

/ —

/

Introduction

FEarly computer designers believed saving
computer time and memory were more
important than programmer time.

Bug in the divide algorithm used in Intel chips.

Basics of Integer/Floating point Addition,
Subtraction, Multiplication and Division
algorithms

Refinements and variations on these algorithms

/7 e S

~ Integer Arithematic

Half Adder
Sum : a2 XOR b
Carry:a AND b

A
B

/ Integer Arithematic
Full Adder

Sum : a—'b7¢ + 7ab7¢c +a—bc + abc

Carry : (a XOR b)c + ab

A NN\

B
Cin

Cout

Integer Arithematic
Ripple Carry Adder

Az Bs Az Be A1 Bs Ao Bo

Sa So St So

—

(a) | n |

Integer Multiplication

Unsigned Multiplication:
ILSBof Ais1,add B to P

Shift registers P and A right with carry-out of
the sum being moved into the high-order bit
of P, the low-order bit of P being moved in
register A.

—

(b) FA n |

- Integer Division
Restoring Division
Shift register pair (P,A) one bit left.

Subtract content of B from P

If result in step 2. 1s negative, set Ao to zero
else to 1

If result in step 2. 1s negative, restore the old
value of P by adding the contents of B back
in P

/ —_— -

Integer Division
Non — Restoring Division
If P is negative
1.a Shift (PA) pair one bit left
2.2 Add the contents of register B to P
Else,
1.b Shift (PA) pair one bit left
2.b Subtract the contents of register B from P

3. If P is —ve, set the low order bit of A to zero
else set it to one.

Signed Numbers

Four ways to represent signed numbers:
Sign Magnitude
One’s Complement
Biased
Two’s Complement

* Formula for Two’s Complement of a

number:
ey onte s gL

/ —_— -

" Booth Recoding

Examines the bits of a from the L.SB to the
MSB

For example, 1f a=7=0111 then the step 1 of
integer multiplication will successively add B,

add B, add B and add 0.

Booth recoding “recodes” 7 as 8-1=1000-
0001=1001

Works equally well for positive and negative
numbers

Booth Recoding

If the initial content of register A is a_,...a, then

o

the multiplication algorithm for sighed numbers,
It e e e
2. It A=0and A,,=1addBtoP
3. If A, =1and A, = 0 subtract B from P
4. It A=Tand A ;=1add0Oto P

Works because

n—|

. - n-1 n-2
zbla{_l—ai}if = b(-a,_,2 +a,_,2 +...+a;2+ay) +ba_,

=0

=

System Issues

Overflow:

Three approaches to detect overflows in signed
arithmetic,

> Set bit on overflow.
» Trap on overtlow.
» Do nothing.

No traps unsigned arithmetic since they are
primarily used in manipulating addresses.

/ —_— -

—

System Issues

Should the result of multiplication be a 2n bit
result? (or just return the lower order n bits?)

Against: Virtually in all high level languages, the
result is of the same type

For: Can be used to substantially speed up the
multiplication.

=

System Issues

Three possible system-level approaches to
speeding up multiplication

Single-cycle multiply step.

Do integer multiplication in FPU.

Have an autonomous unit in the CPU do the
multiplication.

/ —_— -

—

System Issues

Division and remainder for negative numbers:

Built-in hardware instructions should correspond
to what high-level languages specify.

No agreement among existing programming
languages.

Eg: -5 MOD 3, -5 DIV 3.

Floating Point Arithmetic

IEEE standard for FPA specifies single precision
(32 bits) and double precision (64 bits) floating

point numbers.

Consists of an exponent and a significand.

If e is the biased exponent and f 1s the value of
the fraction, then the number is 1.£+2¢127.

Special values NalN, o0, -o0.

Denormal numbers to represent
fesuli=E G o

Floating Point Multiplication

7 7 2 2"}
(57X 20 ¢ (59 X 2%%) = (5 ») X 21%¢2

FP multiplication consists ot three steps

Multiplies the significands using ordinary integer
multiplication.

