
GPGPU & ACCELERATORS

Bimalee Salpitikorala
Thilina Gunarathne

CPU

 Optimized for sequential performance
 Extracting Instruction level parallelism is difficult
 Control hardware to check for dependencies, out-of-order

execution, prediction logic etc
 Control hardware dominates CPU
 Complex, difficult to build and verify

 Does not do actual computation but consumes
power

 Pollack’s Rule
 Performance ~ sqrt(area)
 To increase sequential performance 2 times, area 4 times
 Increase performance using 2 cores, area only 2 times

GPU

 High-performance many-core processors
 Data Parallelized Machine -SIMD Architecture
 Less control hardware
 High computational performance

GPU vs CPU GFLOPS graph

http://courses.ece.illinois.edu/ece498/al/textbook/Chapter1-Introduction.pdf

GPU - Accelerator?
No, not this

Presenter
Presentation Notes
The generic definition of an accelerator is something that makes something else move faster

Accelerator?

 Speed up some aspect of the computing
workload

 Implemented as a coprocessor to the host-
 Its own instruction set
 Its own memory (usually but not always).

 To the hardware - another IO unit
 To the software – another computer
 Today's accelerators
 Sony/Toshiba/IBM Cell Broadband Engine
 GPUs

Presenter
Presentation Notes
1. A hardware component whose role is to speed up some aspect of the computing workload

With current technology, an accelerator fits on a single chip, like a CPU.
To the hardware - another IO unit, communicates with the CPU using IO commands and DMA memory transfers.
To the software - another computer to which your program sends data and routines to execute.

How the GPU Fits into the
Overall Computer System

Presenter
Presentation Notes
northbridge & southbridge - Two chips in the core logic chipset on a PC motherboard
The northbridge typically handles communications among the CPU, RAM, BIOS ROM, and PCI Express (Peripheral Component Interconnect,) (or AGP) video cards, and the southbridge
is a chip that implements the "slower" capabilities of the motherboard
the northbridge ties the southbridge to the CPU

IMAGE  PIXEL

Graphics pipeline

GPU Architecture

http://http.download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf

Presenter
Presentation Notes
The GeForce 6 Series

http://http.download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf�

GPU Pipeline

 CPU to GPU data transfer

 Vertex processing

 Cull / Clip /Set up

 Rasterization

 Texture & Fragment processing

 Compare & blend

CPU to GPU data transfer
 Through a graphics connector
 PCI Express
 AGP slot on the motherboard

 Graphics connector transfers
 properties at the end points (vertices) or control points

of the geometric primitives (lines and triangles).

 The type of properties provided per vertex
 x-y-z coordinates
 RGB values
 Texture
 Reflectivity etc..

Presenter
Presentation Notes
PCI Express(Peripheral Component Interconnect) Motherboard-level interconnect
A key difference between PCIe and earlier buses is a topology based on point-to-point serial links, rather than a shared parallel bus architecture.
the PCIe bus can be thought of as a high-speed serial replacement of the older (parallel) PCI/PCI-X bus (4 GB/sec)
The Accelerated Graphics Port (often shortened to AGP) is a high-speed point-to-point channel for attaching a video card to a computer's motherboard (264 MB/sec)
A texture can be uniform, such as a brick wall, or irregular, such as wood grain or marble.

Vertex processing

Vertex processor/vertex shaders

http://http.download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf

Presenter
Presentation Notes
vertex fetch unit is used to read the vertices referenced by the rendering commands
Converts each vertex into a 2D screen position
Performs
Transformations
Skinning
any other per-vertex operation the user specifies
Vertices are grouped into primitives
Points
Lines
 triangles
The Cull/Clip/Setup blocks perform per-primitive operations
 removing primitives that aren't visible at all
clipping primitives that intersect the view frustum
Performing edge and plane equation setup on the data in preparation for rasterization.

http://http.download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf�

Cull/ Clip/ Set up

 Remove primitives that aren't visible
 Clip primitives that intersect the view frustum
 Performing edge and plane equation setup on

the data in preparation for rasterization.

