector Processors

Kavitha Chandrasekar

Sreesudhan Ramkumar

Agenda

Why Vector processors
Basic Vector Architecture
Vector Execution time

Vector load - store units and Vector memory
systems

Vector length Control
Vector stride

Limitations of ILP

ILP:

— Increase in instruction width (superscalar)
— Increase in machine pipeline depth
— Hence, Increase in number of in-flight instructions

Need for increase in hardware structures like
ROB, rename register files

Need to increase logic to track dependences

Even in VLIW, increase in hardware and logic is
required

Vector Processor

e Work on linear arrays of numbers(vectors)
e Each iteration of a loop becomes one element of the vector

e Overcoming limitations of ILP:
— Dramatic reduction in fetch and decode bandwidth.
— No data hazard between elements of the same vector.

— Data hazard logic is required only between two vector
instructions

— Heavily interleaved memory banks. Hence latency of
initiating memory access versus cache access is amortized.

— Since loops are reduced to vector instructions, there are
no control hazards

— Good performance for poor locality

Basic Architecture

e \ector and Scalar units

* Types:
— Vector-register processors
— Memory-memory Vector

processors
L_“FI* _. * Vector Units
o — Vector registers (with 2
Vestor — | read and 1 write ports)
o] — — Vector functional units
— (fully pipelined)

— Vector Load Store unit(fully
pipelined)
— Set of scalar registers

Scalar

VMIPS vector instructions

Instruction Operands Function

ADDV .D V1. V2. V3 Add elements of VZ and V3, then put each resualt in W1.

ADDVS.D VL. V2. FO Add FQ to each element of ¥2, then put each resalt in V1.

SUBY.D V1. V2. V3 Subtract elements of ¥3 from V2, then put each result in V1.

SUBYS.D VL. V2. FO Subiract FO from elements of V2, then put each result in V1.

SUBSY.D VI.FO.WE Subiract elements of V2 from FO, then put each result in V1.

HULY.D VI V2, VE Multiply elements of ¥2 and ¥3, then pat each result in V1.

HULVS.D V1. V2, FD Multiply each element of ¥2 by FO. then put each result in V1.

DIVY.D VI V2, VE Divide elements of Y2 by V3, then pat each result in ¥1.

ODIWWS.D V1. V2, FD Crivide elements of ¥2 by FO, then put each result in V1.

DIVEY.D VI, FO.WE Divide FO by elements of V2, then pat each result in ¥1.

L¥ V1Rl Load wector register V1 from memory starting at address R1.

1) RL. V1 Store vector register V1 into memory starting at address R1.

LYW5 V1. {R1.R2) Load ¥1 from address at R1 with stride in B2, e, R1+i = B2,

SVWS (RLEZ2} V1 Store V1 from address at B1 with siride in B2, ie_, R1+i = RZ.

LYI V1. {R1+V2) Load ¥1 with vector whose elements are at RI+V2(1). L.e., V2 is an index.

5V1 (RI+V2) V1 Store W1 to vector whose elements are at R1=W¥2(i). e, V2 is an index.

Cy¥l V1.R1 Create an index vector by storing the valoes 0, 1 =R1, 2=R1,..., 63 = Bl imio V1.
5--¥.0 VL. v2 Compare the elements (EQ, HE. &T, LT, BE. LE) in V1 and V2. If condition is tnee, put
5--¥5.D V1.F0 a | in the commesponding bit vector; otherwise put (. Put resulting bit vector in vector-

mask register (YM). The instruction 5--¥5. 0 performs the same compare bot using a
scalar valee as one operand

POP R1. VM Count the 15 inthe vector-mask register and store count in R1.
CYM 5et the vector-mask register to all 1s.

HTC1 YLR,R1 Move contents of BL to the vecior-length register.

HFC1 R1. VLR Mowe the contents of the vecior-length regisier to R1.

HYTH VM, FO Move contents of FO to the vecior-mask register.

MY FM FO.VM Move contents of vector-mask register to PO

MIPS vs VMIPS
(DAXPY loop)

Y=ax X +Y

L.D FO,a -1oad scalar a

DADDIU RE,Rx, #512 +last address to load
Loop: L.D F2,0(Rx) Toad X(i)

MUL.D F2,F2,Fl .3 x X(i)

L.D F4,0(Ry) Toad Y(i)

ADD.D F4,F4,F2 3 = X([i) + Y(i)

5.0 O(Ry),Fa& :store into Y(i)

DADDIU Rx,Rx,#8 sincrement index to X

DADDIU Ry,Ry,#8 -increment index to Y

DSUBY R20,R4 Rx -compute bound

ENEZ R20, Loop -check 1f done

Here 1s the VMIPS code for DAXPY.

