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 The primary application of large-scale
multiprocessors is for true parallel

programming

 The primary target of parallel computing is
scientific and technical applications
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Interprocessor Communication:
The Critical Performance Issue

e Communication bandwidth
e Communication latency

Communication latency = Sender overhead +
Time of flight + Transmission time + Receiver
overhead

e Communication latency hiding
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e size of the data items
e regularity in the communication patterns
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1. Transpose data matrix.

2. Perform 1D FFT on each row of data matrix.

3. Multiply the roots of unity matrix by the data
matrix and write the result in the data matrix.

4. Transpose data matrix.
5. Perform 1D FFT on each row of data matrix.
6. Transpose data matrix.
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e the blocks of the matrix are assigned to

processors using a 2D tlllng LN B

e the dense matrix multlpllcatlon is performed

by the processor that owns the destination
block.
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e n-body algorithm solving a problem in galaxy
evolution.

e The Barnes-Hut algorithm uses an octree
(each node has up to eight children) to
represent the eight cubes in a portion of space
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 Ocean simulates the influence of eddy and
boundary currents on large-scale flow in the
ocean

* Red-black Gauss-Seidel colors the points in the
grid so as to consistently update each point
based on previous values of the adjacent
neighbors
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: p nni .g
e |ocks that a processor continuously tries to

acquire, spinning around a loop until it
succeeds

DADDUI  R2,R0,#1
lockit: EXCH R2,0(R1) ;atomic exchange
BNEZ RZ,Tockit ;already locked?
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Tock (counterlock);/* ensure update atomic */
if (count==0) release=0;/* first=>reset release */
count = count + 1;/* count arrivals */
unlock(counterlock);/* release Tock */
if (count==total) {/* all arrived */

count=0; /* reset counter */

release=1;/* release processes */

}

else {/* more to come */

spin (release==1);/* wait for arrivals */



Synchronization Performance
Challenges

e Contention

— synchronization performance can be a real
bottleneck when there is substantial contention
among multiple processes.

e Serialization

— This serialization is a problem when there is
contention because it greatly increases the time to
complete the synchronization operation.



Exponential Back-off
And Queuing Locks

DADDUI R3,R0,#1 ;R3 = initial delay

lockit: LL R2,0(R1) ;:load Tinked
BNEZ RZ2,Tockit :not available-spin
DADDUI RZ,R2,#1 :get locked value
SC R2,0(R1) ;store conditional
BNEZ RZ2,got1t :branch 1f store succeeds
DSLL R3,R3,#1 :increase delay by factor of 2
PAUSE R3 :delays by value 1n R3
J lTockit

gotit: use data protected by lock
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Performance Evaluati
on Symmetric Shared-Memory
Multiprocessors

lon

Normal uniprocessor misses VS coherence
misses

Capacity misses dominate uniprocessor misses
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shared cache block

Vary processor number, cache size and block
Size



Symmetric Shared-Memory Multiprocessor
Increase The Processor Count

* Increase the total amount of cache, causing
capacity misses to drop

* |ncrease the amount of communication,
causing coherence misses to rise

e Some application has extraordinary
performance change due to its specific
characteristics



Symmetric Shared-Memory Multiprocessor
Miss Rate VS Processor Count
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Symmetric Shared-Memory Multiprocessor
Increase The Cache Size

e Usually has a beneficial effect as it reduces
cache misses

e Two reasons for non-obvious reduction of
miss rates

- Inherent communication
- Temporary plateau



Symmetric Shared-Memory Multiprocessor
Miss Rate VS Cache Size
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Symmetric Shared-Memory Multiprocessor
Increase The Block Size

e Reduces spatial locality for shared data

e Potential increase in miss rate due to false
sharing

 Real bottle-neck in bus-based multiprocessors
is the limited memory and bus bandwidth

 The growth in traffic can actually lead to
performance slowdowns due to longer miss
penalties and increased bus contentions



Symmetric Shared-Memory Multiprocessor
Miss Rate VS Block Size
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Symmetric Shared-Memory Multiprocessor
Bytes per Data Reference VS Block Size
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Performance Evaluation
on Distributed-Memory Multiprocessors

 The distribution of memory requests between
local and remote is key to performance, as it
affects global bandwidth consumption and
request latency

e Separate the cache misses into local and
remote requests

e Coherence misses dominate remote misses



Performance Changes
on Distributed-Memory Multiprocessors

Effect of processor count increase is little
Miss rates decrease as cache sizes grow

Miss rates drop as block sizes grow

- good spatial locality of sample applications
- local misses reduction plays the key role
- still need to consider the local and global bandwidth

consumptions

Extraordinary changes due to specific
characteristics



Distributed-Memory Multiprocessor
Miss Rate VS Processor Count
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Distributed-Memory Multiprocessor
Miss Rate VS Cache Size
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Distributed-Memory Multiprocessor
Miss Rate VS Block Size
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Distributed-Memory Multiprocessor
Bytes per Data Reference VS Block Size
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Distributed-Memory Multiprocessor
Remote Memory Access Latency

e Also a key issue for the performance

 Contention may have a serious impact

Processor clock cycles Processor clock cycles

Characteristic < 16 processors 17-64 processors
Cache hit ] I
Cache miss to local memory 85 85
Cache miss to remote home directory 125 150
Cache miss to remotely cached data 140 170