Presenter
Presentation Notes
is the region of space in the modeled world

Rasterization

 Filling primitives with pixels known as
"fragments,"
 Calculates which pixels are covered by each

primitive.
 Removes pixels that are hidden (occluded) by

other objects in the scene.
 Compute the value of pixels
 Color
 Fog
 texture

Presenter
Presentation Notes
Rasterization or Rasterisation is the task of taking an image described in a vector graphics format (shapes) and converting it into a raster image (pixels or dots) for output on a video display or printer, or for storage in a bitmap file format

Texture & Fragment processing

Fragment Processor/ pixel shader

http://http.download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf

Presenter
Presentation Notes
The fragment processor (sometimes called a "pixel shader")
Fragment processor- apply shader program to each fragment independently.
Adds textures and final colors to the fragments
Fragment processor works on groups of hundreds of pixels at a time in SIMD fashion (with each fragment processor engine working on one fragment concurrently), hiding the latency of texture fetch from the computational performance of the fragment processor.
fog unit can be used to blend fog in fixed-point precision with no performance penalty.

http://http.download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf�

Memory

 Partitioned into up to four independent
memory partitions each with its own dynamic
random-access memories.

 All rendered surfaces are stored in the
DRAMs (Frame buffer)

GPU Evolution

GPGPU

Presenter
Presentation Notes
General-Purpose computation on Graphics Processing Units

http://en.wikipedia.org/wiki/File:Slide_convergence.jpg

Presenter
Presentation Notes
May be show this at the start….

http://en.wikipedia.org/wiki/File:Slide_convergence.jpg�

Early GPGPU drawbacks

 Require knowledge of graphics APIs and GPU
architecture

 Problems expressed in terms of vertex
coordinates, textures and shader programs

 Random reads and writes to memory were
not supported

 Lack of double precision support

Presenter
Presentation Notes
Require intimate knowledge of graphics APIs and GPU architecture

Problems had to be expressed in terms of vertex coordinates, textures and shader programs

Basic programming features such as random reads and writes to memory were not supported greatly restricting the programming model.

The lack of double precision support meant some scientific applications could not be run on the GPU

GPU Computing

 Nvidia G80 unified graphics and compute
architecture
 GeForce 8800®, Quadro FX 5600®, and Tesla C870® GPUs

 CUDA
 Software and hardware architecture
 Enables the GPU to be programmed with high level

languages
 Ability to write C programs with CUDA extensions

 “GPU Computing”
 Broader application support
 Wider programming language support
 Clear separation from the early “GPGPU” model of

programming

Presenter
Presentation Notes
To address these problems, NVIDIA introduced two key technologies
the G80 unified graphics and compute architecture (GeForce 8800®, Quadro FX 5600®, and Tesla C870® GPUs)
CUDA, a software and hardware architecture that enabled the GPU to be programmed with a variety of high level programming languages.
Programmer could now write C programs with CUDA extensions and target a general purpose, massively parallel processor.
“GPU Computing”
broader application support
Wider programming language support
Clear separation from the early “GPGPU” model of programming

NVIDIA Tesla

 Consists of Nvidia’s highest end graphics card,
minus the video out connector.

 Cuts the cost roughly in half
 Quadro FX 5800 is ~$3000
 Tesla C1060 is ~$1500.

http://www.oscer.ou.edu/Workshops/GPGPU/sipe_gpgpu_20090428.ppt 23

http://images.nvidia.com/products/tesla_c1060/
Tesla_c1060_3qtr_low.png

Presenter
Presentation Notes
NVIDIA now offers a GPU platform named Tesla.
It consists of their highest end graphics card, minus the video out connector.
This cuts the cost of the GPU card roughly in half: Quadro FX 5800 is ~$3000, Tesla C1060 is ~$1500.

http://images.nvidia.com/products/tesla_c1060/Tesla_c1060_3qtr_low.png�
http://images.nvidia.com/products/tesla_c1060/Tesla_c1060_3qtr_low.png�

NVIDIA Tesla C1060 Card Specs

 240 GPU cores
 1.296 GHz
 Single precision floating point performance
 933 GFLOPs (3 single precision flops per clock per core)

 Double precision floating point performance
 78 GFLOPs (0.25 double precision flops per clock per core)

 Internal RAM: 4 GB
 Speed: 102 GB/sec (compared 21-25 GB/sec for regular

RAM)

 Has to be plugged into a PCIe slot (at most 8 GB/sec)

24http://www.oscer.ou.edu/Workshops/GPGPU/sipe_gpgpu_20090428.ppt

Tesla C1060 (GT 200) Architecture

 30 Streaming Multiprocessors (SM)
 Each SM contains
 8 scalar processors
 1 double precision unit
 2 special function units
 shared memory (16 K)
 registers (16,384 32-bit=64 K)

NVIDIA Fermi Architecture
 16 SMs -32 cores

each

 Single core
executes a floating
point or an integer
instruction per
clock

 Six 64-bit memory
partitions

 GigaThread global
scheduler

Presenter
Presentation Notes
512 CUDA cores
A CUDA core executes a floating point or integer instruction per clock for a thread
16 SMs
32 cores each
The GPU has six 64-bit memory partitions
A host interface connects the GPU to the CPU via PCI-Express
The GigaThread global scheduler distributes thread blocks to SM thread schedulers.