L.D FO,a -load scalar a

LV V1,Rx load vector X

MULYS.0 V2, ¥1,Fo syector-scalar multiply
LV V3,Ry load vector Y

ADDY.D va, V2, va ;add

sV Ry, V4 store the result

Execution time of vector instructions

* Factors:
— length of operand vectors
— structural hazards among operations
— data dependences

e QOverhead:
— initiating multiple vector instructions in a clock cycle
— Start-up overhead (more details soon)

Vector Execution time (contd.)

e Terms:
— Convoy:

— set of vector instructions that can begin execution
together in one clock period

— Instructions in a convoy must not contain any structural or
data hazards

— Analogous to placing scalar instructions in VLIW
— One convoy must finish before another begins
— Chime: Unit of time taken to execute one convoy

 Hence for vector sequence m convoys executes in m
chimes

 Hence for vector length of n, time=m x n clock cycles

Example

LV V1,Rx :1oad vector X
MULVS.D VZ2,V1,FO ;vector-scalar multiply
LV V3,Ry :1oad vector Y
ADDV.D va, ve,vs3 ;add
SV Ry, V4 ;store the result
Convoy
1. LV
2. MULVS.D LV
3. ADDV.D
4, SV

Start-up overhead

Startup time: Time between initialization of
the instruction and time the first result
emerges from pipeline

Once pipeline is full, result is produced every
cycle.

If vector lengths were infinite, startup
overhead is amortized

But for finite vector lengths, it adds significant
overhead

Startup overhead-example

Uit Start-up overhead (cycles)
Load and store unit 12

Multiply onit 7

Add wmnit &

Figure F.4 Start-up owerhead.

Conwoy Starting time First-result tima Last-result time
L. LV 0 12 Il +a

2 MILVS.D LY 12+a 12+m+12 e

3 ADDV.D 24 +2n Me+Insh 20+ In

4. 5Y 30+ 3n 30+ 30+ 12 41 + 4n

Figure F5 Starting times and first- and last-result times for conwoys 1 through 4.
The wector lengthiis n.

Oiperation Start-up penalty
Vector add 6
Vector multiply 7
Vecior divide 20
Yector load 12

Figure F& Start-up penalties on WMIPS. These are the start-up penaltiss in clock
cycles for VMIPS vector operations.

Vector Load-Store Units and Vector
Memory Systems

e Start-up time: Time to get first word from
memory into a register

* To produce results every clock multiple memory
banks are used

 Need for multiple memory banks in vector
processors:

— Many vector processors allow multiple loads and
stores per clock cycle

— Support for nonsequential access

— Support for sharing of system memory by multiple
processors

Example

e Number of memory banks required:

Bank

Cycle no. a 1 2 3 4 L & 7
i 136
1 busy 144
2 busy busy 152
3 basy busy sy 160
4 busy busy busy busy 168
5 busy busy busy busy busy 176
& busy sy busy busy sy 184
7 192 busy busy busy bnesy sy
f busy 200 busy busy bnesy buesy
G basy basy 2068 busy sy sy
10 busy busy busy 216 busy sy
11 busy busy busy busy 224 buesy
12 basy buasy busy buasy busy 252
13 buasy busy sy sy busy 240
14 busy busy busy busy bnesy 248
15 256 busy sy busy bnesy sy
& basy 24 busy busy sy sy

Real world issues

e Vector length in a program is not always
fixed(say 64)

 Need to access non adjacent elements from
memory

e Solutions:

— Vector length Control
— Vector Stride

Vector Length Control

e Example:

do 10 i = 1,n
10 Y(i) = a = X(i) + Y(i)

e Here value of ‘n” might be known only during runtime.

e |n case of parameters to procedure, it changes even
during runtime

 Hence, VLR (Vector Length Register) is used to control
the length of a vector operation during runtime

e MVL (Maximum Vector Length) holds the maximum
length of a vector operation (processor dependent)

Vector Length Control(contd.)

