Large-Scale Multiprocessors And
Scientific Applications

Zhou Li
Chao Sun

Y
L

A~ Y
Ul L

ents

ntroduction

nterprocessor Communication: The Critical
Performance Issue

Characteristics of Scientific Applications
Synchronization: Scaling Up
Performance on Shared-Memory Multiprocessors

Performance Measurement of Parallel Processors
Applications

Implementing Cache Coherence
The Custom Cluster Approach: Blue Gene/L
Concluding Remarks

lind 1A
I1ILI 11U

IJII
l U

~ ~4

OGQUCT

 The primary application of large-scale
multiprocessors is for true parallel

programming

 The primary target of parallel computing is
scientific and technical applications

Y
L

A~ Y
Ul L

ents

ntroduction

nterprocessor Communication: The Critical
Performance Issue

Characteristics of Scientific Applications
Synchronization: Scaling Up
Performance on Shared-Memory Multiprocessors

Performance Measurement of Parallel Processors
Applications

Implementing Cache Coherence
The Custom Cluster Approach: Blue Gene/L
Concluding Remarks

Interprocessor Communication:
The Critical Performance Issue

e Communication bandwidth
e Communication latency

Communication latency = Sender overhead +
Time of flight + Transmission time + Receiver
overhead

e Communication latency hiding

Y
L

A~ Y
Ul L

ents

ntroduction

nterprocessor Communication: The Critical
Performance Issue

Characteristics of Scientific Applications
Synchronization: Scaling Up
Performance on Shared-Memory Multiprocessors

Performance Measurement of Parallel Processors
Applications

Implementing Cache Coherence
The Custom Cluster Approach: Blue Gene/L
Concluding Remarks

CrhhAavacrtrAavricki~e
ClidldULT T IOLILO

e size of the data items
e regularity in the communication patterns

Thae EET Ko
1TIT ' 1 I\C

"ol ‘o
|

A

ICTI

1. Transpose data matrix.

2. Perform 1D FFT on each row of data matrix.

3. Multiply the roots of unity matrix by the data
matrix and write the result in the data matrix.

4. Transpose data matrix.
5. Perform 1D FFT on each row of data matrix.
6. Transpose data matrix.

Thalll o
11T LU N\C

("ol o
|

Al
ITI
e the blocks of the matrix are assigned to

processors using a 2D tlllng LN B

e the dense matrix multlpllcatlon is performed

by the processor that owns the destination
block.

The RA
111C Dd

r t‘ -|- ~

ne pp daltion

e n-body algorithm solving a problem in galaxy
evolution.

e The Barnes-Hut algorithm uses an octree
(each node has up to eight children) to
represent the eight cubes in a portion of space

Th

A NN~~~ -|- ~
11IC UULC

edan A pp dation

 Ocean simulates the influence of eddy and
boundary currents on large-scale flow in the
ocean

* Red-black Gauss-Seidel colors the points in the
grid so as to consistently update each point
based on previous values of the adjacent
neighbors

CAarmntiFarinn /CAarmmrmiiinicratinam DAadin
CULTTYUlalivl iz cuttiiitiutriicduivlil inallv
Scaling of computation-
Application Scaling of computation Scaling of communication to-communication
FFT nlogn n
7 P logn
LU n Jn Jn
P = s
Jp Jp
Barnes nlogn approximately N/E(logn) approximately _/p
P «."’3_3 -'\/I_J
Ocean n Jn Jn
p N ~7

Jp Ip

Y
L

A~ Y
Ul L

ents

ntroduction

nterprocessor Communication: The Critical
Performance Issue

Characteristics of Scientific Applications
Synchronization: Scaling Up
Performance on Shared-Memory Multiprocessors

Performance Measurement of Parallel Processors
Applications

Implementing Cache Coherence
The Custom Cluster Approach: Blue Gene/L
Concluding Remarks

T'

\IV\I\L\IF If'\.

C ~ 1>~ no
;)y' ICIHHTOUINTZA LIV

: p nni .g
e |ocks that a processor continuously tries to

acquire, spinning around a loop until it
succeeds

DADDUI R2,R0,#1
lockit: EXCH R2,0(R1) ;atomic exchange
BNEZ RZ,Tockit ;already locked?