Streaming Multiprocessor

Presenter
Presentation Notes
32 Cores
Fully pipelined integer arithmetic logic unit (ALU) and floating point unit (FPU).
16 Load/Store units
Four Special Function Units
sin, cosine, reciprocal, and square root.
Each SFU executes one instruction per thread, per clock
64 KB Configurable Shared Memory and L1 Cache
can be configured as 48 KB of Shared memory with 16 KB of L1
cache or as 16 KB of Shared memory with 48 KB of L1 cache
Shared memory
Facilitates extensive reuse of on-chip data, and
Reduces off-chip traffic

 32 Cores
 Fully pipelined integer arithmetic logic unit (ALU) and

floating point unit (FPU).
 16 Load/Store units
 Four Special Function Units
 sin, cosine, reciprocal, and square root.
 Each SFU executes one instruction per thread, per clock

 64 KB Configurable Shared Memory and L1 Cache
 can be configured as 48 KB of Shared memory with 16 KB of L1
 cache or as 16 KB of Shared memory with 48 KB of L1 cache
 Shared memory
 Facilitates extensive reuse of on-chip data, and
 Reduces off-chip traffic

Presenter
Presentation Notes
16 Load/Store Units - allowing source and destination addresses to be calculated for sixteen threads per clock

GigaThreadTM Thread
Scheduler
 Two-level, distributed thread scheduler
 Chip level , a global work distribution engine schedules

thread blocks to various SMs,
 SM level, each warp scheduler distributes warps of 32

threads to its execution units.

 Greater thread throughput(more than 12,288
threads)

 Faster context switching
 Concurrent kernel execution
 Improved thread block scheduling

Concurrent Kernel Execution

 Concurrent kernel execution
 Different kernels of the same application context

can execute on the GPU at the same time
 Allows programs that execute a number of small

kernels to utilize the whole GPU

 Sequential kernel execution
 Kernels from different application contexts can

run sequentially with great efficiency due to the
improved context switching performance

Fermi Improvements

 Double Precision Performance
 Error Correction Code (ECC) support
 True Cache Hierarchy
 More Shared Memory
 Faster Context Switching
 Faster Atomic Operations

Presenter
Presentation Notes
Double Precision Performance
ECC support
Naturally occurring radiation can cause a bit stored in memory to be altered, resulting in a soft error. ECC technology detects and corrects single-bit soft errors before they affect the system
 ECC allows GPU computing users to safely deploy large numbers of GPUs in datacenter installations, and also ensure data-sensitive applications like medical imaging and financial options pricing are protected from memory errors.

True Cache Hierarchy—some parallel algorithms were unable to use the GPU’s shared memory, and users requested a true cache architecture to aid them.
More Shared Memory—many CUDA programmers requested more than 16 KB of SM shared memory to speed up their applications.
Faster Context Switching—users requested faster context switches between application programs and faster graphics and compute interoperation.
Faster Atomic Operations—users requested faster read-modify-write atomic operations for their parallel algorithms.

Double Precision Performance

 Implements the new IEEE 754-2008 floating-point
standard.

 Providing the fused multiply-add (FMA) over MAD
 FMA improves over a multiply-add – no loss of

precision in the addition

Presenter
Presentation Notes
The increase in precision benefits a number of algorithms, such as rendering fine intersecting
geometry, greater precision in iterative mathematical calculations, and fast, exactly-rounded
division and square root operations.

Error Correction Code (ECC)
support
 Detects and corrects single-bit soft errors

before they affect the system.
 Single-Error Correct Double-Error Detect

(SECDED) ECC codes that correct any single
bit error in hardware as the data is accessed.

 Register files, shared memories, L1 caches, L2
cache, and DRAM memory are ECC protected

Presenter
Presentation Notes
Naturally occurring radiation can cause a bit stored in memory to be altered, resulting in a soft error
Because the probability of such radiation induced errors increase linearly with the number of
installed systems, ECC is an essential requirement in large cluster installations.
ensure data-sensitive applications like medical imaging and financial options pricing are protected from memory errors.