Rounds the result to take care of the precision.

Computes the new exponent.

Rounding Algorithm

A
Product Xp Xi1. Xo X3 Xi Xg [#) r s s = =
Case(1):x. =0 .

Shift noade Xi. X Xz Xa X5 G| Fr
Case (2): x, =1 rnd sticky

hy Xn . X X X X X 1 1L
Increment exponent 0-X1 Xz X3 X4 X5 | —

Adjust binary point,
add 1 to exponent to compensate

® If MSB of P is 0, shift P left by 1 bit.

® If MSB of P 1s 1, then set s=s OR r and r=g where r is
the round bit, g is the guard bit and s is the sticky bit.

" Rounding Algorithm

Rounding mode Sign of result=0 Sign of result <0
oo +lifrvs

+o0 +lifrvs

0

Nearest +lifrapyor ras +1if rapgor ras

Figure .11 Rules for implementing the IEEE rounding modes. Let § be the magni-
tude of the preliminary result. Blanks mean that the p most-significant bits of S are the
actual result bits. If the condition listed is true,add 1 to the pth most-significant bit of S.

The symbols r and s represent the round and sticky bits, while p, is the pth most-
significant bit of S.

Floating Point Addition

Takes two inputs ot p bits and returns a p-bit
result

Ideal algorithm would first perform the addition
and then round the result to p bits

Floating Point Addition

* Consider, two 6 bit numbers 1.10011 and 1.10001%*2-

1.1001]
+ 0000110001
® Discarding the lower order bits of the second addend,
we get
1.1001 1
+ .0000]1

1.10100

/ Floating Point Addition

Designate from the discarded bits, the MSB as g
(guard bit), the next MSB as r (round bit) and the
logical OR of the remaining bits as s(sticky bit)

Round the sum using the Rounding Algorithm
specified for multiplication.

In case of subtraction 2’s complement taken and
the sum 1s computed as above.

Floating Point Division

Approach to compute division converges to the
quotient using an iterative technique called
Newton’s 1teration.

(x)

X
X

Cast the problem as finding the zero of a
function.

Floating Point Division

*® It x, 1s the guess at zero,
y=f(x)=f"(x)x-1x)
® The equation has zero at
(x:)
X=X =X- J;HL
f(x;)

® By recasting zero as finding zero of a function, f(x)=x!-b.

Hence f’(x)=-1/x?

1/x;~b

9
3 Z.I!' + If' —.II;“ b= IE{Z —If'b]
-1/x:

Y1 =4~

Floating Point Division

Now a/b is computed by

Scale b in the range 1=b<2 and get an
approximate value of 1/b.

Iterate x.+1=x.(2-x.b) until 1t is accurate enough
(%,)-
Compute ax_ and reverse the scaling done.

[terate until, | (x,-1/b)/(1/b)|=2P.

More on Floating Point Arithmetic

Fused Multiply-Add

Motivated by IBM RS/6000 which has an
instruction that computes ab+c the fused

multiply-add.

Used to implement etficient tloating-point
multiple precision packages.

—

Exceptions

Five types
1. Underflow
2. Overflow

. Divide by zero

3
4. Inexact
5

Invalid

— = ——
Exceptions
Underflow:

Undertlow occurs when there 1s loss of accuracy

It 1s set whenever the delivered result 1s different
from what would be delivered in a system with
the same fraction size.

Overflow:

Occurs when the result of an arithmetic
operation 1s too large to hold.