@Y

ONniZa

@Y

IoN

"ol o v \ WA e L\IF
11 | |

C ~ 4
SYNcCn C

D"\ :f\
OUdllICT

Tock (counterlock);/* ensure update atomic */
if (count==0) release=0;/* first=>reset release */
count = count + 1;/* count arrivals */
unlock(counterlock);/* release Tock */
if (count==total) {/* all arrived */

count=0; /* reset counter */

release=1;/* release processes */

}

else {/* more to come */

spin (release==1);/* wait for arrivals */

Synchronization Performance
Challenges

e Contention

— synchronization performance can be a real
bottleneck when there is substantial contention
among multiple processes.

e Serialization

— This serialization is a problem when there is
contention because it greatly increases the time to
complete the synchronization operation.

Exponential Back-off
And Queuing Locks

DADDUI R3,R0,#1 ;R3 = initial delay

lockit: LL R2,0(R1) ;:load Tinked
BNEZ RZ2,Tockit :not available-spin
DADDUI RZ,R2,#1 :get locked value
SC R2,0(R1) ;store conditional
BNEZ RZ2,got1t :branch 1f store succeeds
DSLL R3,R3,#1 :increase delay by factor of 2
PAUSE R3 :delays by value 1n R3
J lTockit

gotit: use data protected by lock

Y
L

A~ Y
Ul L

ents

ntroduction

nterprocessor Communication: The Critical
Performance Issue

Characteristics of Scientific Applications
Synchronization: Scaling Up
Performance on Shared-Memory Multiprocessors

Performance Measurement of Parallel Processors
Applications

Implementing Cache Coherence
The Custom Cluster Approach: Blue Gene/L
Concluding Remarks

¢—I'

Performance Evaluati
on Symmetric Shared-Memory
Multiprocessors

lon

Normal uniprocessor misses VS coherence
misses

Capacity misses dominate uniprocessor misses

— o o~ [V N -A -IAJI-III - o= e

UUEb IIUL UIbLIlIgUIbH UEL ween pr“" vVdl e d Id
shared cache block

Vary processor number, cache size and block
Size

Symmetric Shared-Memory Multiprocessor
Increase The Processor Count

* Increase the total amount of cache, causing
capacity misses to drop

* |ncrease the amount of communication,
causing coherence misses to rise

e Some application has extraordinary
performance change due to its specific
characteristics

Symmetric Shared-Memory Multiprocessor
Miss Rate VS Processor Count

8% [Py TR T 2%
% = 1 e] Miss rate 1%
8% | [|1 [[|- 0%
5% -

1 2 4 8 16

Processor count

Miss rate 4%

DO [rrereren s
1 2 4 8 16 18% [I b
16% [oome] [rrmmmemerenemeeees
14% Frp-| |
12%H [[|- |

Miss rate 10% || || || [~ [

Processor count

1%

Miss rate

0%

1 2 4 8 16

Processor count

i 2 4 8 16

Processor count

B Coherence missrate [J Capacity miss rate

Symmetric Shared-Memory Multiprocessor
Increase The Cache Size

e Usually has a beneficial effect as it reduces
cache misses

e Two reasons for non-obvious reduction of
miss rates

- Inherent communication
- Temporary plateau

Symmetric Shared-Memory Multiprocessor
Miss Rate VS Cache Size

Miss rate

Miss rate

10%

8% r

Gafo B

4%

2%

0%
32 64 128 256

Cache size (KB}

Barnes

2.0%

1.5%

1.00,-’3 B

0%

32 B4 128 258
Cache size (KB)

2.5%
2.0%
Miss rate 1.5%
1.0%

0%

14%
12%
10%
B%
6%
4%
2%
0%

Miss rate

32 64 128 256
Cache size (KB)

32 64 128 256
Cache size (KB)

B Coherence miss rate

O Capacity miss rate

Symmetric Shared-Memory Multiprocessor
Increase The Block Size

e Reduces spatial locality for shared data

e Potential increase in miss rate due to false
sharing

 Real bottle-neck in bus-based multiprocessors
is the limited memory and bus bandwidth