True Cache Hierarchy

Presenter
Presentation Notes
Traditional GPU architectures support a read-only ‘‘load’’ path for texture operations and a write-only ‘‘export’’ path for pixel data output.
However, this approach is poorly suited to executing general purpose C or C++ thread programs that expect reads and writes to be ordered.
spilling a register operand to memory and then reading it back creates a read after write hazard; if the read and write paths are separate, it may be necessary to explicitly flush the entire write / ‘‘export’’ path before it is safe to issue the read, and any caches on the read path would not be
coherent with respect to the write data.
The Fermi architecture addresses this challenge by implementing a single unified memory request path for loads and stores, with an L1 cache per SM multiprocessor and unified L2 cache that services all operations (load, store and texture).

True Cache Hierachy

 Implement a single unified memory request
path for loads and stores
 An L1 cache per SM multiprocessor
 Unified L2 cache that services all operations (load,

store and texture).

 The per-SM L1 cache is configurable (64 KB)
 48 KB of Shared memory with 16 KB of L1 cache
 16 KB of Shared memory with 48 KB of L1 cache.

Parallel Thread Execution ISA

 Stable ISA that spans multiple GPU generations
 Achieve full GPU performance in compiled

applications
 A machine-independent ISA for C, C++, Fortran, and

other compiler targets.
 Common ISA for optimizing code generators and

translators, which map PTX to specific target
machines.

 Facilitate hand-coding of libraries and performance
kernels

 Provide a scalable programming model that spans
GPU sizes from a few cores to many parallel cores

Fast Atomic Memory
Operations
 Allowing concurrent threads to correctly perform

read-modify-write operations on shared data
structures

 Used for
 parallel sorting
 reduction operations
 building data structures

 Combination of more atomic units in hardware
and the addition of the L2 cache, atomic
operations performance is up to 20× faster

Device Query

DEMO

Fermi

• Real Floating Point in Quality and Performance
• Error Correcting Codes (ECC) on Main Memory and

Caches
• 64bit Virtual Address Space

– Parallel Thread Execution (PTX) layer allowed seamless
migration

• Caches
– 64KB L1

• Ability to split as shared memory & Cache
– 768KB L2
– Total registers are larger than L1 & L2
– Total L1 equals to L2

• Fast Context Switching

Fermi

 Unified Address Space
 Debugging Support
 Faster Atomic Instructions to Support

TaskBased Parallel Programming
 A Brand New Instruction Set
 Fermi is Faster than G80

GPGPU Programming

Programming model

 The GPU is viewed as a compute device that:
 Is a coprocessor to the CPU (host)
 Has its own GDRAM (device memory)
 Runs many threads in parallel

 Single Instruction Multiple Thread (SIMT)
 Data-parallel portions of an application are

executed on the device as kernels which run
in parallel on many threads

Presenter
Presentation Notes

Hardware Differences
CPU VS GPU
 Threading Resources (parallel threads)
 Handful in CPU vs Thousands in GPU

 Threads
 GPU threads are extremely lightweight
 Very little creation overhead
 GPU needs 1000s of threads for full efficiency
 Multi-core CPU needs only a few

 RAM
 Single address space vs many levels of

programmer managed

Presenter
Presentation Notes
some GPUs support 1,024 active threads per multiprocessor. On devices that have 30 multiprocessors this leads to more than 30,000 active threads.
In addition, devices can hold literally billions of threads scheduled to run on these GPUs.

Hide latency with computations..not cache…many threads

Single large address space wehther you get the data from cache or memory or a page file in the file system On the other hand…

What’s Best For GPU’s

 Massively Parallel computations
 Data parallel

 Coherence memory access by kernels
 Less data moving
 Enough computations to justify moving data
 Keep data on the device as long as possible

Presenter
Presentation Notes
Data parallel
 arithmetic on large data sets (such as matrices)
 where the same operation can be performed across thousands, if not millions, of elements at the same time.
The software must use a large number of threads.
lightweight threading model.

Memory Coherance
Certain memory access patterns enable the hardware to coalesce groups of data items to be written and read in one operation.