/ —_— -

—

Exceptions
D1vide by Zero:

Occurs when the divisor is zero
Inexact:

If there was a result that couldn’t be represented
exactly and had to be rounded, inexact 1s

signaled.
Invalid:
If the arithmetic operation results in NAN

Speeding Up Integer Addition
Carry-Lookahead

The ith sum will be

s;=a;b;c;+a;b;c;+a;b;c;+a;b;c,

Rewriting c. in terms of a. and b,

G=8itP Gz 87 Jlb£]]f1H1+b

=80 TP Bt Pt PiaBia t TP Py Py S Pt Py PP

Speeding Up Integer Addition

Py Py S
Gt Poi Y9nz Poz 953 l

t t

N __/

.
.
.
—&

c
n

Cm 9t Py Gt ¥ P 4P - PGy P P - - Py

Figure 1.14 Pure carry-lookahead circuit for computing the carry-out ¢, of an n-bit
adder.

- Speeding Up Integer Addition

It takes one logic level to form p and g, two levels
to form the carries and two for the sum 1in all five
logic levels.

Carry LLookahead idea 1s used to build an adder
that has log,n logic levels.

€1 = & T CoPo

¢y = Gor T Py

Gor = &1 + Pi&o

Py = p1Po

Speed Up Integer Addition

a, ? a, b a, b a, b a, b agb? a, b a, bD
|| | | | | | | | | || | | | |
1 1 1 1 1 1 1 1
g.! 1o, ! 9] Tp, 9] |n,
2 2 2 2
G, ;Y 1P G, ¢ Py e G, , P, 4 G, Py 1
2 2
G-L? P4.? Go.s Po.s a; bf_ Gjﬂ. « Pj+‘|. P
] I
le— G
1 2 i
~P
Go?+ +Po? TT T iy
g =ab p=a-+b P =P P

Gﬁ.k=Gj+1.k+Pj+l.kGi.j

Figure I.15 First part of carry-lookahead tree. As signals flow from the top to the bot-
tom, various values of P and G are computed.

7 B 5 4 3 2 1 0
il il
95 9, 9 9
Ay LG, 4G [
Pyg P4
G, 5 G, ,
LGy [
Ca=G*Pe ¢
0,3 f
% i j

Figure .16 Second part of carry-lookahead tree.Signals flow from the bottom to the
top, combining with P and G to form the carries.

s, e So
Ta?b7 Ta1 b, Taobo
A A A A A A A A
Y Y ACS T Y 4G Yy f e T Y AC, \ A A Cg t Y 4C, Yy \ C, T Y c,

B B B B
Y Y &S, Y I WL Y Yy 2=

B B
Y Y AC Y A

4
0,3 PCI,G- CO
B
s lP‘,r+1 K
A i (=
i Jr+1 K f+1

e O

s, = a{.@b{.@c{.
P,=a + bf
g;.: a‘_. b

f

g.

V—a P |==0

-
-
-

!

L
t

G, P.rkcf

i,

f

Figure 1.17 Complete carry-lookahead tree adder. This is the combination of Figures
.15 and I1.16. The numbers to be added enter at the top, flow to the bottom to combine
with cg,.and then flow back up to compute the sum bits.

/ — - / =

/ /Speed Up Integer Addition
Carry Skip Adder

If any block generates carry, the carry-out of a
becomes true

The carry-out from each least-significant block is
fed to AND gate with the P signal

If carry-out and P signals both are true, then
carry skips the block

Practical only if carry-in signals are cleared at the
start of each operations

Speed Up Integer Addition

abab abababanb

191918 33221100

II || 1] LI] L] L] |I || I| ||

020 016 0 C 04

-« —— -1—[',‘0
PU

Figure 18 Carry-skip adder.This is a 20-oit carry-skip adder (1= 20) with each block 4-bits wide (k= 4),

Speed Up Integer Addition

Carry-Select Adder

Performs two additions in parallel; with carry-in
as zero and carry-in as one

On determining final carry-in correct sum 1s
selected

a? "_b?' adb-i
AT
o % Pa%bab A b
L1011 01 0
34?4 — G
I [I A 1 1 ¥
"1 S, S, 5 So

Figure 1.20 Simple carry-select adder. At the same time that the sum of the low-order
4 bits is being computed, the high-order bits are being computed twice in parallel:
once assuming that ¢, =0 and once assuming ¢4 = 1.