e Strip mining:

— When vector operation is longer than MVL, this
concept is used

Tow =1
VL = (n mod MVL) /*find the odd-size piece*/
do1j=0,(n/ MVL) /*outer Toop*/
do 10 i = Tow, Tow + VL - 1 /*runs for length VL*/
Y(i) = a = X(i) + Y(i) /*main operation*/
10 continue
low = Tow + VL /*start of next vector*/

VL = MVL /*reset the length to max*/
1 continue

Execution time due to strip mining

e Key factors that contribute to the running time of a strip-mined
loop consisting of a sequence of convoys:

1. Number of convoys in the loop, which determines the number of
chimes.

2. Overhead for each strip-mined sequence of convoys. This
overhead consists of the cost of executing the scalar code for
strip-mining each block, plus the vector start-up cost for each
convoy.

e Total running time for a vector sequence operating on a vector of

length n,Tn:

1n
T.'i' - |:M*' L:| . {Tlunl'-' * T:w:lmjI +nx Tt‘himﬂ

Example

DADDUI ~ R2,R0,#1600 ;total # bytes in vector

DADDU RZ,R2,Ra ;address of the end of A vector
DADDUI ~ R1,R0,#8 ;Toads length of 1st segment
MIC1 VLR,R1 ;1oad vector length in VLR
DADDUI ~ R1,RO,#64 ;length in bytes of 1st segment
DADDUI ~ R3,R0,#64 j;vector length of other segments

Loop: LV VI,Rb :1oad B
MULVS.D V2,V1,Fs svector % scalar
SV Ra, V2 ;store A

DADDU Ra,Ra,Rl ;address of next segment of A
DADDU Rb,Rb,R1 ;address of next segment of B
DADDUI ~ R1,R0,#512 ;load byte offset next segment
MTC1 VLR,R3 ;set Tength to 64 elements
DSUBU R4,RZ,Ra ;at the end of A?

BNEZ R4,Loop ;if not, go back

f
T.n = |:MVL:| * {Tlor_&p + T:i.lerLNJ tnx Tchime

T =12+7+12=31
) +200 % 3

)+ 600 = 660+ (4T

start

start start }

Vector Stride

e To overcome access to nonadjacent elements in memory
e Example:

do 10 j = 1,100
A(i,j) = 0.0
do 10 k = 1,100
10 A(i,3) = A(i,J)+B(i,k)*C(k,J)

e This loop can be strip-mined as a vector multiplication

 Each row of B would be first operand and each column of C would be
second operand

* For memory organization as column major order, B’s elements would be
non-adjacent

e Stride is distance(uniform) between the non-adjacent elements.
e Allows access of nonsequential memory elements

Vector processors - Contd.

Agenda

Enhancing Vector performance

Measuring Vector performance

SSE Instruction set and Applications

A case study - Intel Larrabee vector processor
Pitfalls and Fallacies

Enhancing Vector performance

 General
o Pipelining individual operations of one instruction
o Reducing Startup latency
« Addressing following hazards effectively
o Structural hazards
o Data hazards
o Control hazards

Pipelining & reducing Startup latency

ADDV.D V1,V2,V3
ADDV.D V4,V5,V6

Start-up
latency
R |X1| X2 X3 W .
irst vector
R |X1]X2| X3 W instruction
Element 63 | R | X1|X2|X3| W ¥
Dead cycle | B |X1| X2|X3| W T
Dead cycle | R [X1|X2| X3| W Dead time
Dead cycle | B | X1|X2| X3| W
Dead cycle | B | X1]|X2[X3| W i
Element 0 | B | X1|X2| X3|W 5 !
econd vector
Element 1 | R [X1|X2|X3| W nstruction

R [X1|X2|X3| W v

Addressing Structural hazards - Multiple Lanes

Basic Vector Architecture

‘ Main memory I

|

Vector . | FP addrsubtract
load-store -
] FP multiply '—»

=] FP divide '—-
Vector | i

registers - meas

T Logical '—-

Scalar
registers

Addressing Structural hazards - Multiple Lanes

« Addressed using pipelining and parallel lanes

A9l Bl2]

Al8] B[8]

Al7] B[7]

Al6] B[6]

Als] B[5]

Al4] Bl[4]

A[3] Bl3]

Al2] B[2] Ale] B8l | |Al®] B[9]

Al1] B[1] Al4] Bl4] | | Al5] B[5]1| | Alel Ble]| |AI7] B[7]

L

o] . |cro C[1] Cl2] CI3)

Element group
(a) (b)
Pipeling Parallel lanes & Pipelining

Multiple Lanes - Contd.