Matrix addition vs multiplication
 performing even less efficient computations on GPU to avoid moving data back and forth
18

1.2 of http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf

Programming Languages

 OpenCL
 CUDA
 ATI Stream SDK
 OpenGL
 DirectX

OpenCL

 Portable code across multiple
devices
 GPU, CPU, Cell, Mobiles,

Embedded systems,..
 OpenCL platform model
 Host connected to multiple

compute devices
 Compute device -> multiple

compute units
 Compute unit -> multiple

processing units

http://images.apple.com/macosx/technology/docs/OpenCL_TB_brief_20090903.pdf

Presenter
Presentation Notes
http://images.apple.com/macosx/technology/docs/OpenCL_TB_brief_20090903.pdf

http://images.apple.com/macosx/technology/docs/OpenCL_TB_brief_20090903.pdf�

OpenCL

 Host Code -> c/ c++
 Transfer data host memory <->

device memory
 Execute device code

 Device code (Kernels) - >
OpenCL C
 Basic unit of executable code

 Serial parts (CPU) interleaved
by parallel parts(GPU)

http://images.apple.com/macosx/technology/docs/OpenCL_TB_brief_20090903.pdf

Presenter
Presentation Notes
http://images.apple.com/macosx/technology/docs/OpenCL_TB_brief_20090903.pdf

Host drives the application… configures devices, etc
Kernels are like C functions

http://images.apple.com/macosx/technology/docs/OpenCL_TB_brief_20090903.pdf�

OpenCL API’s
 Platform layer API (host)
 Functions to manage parallel computing tasks
 Abstraction for diverse compute resources

 Runtime
 Task execution
 Resource management

 OpenCL C Kernels
 Compiled on the fly, optimized for user’s hardware

http://images.apple.com/macosx/technology/docs/OpenCL_TB_brief_20090903.pdf

Presenter
Presentation Notes
1. manage parallel computing tasks. It enumerates the OpenCL-capable hardware in a system, sets up the sharing of data structures between the application and OpenCL, controls the compilation and
submission of kernels to the GPU, and has a rich set of functions that manage queuing
and synchronization.
Create memory objects associated to contexts
Compile and create kernel program objects
Issue commands to command-queue
Synchronization of commands
Clean up OpenCL resources

2. The OpenCL runtime executes tasks submitted by the application via the OpenCL API.
The runtime efficiently transfers data between main memory and the dedicated VRAM
used by the GPU and directs execution of the kernels on the GPU hardware. During
execution, the OpenCL runtime manages the dependencies between the kernels and
utilizes the GPU’s processing elements in the most efficient manner.
Launch compute kernels
Set kernel execution configuration
Manage scheduling, compute, and memory resources

http://images.apple.com/macosx/technology/docs/OpenCL_TB_brief_20090903.pdf�

Few Keywords

 Devices
 CPUs, GPUs

 Contexts
 Sharing data between devices

 Queues
 All work submitted through queues
 A queue for each device

Presenter
Presentation Notes
Context is the context of the application
Can be used to share data and configuration across devices

How it works..

 Device Query
 Select devices & create command queues
 Load & compile kernels
 Specify data & number of kernels
 Move data GPU VRAM
 Executes kernels

http://images.apple.com/macosx/technology/docs/OpenCL_TB_brief_20090903.pdf

Presenter
Presentation Notes
* Query and find the list of devices

http://images.apple.com/macosx/technology/docs/OpenCL_TB_brief_20090903.pdf�

Execution Model

http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf

Presenter
Presentation Notes
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf

ND-Range 1-D, 2-D, 3-D workgroup configurations
Kernels can query their position in the dimension.
Helps to manage the computation and data division

http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�

Warps & SIMT

 Basic scheduling unit
 Work-groups divide into

groups of 32 threads
called warps.

 Warps always perform
same instruction (SIMT)

 A lot of warps can hide
memory latency

http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf

http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�

OpenCL Memory Hierarchy

http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf

http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�

Memory Model

http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf

http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�

Memory best practices

 Minimize host<->device data transfer
 Batch Transfers

 Overlap IO with computation
 Coalesced memory access
 Use local memory as a cache
 ~100x smaller latency

Presenter
Presentation Notes
1 High Priority: Minimize data transfer between the host and the device, even if it
 means running some kernels on the device that do not show performance gains when
 compared with running them on the host CPU.
2 Intermediate data structures should be created in device memory, operated on by
the device, and destroyed without ever being mapped by the host or copied to host
memory.
3 .Also, because of the overhead associated with each transfer, batching many small
transfers into one larger transfer performs significantly better than making each
transfer separately.