13 8

—=0 —=0 —=0

Sk

+CD

13 8
1 =1 —1| S35 5, 5 5

L

e W) T
51851? 516515 514-513 ‘
512511510 59 58 .5‘? 56 55 54

Figure 1.21 Carry-select adder. As soon as the carry-out of the rightmost block is
known, it is used to select the other sum bits.

ﬁnptotic time and space

r qullf cments
Adder Time Space
Ripple O(n) O(n)
CLA O(log n) O(n logn)
Carry-skip O(Jﬁ) O(n)

Carry-select 0(/n) O(n)

Speeding Up Integer Multiplication

and Division

SRT Division

1. If B has k leading zeros, shift all registers left by k bits
For1 =0 to n-1

2.a. If top 3 bits of P are equal, Qi = 0, shift (PA) one bit left

2.b. If top 3 bits of P are not all equal and P 1s negative, set Q1
= -1, shift (P,A) one bit left, add B

2.c. Otherwise set Qi = 1, shift (P,A) one bit left, subtract B
End loop

3. If remainder is —ve, correct by adding B and correct
quotient by subtracting 1 from Qo. Shift the remainder k
bits right

~

Speeding L p Infeoer Multii)lication
and Division

P
00000
00010
00100

01000

+ 10100

11100
11000

10000

+ 01100

11100

+ 01100

01000

A
1000
0000
0000
0001

0001
0o10

0101

Divide 8 = 1000 by 3 = 0011. B contains 0011.
Step 1: B had two leading 0s, so shift left by 2. B now contains 1100.
Step 2.1: Top three bits are equal. This is case (a), so
set g, = 0 and shift.
Step 2.2: Top three bits not equal and P 2 0 is case (c), so
set g, = 1 and shift.
Subtract B.
Step 2.3: Top bits equal is case (a), so
set g, = 0 and shift.
Step 2.4: Top three bits unequal is case (b), so
set g, = —1 and shift.
Add B.
Step 3. Remainder is negative so restore it and subtract 1 from q.

Must undo the shift in step 1, so right-shift by 2 to get true remainder.
Remainder = 10, quotient = 01 01 -1 =0010.

Figure 1.23 SRT division of 1000,/0011,. The quotient bits are shown in bold, using

the notation 1 for —1.

= Diitferenee between nontestorno

division and SRT division

ALU decision rule: In non-restoring it is
determined by sign of P, in SRT it 1s determined
by two most significant bits of P

Final quotient: In non-restoring it 1s immediate
from successtve signs of P, in SRT there are
three quotient digits (0,1,-1) and the final
quotient is computed in full n-bit adder

Speed: SRT division will be faster on operands
that produce zero quotient bits

: //S@dmg Up Integer Multiplication

using single Adder

LLoad sum and carry bits of P to zero
Shift lower order sum bit of P into A

n-1 high order bits of P are shifted to next lower-adder
in next cycle

Two Drawbacks to carry-save adders
i. Requires more hardware

i1. After last step higher order word must be fed into an
ordinary adder to combine the sum and carry parts

Speedup without using extra adder 1s to examine k low
order bits of A at each step than just one bit

ﬁlmg Up Integer Multiplication

using single Adder

m R Sl e
LD
mmmmmmg;:{%

Figure 1.24 Carry-save multiplier. Each circle represents a (3,2) adder working inde-
pendently. At each step, the only bit of P that needs to be shifted is the low-order sum

bit.

single Adder

P
00000
+ 11011
11011
11110
+ 01010
01000
00010

A L
1001

1001

1110 0

1110 0

0011 1

Speeding Up Multiplication using

Multiply =7 = 1001 times -5 = 1011. B contains 1011.
Low-order bitsof Aare 0, 1; L =0, so add B.

Shift right by two bits, shifting in 1s on the left.
Low-order bits of A are 1, 0; L = 0, so add -2b.