* Registers & Floating point units are localized
within lanes

Lane O Lane 1 Lane 2 Lane 3
7 T T b
Jeo _ /
; FP add FP add | FP add | FP add
{ pipe 0 pipe 1 \ pipe 2 / pipe 3

i A A A A A A i

L L | Y

Vector Vector Vector Vector
registers: registers: registers: registers:
elements elements elements elements
0,48, ... 1,59, ... 2610,... 3,711, ...

L A [['

L L 1 L

FP mul. \ FP mul. FP mul. |
pipe 3 |

pipe 1 \ pipe 2

L] Y Y

Vector load-store unit

Addressing Data hazards - Flexible chaining

Similar to Forwarding

Chaining allows a vector operation to start as soon as the

iIndividual elements of its vector source operand become
available

Example:
Instruction Startup Vector
time length
(cycles) (units)
MULV.D V1, V2, V3 7 64
ADDV.D V4,V1, V5 6 64

Flexible Chaining - Contd.

I?I 64

6 64

Unchained
nchaine ULy

— | Total = 141 | Chained
ADDV

I? G4 |
"I Moy !

G 64
| | Total= 77
ADDV

MULV.D V1,V2,V3
ADDV.D V4,V1, V5

Unchained

Chained

Time (cycles)

VLM + VLA +STM +

VLM/A + STM +

cycle

STA =141 STA=77
cycles/result (141/64 =2.2 77/64=1.2
FLOPS /clock [128/141=0.9 128 /77 =1.7

Addressing Control hazards - Vector mask

e Instructions involving control statement can't run in vector
mode
e Solution:

o Convert control dependence into data dependence by
executing control statement and updating vector mask
register

o Run data dependent instructions in vector mode based on
value in value mask register

100

LV

LV

L.D
SNEVS.D
SUBV.D
CVM

SV

Vector mask - Contd.

do 100 1 = 1, 64

if (A(i).ne. 0) then
A(i) = A(i) - B(i)
endif
continue
V1,Ra ;:load vector A into V1
VZ,Rb ;:load vector B
FO, #0 ;load FP zero into FO
V1,FO ;sets VM(i) to 1 if VI(i)!=FO
Vi,V1,V2 ;subtract under vector mask
:set the vector mask to all ls

Ra,V1 ;store the result in A

Total time = 5n + 1

Improving Vector mask - Scatter & Gather method

Step 1. Set VM to 1 based on control condition

Step 2: Create CVI - Create Vector Index based on VM

o Create an index vector which points to addresses of valid
contents

Step 3: LVI - Load Vector Index (GATHER)

o Load valid operands based on step 2

Step 4. Execute arithemetic operation on compressed vector

Step 5: SVI - Store Vector Index (SCATTER)

o Store valid output based on step 2

Scatter & Gather - Contd.

do 100 i = 1, 64
if (A(i).ne. 0) then
A(i) = A(i) — B(i)

endif

100 continue
LV V1,Ra ;1oad vector A into V1
L.D FO,#0 ;:1load FP zero into FO
SNEVS.D V1,FO ;sets the VM to 1 if V1(i)!=FO
CVI V2,#8 ;generates indices in V2
POP R1,VM ;find the number of 1's 1n VM
MTC1 VLR,R1 ;load vector-length register
CVM ;clears the mask
LVI V3, (Ra+V2) ;:1oad the nonzero A elements
LVI Va, (Rb+V2) :1oad corresponding B elements
SUBV.D V3,V3, V4 ;do the subtract
SVI (Ra+V2),V3 ;store A back

Time = 4n + 4fn + c2

Comparison - Basic vector mask &
Scatter - Gather

Time, = 5(n)
Time, = 4n+4fn
We want Time; > Times, so
Sn>4n+4fn
_]. - f
4

e Conclusion: Scatter & Gather will run faster if
less than one-quarter of elements are non
ZEero