Latency ~100x smaller than global memory

Cache data to reduce global memory access

Use local memory to avoid non-coalesced global memory access
Threads can cooperate through local memory

Performance Optimizations

 Compiling programs can be expensive
 Reuse or precompiled binaries

 Starting a kernel can be expensive
 Large global work sizes hide memory

latencies
 Trade-off precision & performance with less

precise data types (half_ & native_)
 Divergent execution can be bad
 Data reuse through local memory

Demo

 Bandwidth Test

Accelerator RECALL

CPU’s

http://beautifulpixels.blogspot.com/2008/08/multi-platform-multi-core-architecture.html

Presenter
Presentation Notes
Memory is cached, but even with multi-core systems the programmer doesn't have to worry about consistency.
As long as synchronization primitives are used to avoid race conditions, the systems take care of getting the right data when you fetch it.

Xbox 360

http://beautifulpixels.blogspot.com/2008/08/multi-platform-multi-core-architecture.html

Presenter
Presentation Notes
bit like a multi-core PC, with multiple hardware threads per core. The main thing to note is the single memory used for "system" and graphical resources.
Also, the GPU happens to be the memory controller, and has access to L2, but programmers needed concern themselves with this and only a few developers take advantage of GPU L2 access.�

Cell Broadband Engine

 Novel memory coherence architecture
 emphasizes efficiency/watt
 prioritizes bandwidth over latency
 favors peak computational throughput over simplicity of program

code.
 Challenging to developers

 Architecture
 Power processing element (PPE)
 8 co-processors (SPEs)
 High bandwidth circular data bus

 Element interconnect Bus
 Cache coherent DMA engine in

each processor
 Overlap computation with I/O

 IBM RoadRunner in Los Alamos
 Opteron and Powercell 8i based

http://www.ibm.com/developerworks/power/library/pa-cellsecurity/

Presenter
Presentation Notes
Exotic features such as the XDR memory subsystem and coherent Element Interconnect Bus(EIB) interconnect[3] appear to position Cell for future applications in the supercomputing space to exploit the Cell processor's prowess in floating point kernels.

Roadrunner - First to achieve petaflops.

The PPE, which is capable of running a conventional operating system, has control over the SPEs and can start, stop, interrupt, and schedule processes running on the SPEs. To this end the PPE has additional instructions relating to control of the SPEs. Unlike SPEs, the PPE can read and write the main memory and the local memories of SPEs through the standard load/store instructions.

SPE can access only their local memories.. If not have to use DMA.

The SPEs contain a 128-bit, 128-entry register file and measures 14.5 mm2 on a 90 nm process. An SPE can operate on sixteen 8-bit integers, eight 16-bit integers, four 32-bit integers, or four single-precision floating-point numbers in a single clock cycle, as well as a memory operation.

The PPE maintains a job queue, schedules jobs in SPEs, and monitors progress. Each SPE runs a "mini kernel" whose role is to fetch a job, execute it, and synchronize with the PPE.

In November 2009, an IBM representative said that it has discontinued the development of a Cell processor with 32 SPUs[19][20] but they have not halted development of other future products in the Cell family.[21]

http://www.ibm.com/developerworks/power/library/pa-cellsecurity/�
http://www.ibm.com/developerworks/power/library/pa-cellsecurity/�
http://www.ibm.com/developerworks/power/library/pa-cellsecurity/�

Cell

http://moss.csc.ncsu.edu/~mueller/cluster/ps3/doc/CellProgrammingTutorial/BasicsOfCellArchitecture.html

http://moss.csc.ncsu.edu/~mueller/cluster/ps3/doc/CellProgrammingTutorial/BasicsOfCellArchitecture.html�

Sony PlayStation 3

http://beautifulpixels.blogspot.com/2008/08/multi-platform-multi-core-architecture.html

Presenter
Presentation Notes
A series of co-processors named SPUs have dedicated memory for instructions and data called Local Stores. These must be managed explicitly by DMA transfers.

one Power processing element (PPE) (two threads) on the core and with seven active physical SPEs in silicon. Total 9 independent threads.

Sony PlayStation 3

 US Military purchase of 2000 PS3
 http://scitech.blogs.cnn.com/2009/12/09/military-

purchases-2200-ps3s/
 Army uses Call of Duty to train soldiers ;-)

Presenter
Presentation Notes
Though a single 3.2 GHz cell processor can deliver over 200 GFLOPS, whereas the Sony PS3 configuration delivers approximately 150 GFLOPS, the approximately tenfold cost difference per GFLOP makes the Sony PS3 the only viable technology for HPC applications.
According to Ars Technica, Sony sells the PS3 at a loss and hopes to make back the difference by selling games and accessories.
The reason that the PS3 is a more cost-effective way to buy Cell-powered GFLOPS than, say, the Cell blades that IBM actually makes specifically for supercomputing applications, is that the consoles come with a big, fat subsidy from Sony.