 The growth in traffic can actually lead to
performance slowdowns due to longer miss
penalties and increased bus contentions

Symmetric Shared-Memory Multiprocessor
Miss Rate VS Block Size

14%
12%
10%

, 83
Miss rate

60/0 B
40/0 B
2%

0%

Miss rate

0%

16 32 B4 128
Block size (byies)

Barnes

16 32 B4 128
Block size (bytes)

Miss rate

Miss rate

14%

12%
10% F

16 32 64 128
Block size (bytes)

16 32 64
Block size (bytes)

128

B Coherence miss rate

O Capacity miss rate

Symmetric Shared-Memory Multiprocessor
Bytes per Data Reference VS Block Size

Bytes per data reference]|

T s s
o FFT

6.0 ® LU /
¢ Barnes

5.0 < Ocean

4.0

3.0

2.0

1.0 oy

e Ko,

0.09/'.//?’,/

16

32 64 128
Block size (bytes)

Performance Evaluation
on Distributed-Memory Multiprocessors

 The distribution of memory requests between
local and remote is key to performance, as it
affects global bandwidth consumption and
request latency

e Separate the cache misses into local and
remote requests

e Coherence misses dominate remote misses

Performance Changes
on Distributed-Memory Multiprocessors

Effect of processor count increase is little
Miss rates decrease as cache sizes grow

Miss rates drop as block sizes grow

- good spatial locality of sample applications
- local misses reduction plays the key role
- still need to consider the local and global bandwidth

consumptions

Extraordinary changes due to specific
characteristics

Distributed-Memory Multiprocessor
Miss Rate VS Processor Count

B% -t

5%
4%
Miss rate 3%
2%
1%
0%

8

16 32 64

Processor count

0.5%
Miss rate

0.0%

8

Processor count

16 32 64

1.0%

Miss rate 0.5% |

0.0%

8%

6%

Miss rate 4%

2%

0%

8 16 32 64
Processor count

8 16 32 64

Processor count

B Local misses

[1 RBemote misses

Distributed-Memory Multiprocessor
Miss Rate VS Cache Size

10%

8%

Sofo B

Miss rate

4% r

20.—‘3 B

0%

1.5%

1.0%

Miss rate

05%

0.0%

32 B4 128 256 512
Cache size (KB)

Barnes

32 64 128 256 512
Cache size (KB)

2.5%

2.0% -

1 .50.3'0 B

Miss rate

1.0%

0.50.-"'0 B

0.0%

20“.-"'0 B

1 50.-"'0 B

Miss rate 10%

50.-’::- B

0%

32 B4 128 256 512
Cache size (KB)

32 64 128 256 512
Cache size (KB)

B Local misses

O Remote misses

Distributed-Memory Multiprocessor
Miss Rate VS Block Size

12%

10%

8%

Miss rate 6%
4%

2%

0%

Miss rate

16 32 64 128
Block size (bytes)

“" 16 32 64 128
Block size (bytes)

4%
3%
Miss rate 2%
1%

0%

15%
Miss rate 10%

5%

0%

16 32 64 128
Block size (bytes)

16 32 64 128
Block size (bytes)

B Local misses

O Remote misses

Distributed-Memory Multiprocessor
Bytes per Data Reference VS Block Size

Bytes per data
reference

Bytes per data
reference

6.0
5.0
4.0
3.0
2.0
1.0
0.0

FFT

16 32 64 128
Block size (bytes)

Barnes

16 32 64 128
Block size (bytes)

Bytes per data
reference

Bytes per data
reference

B Local 0 Global

0.6

LU

05 oo

0.4
0.3
0.2
0.1
0.0

16 32 64 128
Block size (bytes)

16 32 64 128
Block size (bytes)

Distributed-Memory Multiprocessor
Remote Memory Access Latency

e Also a key issue for the performance

 Contention may have a serious impact

Processor clock cycles Processor clock cycles

Characteristic < 16 processors 17-64 processors
Cache hit] I
Cache miss to local memory 85 85
Cache miss to remote home directory 125 150
Cache miss to remotely cached data 140 170