(three-hop miss)




Distributed-Memory Multiprocessor
Average Memory Reference Cost (cycles)

* Influenced by total frequency of cache misses
and miss location distribution

e Need to consider the effect of contentions and
synchronization delays
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Performance Measurement
of Parallel Processors

Measuring only CPU time may be misleading
Scaling the application is more interesting

- un-scaled version may give pessimistic result
- select uniprocessor measuring algorithm

- two ways of scaling
* memory-constrained scaling, keep memory per

processor constant
* time-constrained scaling, keep total execution time

constant, need to know the relationship between
running time and problem size

Scaling may affect result quality
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Implementing Cache Coherence
for Snoopy Protocol

Update miss handling needs multiple steps

- compose an invalidate message

- transmit message when network is available

- process request after all invalidates have been processed

Challenge is to make the process appear atomic
- how to resolve the race?
- how to know all invalidates have been processed?

Solutions for the difficulties

- requests pass through a single channel, communication
network accepts message only when delivery is guaranteed

- race losers invalidate the block and generate a write miss to
get data, the winner ignores this invalidate

- or let incoming requests precede over outgoing ones



Implementing Cache Coherence
in A DSM Multiprocessor

Serializations on competing writes and memory

consistency need to be enforced

- exclusive access request is easy as directory is unique

- ensure that write is complete before the next is begun

- directory signals to winner when on completing processing
- sends to race losers a negative acknowledge (NAK)

Know when the invalidates are complete

- the destination node of the invalidate message explicitly
acknowledge this message from the directory

- acknowledgement can be sent to the directory or the
requester

- the latter one reduces the possibility of creating a bottleneck
at a directory



Avoiding Deadlock from Limited Buffering

Deadlock situations

- multiple resources are needed for completing
- resources are held until completing
- no global partial order on acquisition of resources

Ensure resources will always be available for

completing a transaction

- new requests cannot block replies that free up buffers
- allocate space for requests to accept reply (if expected)
- can reply a request with NAK, but never NAK a reply

- requests retry on receiving NAK

Ensure all replies can be accepted and all

requests will be serviced
- e.g. all requests could be completed
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Ability to NAK requests when receiving too

many of them

Be multithreaded and able to handle requests
for multiple blocks independently

Capability of suspending execution while
waiting for replies

Dealing with non-atomicity and finite
buffering is critical
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Blue Gene/L:
Parameters And Characteristics

Distributed-memory, message-passing

Special customized processing node with two
processors, caches, and interconnect logic

Up to 64K nodes organized into 32 racks

85% interconnect within single rack, greatly
reducing inter-rack complexity and latency

All the logic into a single chip, higher density,
lower power, and lower cost
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The 64k-processor Blue Gene/L System
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Classification of Large-scale Multiprocessors

Terminology Characteristics Examples
MPP Originally referred to a class of architectures characterized by large Connection Machines

numbers of small, typically custom processors and usually using an SIMD
style architecture.

CM-2

SMP (symmetric
multiprocessor)

Shared-memory multiprocessors with a symmetric relationship to
memory; also called UMA (uniform memory access). Scalable versions of
these architectures used multistage interconnection networks, typically
configured with at most 64—128 processors.

SUN Sunfire, NEC
Earth Simulator

DSM (distributed
shared memory)

A class of architectures that support scalable shared memory in a
distributed fashion. These architectures are available both with and without
cache coherence and typically can support hundreds to thousands of
processors.

SGI Origin and Altix,
Cray T3E, Cray X1,
IBM p5 590/5

Cluster A class of multiprocessors using message passing. The individual nodes  See commodity and
are either commodities or customized, likewise the interconnect. custom clusters

Commodity A class of clusters where the nodes are truly commodities, typically “Beowult™ and other

cluster headless workstations, motherboards, or blade servers, connected witha  “homemade™ clusters

SAN or LAN usually accessible via an /O bus.

Custom cluster

A cluster architecture where the nodes and the interconnect are customized
and more tightly integrated than in a commodity cluster. Also called
distributed memory or message passing multiprocessors.

IBM Blue Gene, Cray
XT3

Constellation

Large-scale multiprocessors that use clustering of smaller-scale
multiprocessors, typically with a DSM or SMP architecture and 32 or more
Processors.

Larger SGI Origin/
Altix, ASC Purple




Large-scale Multiprocessors Class Hierarchy

Larger
multiprocessors
I
| |
Shared address Distributed
space address space
| I
I | I
Symmetric shared

memory (SMP) Distributed shared Commaodity clustaers: Custom
Examples: IBM eserver, memory (DSM) Beowulf and others cluster

SUN Sunfire

Cache coherent: Uniform cluster:

ccNUMA:
IBM BlueG
SGI Origin/Altix uetaene

. Constellation cluster of
M h h i
Dng?;y $;£ i:en DSMs or SMPs
: SGI Altix, ASC Purple




Emerging Trends from A Look at The
TOP500 Multiprocessor List

Clusters represent a majority of the systems

The majority of the clusters are commodity
clusters, often put together by users

Although commodity clusters dominate the list,
Top 25 are much more varied

Vector processors, which once dominated the list,
have almost disappeared

IBM Blue Gene dominates the top 10 systems

Architectural convergence has been driven more
by market effects
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