$299 * 2200 ~ .65M $
150 Gflops * 2200 ~ = 320TFlops

http://scitech.blogs.cnn.com/2009/12/09/military-purchases-2200-ps3s/�
http://scitech.blogs.cnn.com/2009/12/09/military-purchases-2200-ps3s/�

Sony PlayStation 3

 US Military purchase of 2000 PS3
 http://scitech.blogs.cnn.com/2009/12/09/military-

purchases-2200-ps3s/
 Army uses Call of Duty to train soldiers ;-)
 For HPC
 $299 * 2200 ~ .65M $
 150 Gflops * 2200 ~ = 320TFlops

Presenter
Presentation Notes
Though a single 3.2 GHz cell processor can deliver over 200 GFLOPS, whereas the Sony PS3 configuration delivers approximately 150 GFLOPS, the approximately tenfold cost difference per GFLOP makes the Sony PS3 the only viable technology for HPC applications.
According to Ars Technica, Sony sells the PS3 at a loss and hopes to make back the difference by selling games and accessories.
The reason that the PS3 is a more cost-effective way to buy Cell-powered GFLOPS than, say, the Cell blades that IBM actually makes specifically for supercomputing applications, is that the consoles come with a big, fat subsidy from Sony.

$299 * 2200 ~ .65M $
150 Gflops * 2200 ~ = 320TFlops

http://scitech.blogs.cnn.com/2009/12/09/military-purchases-2200-ps3s/�
http://scitech.blogs.cnn.com/2009/12/09/military-purchases-2200-ps3s/�

CUDA

http://beautifulpixels.blogspot.com/2008/08/multi-platform-multi-core-architecture.html

Intel Larabee

 Hybrid
 Multi-core CPU
 Coherent Cache
 x86 compatibility with Larabee extensions

 GPU
 SIMD

http://upload.wikimedia.org/wikipedia/en/0/0d/Larrabee_slide_block_diagram.jpg

Presenter
Presentation Notes
core is superscalar but does not include out-of-order execution

512 bit vector processing unit

http://upload.wikimedia.org/wikipedia/en/0/0d/Larrabee_slide_block_diagram.jpg�

Intel Larabee

 L2 broken in to cores
 Faster access to local L2
 High speed ring bus connecting L2 caches

http://beautifulpixels.blogspot.com/2008/08/multi-platform-multi-core-architecture.html

Matrix Multiplication

DEMO

Current Landscape

 Hot area, surprising amount of work
happening
 Many applications

 http://developer.download.nvidia.com/compute/cuda/
docs/GTC09Materials.htm

 Many libraries
 CUBLAS

 Still many possibilities too..
 Many cores seems to be the future…

Presenter
Presentation Notes
With a cross-vendor API and improved algorithms, the last hurdle is simply widespread adoption. Unknown to many, Intel currently holds the title as the #1 graphics chip vendor in the world. How, you ask? The Intel Integrated graphics chip is built into so many low-end PC motherboards that it has essentially become “free” to manufacturers, and millions of them have been deployed worldwide. If all you plan to do is surf the net or use Microsoft Word, a graphics card is not a priority item. If the “big 3″ graphics vendors (AMD, NVidia, & Intel) release a comparable chip that has OpenCL compatibility and that can unseat this ancient chipset, then we could see OpenCL-compatible systems become the norm rather than the object of a few specialized users.

http://www.vizworld.com/2009/05/whats-the-big-deal-with-cuda-and-gpgpu-anyway/

http://developer.download.nvidia.com/compute/cuda/docs/GTC09Materials.htm�
http://developer.download.nvidia.com/compute/cuda/docs/GTC09Materials.htm�

References

 http://beautifulpixels.blogspot.com/2008/08/multi-platform-
multi-core-architecture.html

 http://developer.nvidia.com/object/opencl.html
 http://developer.nvidia.com/object/gpu_computing_online.html
 http://www.intel.com/technology/visual/microarch.htm
 http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDI

A_Fermi_Compute_Architecture_Whitepaper.pdf
 http://www.nvidia.com/content/cudazone/CUDABrowser/downlo

ads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
 http://images.apple.com/macosx/technology/docs/OpenCL_TB_

brief_20090903.pdf
 http://www.nvidia.com/content/PDF/fermi_white_papers/D.Patt

erson_Top10InnovationsInNVIDIAFermi.pdf
 http://developer.nvidia.com/object/gpu_gems_2_home.html

http://beautifulpixels.blogspot.com/2008/08/multi-platform-multi-core-architecture.html�
http://beautifulpixels.blogspot.com/2008/08/multi-platform-multi-core-architecture.html�
http://developer.nvidia.com/object/opencl.html�
http://developer.nvidia.com/object/gpu_computing_online.html�
http://www.intel.com/technology/visual/microarch.htm�
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf�
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf�
http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf�
http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf�
http://images.apple.com/macosx/technology/docs/OpenCL_TB_brief_20090903.pdf�
http://images.apple.com/macosx/technology/docs/OpenCL_TB_brief_20090903.pdf�
http://www.nvidia.com/content/PDF/fermi_white_papers/D.Patterson_Top10InnovationsInNVIDIAFermi.pdf�
http://www.nvidia.com/content/PDF/fermi_white_papers/D.Patterson_Top10InnovationsInNVIDIAFermi.pdf�
http://developer.nvidia.com/object/gpu_gems_2_home.html�

We extracted some slides
from…
 http://www.khronos.org/developers/library/over

view/opencl_overview.pdf
 http://www.hotchips.org/archives/hc21/1_sun/H

C21.23.2.OpenCLTutorial-
Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-
NVIDIA-GPUs.pdf

 http://developer.download.nvidia.com/CUDA/tra
ining/NVIDIA_GPU_Computing_Webinars_Best_
Practises_For_OpenCL_Programming.pdf

 http://coachk.cs.ucf.edu/courses/CDA6938/Nvidi
a%20G80%20Architecture%20and%20CUDA%2
0Programming.pdf

http://www.khronos.org/developers/library/overview/opencl_overview.pdf�
http://www.khronos.org/developers/library/overview/opencl_overview.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://www.hotchips.org/archives/hc21/1_sun/HC21.23.2.OpenCLTutorial-Epub/HC21.23.250.Lamb-NVIDIA-OpenCL--for-NVIDIA-GPUs.pdf�
http://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU_Computing_Webinars_Best_Practises_For_OpenCL_Programming.pdf�
http://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU_Computing_Webinars_Best_Practises_For_OpenCL_Programming.pdf�
http://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU_Computing_Webinars_Best_Practises_For_OpenCL_Programming.pdf�
http://coachk.cs.ucf.edu/courses/CDA6938/Nvidia G80 Architecture and CUDA Programming.pdf�
http://coachk.cs.ucf.edu/courses/CDA6938/Nvidia G80 Architecture and CUDA Programming.pdf�
http://coachk.cs.ucf.edu/courses/CDA6938/Nvidia G80 Architecture and CUDA Programming.pdf�

	GPGPU & Accelerators
	CPU
	GPU
	GPU vs CPU GFLOPS graph�
	GPU - Accelerator?
	Accelerator?
	How the GPU Fits into the Overall Computer System
	Slide Number 8
	GPU Architecture
	GPU Pipeline
	�CPU to GPU data transfer�
	Vertex processing
	Cull/ Clip/ Set up
	Rasterization
	Texture & Fragment processing�
	Memory
	GPU Evolution
	GPGPU
	Slide Number 20
	Early GPGPU drawbacks
	GPU Computing
	NVIDIA Tesla
	NVIDIA Tesla C1060 Card Specs
	Tesla C1060 (GT 200) Architecture
	NVIDIA Fermi Architecture
	Streaming Multiprocessor
	Slide Number 28
	GigaThreadTM Thread Scheduler
	Concurrent Kernel Execution
	Fermi Improvements
	Double Precision Performance�
	Error Correction Code (ECC) support
	True Cache Hierarchy�
	True Cache Hierachy
	Parallel Thread Execution ISA
	Fast Atomic Memory Operations
	DEMO
	Fermi	
	Fermi
	GPGPU Programming
	Programming model
	Hardware Differences �CPU VS GPU
	What’s Best For GPU’s
	Programming Languages
	 OpenCL
	 OpenCL
	OpenCL API’s
	Few Keywords
	How it works..
	Execution Model
	Warps & SIMT
	OpenCL Memory Hierarchy
	Memory Model
	Memory best practices
	Performance Optimizations
	Demo
	Accelerator RECALL
	CPU’s
	Xbox 360
	Cell Broadband Engine
	Cell
	Sony PlayStation 3
	Sony PlayStation 3
	Sony PlayStation 3
	CUDA
	Intel Larabee
	Intel Larabee
	DEMO
	Current Landscape
	References
	We extracted some slides from…