Enhancing Vector performance - Summary

General

o Pipelining individual operations of one instruction
o Reducing Startup latency

Structural hazards

o Multiple Lanes

Data hazards

o Flexible chaining

Control hazards

o Basic vector mask

o Scatter & Gather

Measuring Vector Performance - Total
execution time

Scale for measuring performance:
e Total execution time of the vector loop - Tn
o Used to compare performance of different instructions on
processor

Fl
Tﬁ' = |:mi| X lﬂTlmp * Tsmrl] X Tn:himc

o Unit - clock cycles

o n - vector length

o MVL - maximum vector length
o Tloop - Loop overhead

o Tstart - startup overhead

o Tchime - unit of convoys

Measuring Vector Performance -
MFLOPS

« MFLOPS - Millions of FLoating point Operations Per Second
o Used to compare performance of two different processors
« MFLOPS - Rn

Number of FLOPS per iteration (operation per iteration) * clock rate (cycles per second)
Rn =
(Tn / n) (cycles per iteration)

. MFLOPS - Rinfinity (theoritical / peak performance)

: Operations per iteration X Clock rate
R = lim

N —3 oo Clock cycles per iteration

SSE Instructions

« Streaming SIMD Extensions (SSE) is a SIMD instruction set extension to
the x86 architecture

o Streaming SIMD Extensions are similar to vector instructions.

« SSE originally added eight new 128-bit registers known as XMMO
through XMM7

» Each register packs together:
= four 32-bit single - 128 bits
precision floating

¥rmmoO
point numbers or xmm1l
= two 64-bit double - Xrm?2

precision floating xrmm3
point numbers or

1yl ®miméd
= two 64-bit integers or T
» four 32-bit integers or XMMB
= eight 16-bit short integers or xrmm?7

» sixteen 8-bit bytes or characters.

SSE Instruction set & Applications

« Sample instruction set for floating point operations
o Scalar — ADDSS, SUBSS, MULSS, DIVSS
o Packed — ADDPS, SUBPS, MULPS, DIVPS

o Example
vec res.x = vl.x + v2.x;
veo res.y = vli.y + v2.y:
vec res.z = vl.z + v2.z;
vec res.w = vl.w + v2.w;
o movaps xmml,address-of-vl sxmml=vl.w | vl.z | vi.¥v | vli.x
addps xmml, address-of-v2 sxam0=vl1.w+v2.w | vi.z4v2.2 | vi.yv+v2.yv | vi1i.x+v2. X

movaps addresz-of-wvec res,xmmi

A Case study - Intel Larrabee
Architecture

* 3 many-core visual computing
architecture code

* Intel’s new approach to a GPU

e Considered to be a hybrid between a
multi-core CPU and a GPU

e Combines functions of a multi-core CPU
with the functions of a GPU

Larrabee - The Big picture

In order execution (Execution is also more deterministic so
Instruction and task scheduling can be done by the compiler)
Each Larrabee core contains a 512-bit vector

processing unit, able to process 16 single precision floating
point numbers at a time.

uses extended x86 architecture set with additional features
like scatter / gather instructions and a mask register
designed to make using the vector unit easier and more
efficient.

Larrabee VPU Architecture

16 wide vector ALU Iin one core

executes interger, single precision, Mask Registers
float and double precision float P]
Instructions AT s SILTT

choice of 16 - Tradeoff between T —

Increased computational density and . .
Replicate Swizzle

difficulty of high utilization with wider .

one 11T
. .)) Vector
suports swizzling and replication Registers
Mask register and index register v
: Numeric Numeric
operations g Il i
L1 Data Cache

Larrabee Data types

o 32 512-bit vector registers & 8 16-bit vector mask registers
« Each element of vector register can be

o 8 wide - to store 16 float 32's or 16 int 32's
o 16 wide - to store 8 float 64's or 8 int 64's

bit 511 48 498 316 384 30233 288 256 224 152 180 128 45 &4 32 0

float 1504013012001 04100190 |80 |70 60 |50 |40 (3.0 J20 |10 00
int32 |15z izlufw|e |s |72)6 |s]|a |3 |2 |1 |0
double | 70 60 50 40 30 20 10 00