Shift right by two bits.
Product is 35 = 0100011.

Figure 1.26 Multiplication of -7 times -5 using radix-4 Booth recoding.The column

labeled L contains the last bit shifted out the right end of A.

Faster Multiplication with many

Adders

(@) Y Y

Propagate adder

Faster Multiplication with many

Adders
An array Multiplier

_

Latency similar to carry-save adder

Multiplication can be pipelined, increasing total
throughput

Space available may not hold the array to
multiply two double precision numbers

Faster Multiplication Withm/any
Adders

A *
X b,A bA
w1]
b.A CSA
b A l Y L
b,A CSA
l ¥ 1
CSA
+ Y + Y
| |

Figure 1.28 Multipass array multiplier. Multiplies two 8-bit numbers with about half
the hardware that would be used in a one-pass design like that of Figure 1.27. At the end
of the second pass, the bits flow into the CPA. The inputs used in the first pass are
marked in bold.

~ Faster Multiplication with many

Adders

The above design cannot be pipelined

Array has smaller latency than using single adder,
array is combinational circuit, signal tlows
directly without being clocked

Even/odd array design for speedup

The notion of running two adds in parallel

Faster Multiplication with many

Adders

-

‘ CSA ‘

| CSA |

I CSA ‘

‘ CPA ‘

Figure .29 Even/odd array. The first two adders work in parallel. Their results are fed
into the third and fourth adders, which also work in parallel,and so on.

~ Faster Multiplication with many

Adders
Even/odd array has time of O(n)

Can be reduced to logn using tree
Tree that uses full adders known as Wallace tree

Wallace tree was designed of choice for high
speed multipliers

Due to irregular structure ot Wallace trees, not
used in VLSI designs

Faster Multiplication with many
Adders

D?A DGA DSA bdA b A b A D1A b A
! ! | ! ! !
CSA CSA
L |

/ k| Y Y l

CSA CSA

L Y]
CSA

Y Y Y

CSA

L

Propagate adder

Figure 1.30 Wallace tree multiplier. An example of a multiply tree that computes a
product in O(log n) steps.

/

References

Computer Architecture - John L. Hennessy,
David Patterson

Computer Organization Architecture — William
Stallings

THANK YOU

	Computer Arithmetic
	Introduction
	Integer Arithematic
	Integer Arithematic
	Integer Arithematic
	Integer Multiplication
	Integer Multiplication
	Integer Division
	Integer Division
	Integer Division
	Signed Numbers
	Booth Recoding
	Booth Recoding
	System Issues
	System Issues
	System Issues
	System Issues
	Floating Point Arithmetic
	Floating Point Multiplication
	Rounding Algorithm
	Rounding Algorithm
	Floating Point Addition
	Floating Point Addition
	Floating Point Addition
	Floating Point Division
	Floating Point Division
	Floating Point Division
	More on Floating Point Arithmetic
	Exceptions
	Exceptions
	Exceptions
	Speeding Up Integer Addition
	Speeding Up Integer Addition
	Speeding Up Integer Addition
	Speed Up Integer Addition
	Speed Up Integer Addition
	Speed Up Integer Addition
	Speed Up Integer Addition
	Speed Up Integer Addition
	Speed Up Integer Addition
	Speeding Up Integer Addition
	Speeding Up Integer Addition
	Asymptotic time and space requirements
	Speeding Up Integer Multiplication and Division
	Speeding Up Integer Multiplication and Division
	Difference Between nonrestoring division and SRT division
	Speeding Up Integer Multiplication using single Adder
	Speeding Up Integer Multiplication using single Adder
	Speeding Up Multiplication using single Adder
	Faster Multiplication with many Adders
	Faster Multiplication with many Adders
	Faster Multiplication with many Adders
	Faster Multiplication with many Adders
	Faster Multiplication with many Adders
	Faster Multiplication with many Adders
	Faster Multiplication with many Adders
	References
	Slide Number 58