(three-hop miss)

Distributed-Memory Multiprocessor
Average Memory Reference Cost (cycles)

* Influenced by total frequency of cache misses
and miss location distribution

e Need to consider the effect of contentions and
synchronization delays

Y
L

A~ Y
Ul L

ents

ntroduction

nterprocessor Communication: The Critical
Performance Issue

Characteristics of Scientific Applications
Synchronization: Scaling Up
Performance on Shared-Memory Multiprocessors

Performance Measurement of Parallel Processors
Applications

Implementing Cache Coherence
The Custom Cluster Approach: Blue Gene/L
Concluding Remarks

Performance Measurement
of Parallel Processors

Measuring only CPU time may be misleading
Scaling the application is more interesting

- un-scaled version may give pessimistic result
- select uniprocessor measuring algorithm

- two ways of scaling
* memory-constrained scaling, keep memory per

processor constant
* time-constrained scaling, keep total execution time

constant, need to know the relationship between
running time and problem size

Scaling may affect result quality

Y
L

A~ Y
Ul L

ents

ntroduction

nterprocessor Communication: The Critical
Performance Issue

Characteristics of Scientific Applications
Synchronization: Scaling Up
Performance on Shared-Memory Multiprocessors

Performance Measurement of Parallel Processors
Applications

Implementing Cache Coherence
The Custom Cluster Approach: Blue Gene/L
Concluding Remarks

Implementing Cache Coherence
for Snoopy Protocol

Update miss handling needs multiple steps

- compose an invalidate message

- transmit message when network is available

- process request after all invalidates have been processed

Challenge is to make the process appear atomic
- how to resolve the race?
- how to know all invalidates have been processed?

Solutions for the difficulties

- requests pass through a single channel, communication
network accepts message only when delivery is guaranteed

- race losers invalidate the block and generate a write miss to
get data, the winner ignores this invalidate

- or let incoming requests precede over outgoing ones

Implementing Cache Coherence
in A DSM Multiprocessor

Serializations on competing writes and memory

consistency need to be enforced

- exclusive access request is easy as directory is unique

- ensure that write is complete before the next is begun

- directory signals to winner when on completing processing
- sends to race losers a negative acknowledge (NAK)

Know when the invalidates are complete

- the destination node of the invalidate message explicitly
acknowledge this message from the directory

- acknowledgement can be sent to the directory or the
requester

- the latter one reduces the possibility of creating a bottleneck
at a directory

Avoiding Deadlock from Limited Buffering

Deadlock situations

- multiple resources are needed for completing
- resources are held until completing
- no global partial order on acquisition of resources

Ensure resources will always be available for

completing a transaction

- new requests cannot block replies that free up buffers
- allocate space for requests to accept reply (if expected)
- can reply a request with NAK, but never NAK a reply

- requests retry on receiving NAK

Ensure all replies can be accepted and all

requests will be serviced
- e.g. all requests could be completed

lmannlAarnan mneyr Tha Niv Az
|||||J|C||| | |5 11T UlII LUI |

y

2% ol
Ll

~ I
Ul 11

ecCto olier
Ability to NAK requests when receiving too

many of them

Be multithreaded and able to handle requests
for multiple blocks independently

Capability of suspending execution while
waiting for replies

Dealing with non-atomicity and finite
buffering is critical

Y
L

A~ Y
Ul L

ents

ntroduction

nterprocessor Communication: The Critical
Performance Issue

Characteristics of Scientific Applications
Synchronization: Scaling Up
Performance on Shared-Memory Multiprocessors

Performance Measurement of Parallel Processors
Applications

Implementing Cache Coherence
The Custom Cluster Approach: Blue Gene/L
Concluding Remarks

Blue Gene/L:
Parameters And Characteristics

Distributed-memory, message-passing

Special customized processing node with two
processors, caches, and interconnect logic

Up to 64K nodes organized into 32 racks

85% interconnect within single rack, greatly
reducing inter-rack complexity and latency