int64 7 6 5 4 3 2 1 0

DIt S11 480 448 416 384 352320 288 266 224 192 160 128 9% o4 32 O

Larrabee Instruction set

e Vvector arithmetic, logic and shift

e vector mask generation

e vector load / store

e swizzling

> Vector multiply - add, multiply - sub instructions

vmadd] 32p{ds) vl =(vl * v3) + v2
vmadd2 1 3p{ds}. vl =(v2* vl]) + v3
vmadd23 1p(dis}: vl =(v2 * v3) + vl
vmadd233p{is): vl = (v * ExtraciScaleElement (v3)) + ExtractOffsetElement (v3)
vmaddnl 32p{ds}: vl = -{{vl * v3) + v2)
vmaddnl13p{ds): vl = {{v2 * wl) + v3)
vmaddnd31p{ds): vl = {(v2 * v3) + v1)
vmsubl32p{ds) vl =(vl * v3) -v2
vmsub213p(ds) vl=(v2 * vl) -v3
vimnsub23lp{ds}). vl =(v2 * v3) - vl
vmsubrl32p{ds): vl = w2 - (vl * v3)
vmsubr213p{ds}: vl =v3 - (v2 *vl)
vmsubr231p{ds): vl =vl - (v2 * v3)
vmsubr2iclp{ds}: vl = 1.0 -(v2 * ¥v3)

Past, Present & Future of Vector
Processors

e Past

o Cray X1
o Earth simulator

e Present

o Cray Jaguar
o Larrabee

* Future: AVE (Advanced Vector Extensions)

o Sandy Bridge (Intel)
o Bulldozer (AMD)

Pitfalls and Fallacies

o Pitfalls:
o Concentrating on peak performance and ignoring start up
overhead (on memory-memory vector architecture)
o Increasing Vector performance, without comparable
Increase in scalar performance
o Fallacy
o You can get vector performance without providing memory
bandwidth (by reusing vector registers)

Recap

Why Vector processors

Basic Vector Architecture

Vector Execution time

Vector load - store units and Vector memory systems
Vector length - VLR

Vector stride

Enhancing Vector performance

Measuring Vector performance

SSE Instruction set and Applications

A case study - Intel Larrabee vector processor
Pitfalls and Fallacies

References

Computer Architecture - A guantitative approach 4th edition (Appendix A, F &
G, chapter 2 & 3)

Cray X1 http://www.supercomp.org/sc2003/paperpdfs/papl83.pdf

Larrabee official page on intel http://software.intel.com/en-
us/articles/larrabee/

Larrabee http://www.gpucomputing.org/drdobbs 042909 final.pdf
http://www.vizworld.com/2009/05/new-whitepapers-from-intel-about-larrabee/

http://www.supercomp.org/sc2003/paperpdfs/pap183.pdf�
http://software.intel.com/en-us/articles/larrabee/�
http://software.intel.com/en-us/articles/larrabee/�
http://www.gpucomputing.org/drdobbs_042909_final.pdf�
http://www.vizworld.com/2009/05/new-whitepapers-from-intel-about-larrabee/�

Thank you.

	Vector Processors
	Agenda
	Limitations of ILP
	Vector Processor
	Basic Architecture
	VMIPS vector instructions
	MIPS vs VMIPS �(DAXPY loop)
	Execution time of vector instructions
	Vector Execution time (contd.)
	Example�
	Start-up overhead
	Startup overhead-example
	Vector Load-Store Units and Vector Memory Systems
	Example
	Real world issues
	Vector Length Control
	Vector Length Control(contd.)
	Execution time due to strip mining
	Example
	Vector Stride
	Vector processors - Contd.�
	Agenda�
	Enhancing Vector performance�
	Pipelining & reducing Startup latency
	Addressing Structural hazards - Multiple Lanes
	Addressing Structural hazards - Multiple Lanes
	Multiple Lanes - Contd.
	Addressing Data hazards - Flexible chaining
	Flexible Chaining - Contd.
	Addressing Control hazards - Vector mask
	Vector mask - Contd.
	Improving Vector mask - Scatter & Gather method
	Scatter & Gather - Contd.
	Comparison - Basic vector mask & Scatter - Gather
	Enhancing Vector performance - Summary
	Measuring Vector Performance - Total execution time
	Measuring Vector Performance - MFLOPS
	SSE Instructions
	SSE Instruction set & Applications
	A Case study - Intel Larrabee Architecture
	Larrabee - The Big picture
	Larrabee VPU Architecture
	Larrabee Data types
	Larrabee Instruction set
	Past, Present & Future of Vector processors
	Pitfalls and Fallacies
	Recap
	References
	Thank you.