All the logic into a single chip, higher density,
lower power, and lower cost

Blue Gene/L Processing Node

g 256
@ 11 GB/sec
32K32KL1 | © | 5 (= -
3|3
PPC 440 [Z = Shared L3
CPU 1 3 L directory for 4 MB
S embedded embedded
Double-issue . -~ DRAM . - .| DRAM
FPU 3| 256 -
Includes | 3 L3 cache
Snoop error Jo or
correction - ﬁ memary
32Ki32KL1 | o | B control | 5
N |5 256 (ECC) =
=] — &
PPC 440 [T -
CPU g [~ 7=
I 256 I
Double-issue al 11 GB/sec
FPU -3
| 128
[
¥ L | L] L | L
Ethernet JTAG Torus Collective Global DDR
Ghit access interrupt/ control
lockbox with ECC
I I I I I I 5.5 GB/sec
Gigabit IEEE & out and 3 out and 4 global 144-bit-wide
Ethernet 11491 & in, each at 3in.each at barriers or DDR
(JTAG) 1.4 GB/sec 2.8 GB/sec interrupts ~ 256/512 MB
link link

The 64k-processor Blue Gene/L System

Y
L

A~ Y
Ul L

ents

ntroduction

nterprocessor Communication: The Critical
Performance Issue

Characteristics of Scientific Applications
Synchronization: Scaling Up
Performance on Shared-Memory Multiprocessors

Performance Measurement of Parallel Processors
Applications

Implementing Cache Coherence
The Custom Cluster Approach: Blue Gene/L
Concluding Remarks

Classification of Large-scale Multiprocessors

Terminology Characteristics Examples
MPP Originally referred to a class of architectures characterized by large Connection Machines

numbers of small, typically custom processors and usually using an SIMD
style architecture.

CM-2

SMP (symmetric
multiprocessor)

Shared-memory multiprocessors with a symmetric relationship to
memory; also called UMA (uniform memory access). Scalable versions of
these architectures used multistage interconnection networks, typically
configured with at most 64—128 processors.

SUN Sunfire, NEC
Earth Simulator

DSM (distributed
shared memory)

A class of architectures that support scalable shared memory in a
distributed fashion. These architectures are available both with and without
cache coherence and typically can support hundreds to thousands of
processors.

SGI Origin and Altix,
Cray T3E, Cray X1,
IBM p5 590/5

Cluster A class of multiprocessors using message passing. The individual nodes See commodity and
are either commodities or customized, likewise the interconnect. custom clusters

Commodity A class of clusters where the nodes are truly commodities, typically “Beowult™ and other

cluster headless workstations, motherboards, or blade servers, connected witha “homemade™ clusters

SAN or LAN usually accessible via an /O bus.

Custom cluster

A cluster architecture where the nodes and the interconnect are customized
and more tightly integrated than in a commodity cluster. Also called
distributed memory or message passing multiprocessors.

IBM Blue Gene, Cray
XT3

Constellation

Large-scale multiprocessors that use clustering of smaller-scale
multiprocessors, typically with a DSM or SMP architecture and 32 or more
Processors.

Larger SGI Origin/
Altix, ASC Purple

Large-scale Multiprocessors Class Hierarchy

Larger
multiprocessors
I
| |
Shared address Distributed
space address space
| I
I | I
Symmetric shared

memory (SMP) Distributed shared Commaodity clustaers: Custom
Examples: IBM eserver, memory (DSM) Beowulf and others cluster

SUN Sunfire

Cache coherent: Uniform cluster:

ccNUMA:
IBM BlueG
SGI Origin/Altix uetaene

. Constellation cluster of
M h h i
Dng?;y $;£ i:en DSMs or SMPs
: SGI Altix, ASC Purple

Emerging Trends from A Look at The
TOP500 Multiprocessor List

Clusters represent a majority of the systems

The majority of the clusters are commodity
clusters, often put together by users

Although commodity clusters dominate the list,
Top 25 are much more varied

Vector processors, which once dominated the list,
have almost disappeared

IBM Blue Gene dominates the top 10 systems

Architectural convergence has been driven more
by market effects

Thank You

