
By,
Ajinkya Karande

Adarsh Yoga

Introduction
Early computer designers believed saving

computer time and memory were more
important than programmer time.

Bug in the divide algorithm used in Intel chips.
Basics of Integer/Floating point Addition,

Subtraction, Multiplication and Division
algorithms

Refinements and variations on these algorithms

Integer Arithematic
Half Adder
Sum : a XOR b
Carry : a AND b

Integer Arithematic
Full Adder

Sum : a¬b¬c + ¬ab¬c +a¬bc + abc
Carry : (a XOR b)c + ab

Integer Arithematic
Ripple Carry Adder

Integer Multiplication

Integer Multiplication
Unsigned Multiplication:

1. LSB of A is 1, add B to P

2. Shift registers P and A right with carry-out of
the sum being moved into the high-order bit
of P, the low-order bit of P being moved in
register A.

Integer Division

Integer Division
Restoring Division
1. Shift register pair (P,A) one bit left.
2. Subtract content of B from P
3. If result in step 2. is negative, set Ao to zero

else to 1
4. If result in step 2. is negative, restore the old

value of P by adding the contents of B back
in P

Integer Division
Non – Restoring Division
If P is negative

1.a Shift (P,A) pair one bit left
2.a Add the contents of register B to P

Else,
1.b Shift (P,A) pair one bit left
2.b Subtract the contents of register B from P

3. If P is –ve, set the low order bit of A to zero
else set it to one.

Signed Numbers
Four ways to represent signed numbers:
 Sign Magnitude
 One’s Complement
 Biased
 Two’s Complement
 Formula for Two’s Complement of a

number:
-an-12 n-1 + an-22 n-2 + …. + a12 1 + a0

Booth Recoding
 Examines the bits of a from the LSB to the

MSB
 For example, if a=7=0111 then the step 1 of

integer multiplication will successively add B,
add B, add B and add 0.

 Booth recoding “recodes” 7 as 8-1=1000-
0001=1001

 Works equally well for positive and negative
numbers

Booth Recoding
If the initial content of register A is an-1…a0 then
the multiplication algorithm for signed numbers,

1. If Ai = 0 and Ai-1 = 0 add 0 to P
2. If Ai = 0 and Ai-1 = 1 add B to P
3. If Ai = 1 and Ai-1 = 0 subtract B from P
4. If Ai = 1 and Ai-1 = 1 add 0 to P

Works because

System Issues
Overflow:
Three approaches to detect overflows in signed

arithmetic,
 Set bit on overflow.
 Trap on overflow.
 Do nothing.

No traps unsigned arithmetic since they are
primarily used in manipulating addresses.

System Issues
 Should the result of multiplication be a 2n bit

result? (or just return the lower order n bits?)
Against: Virtually in all high level languages, the

result is of the same type
For: Can be used to substantially speed up the

multiplication.

System Issues
Three possible system-level approaches to
speeding up multiplication
 Single-cycle multiply step.
Do integer multiplication in FPU.
Have an autonomous unit in the CPU do the

multiplication.

System Issues
Division and remainder for negative numbers:
Built-in hardware instructions should correspond

to what high-level languages specify.
No agreement among existing programming

languages.
Eg: -5 MOD 3, -5 DIV 3.

Floating Point Arithmetic
 IEEE standard for FPA specifies single precision

(32 bits) and double precision (64 bits) floating
point numbers.

Consists of an exponent and a significand.
 If e is the biased exponent and f is the value of

the fraction, then the number is 1.f*2e-127.
 Special values NaN, ∞, -∞.
Denormal numbers to represent

result<1.0*2Emin.

Floating Point Multiplication

FP multiplication consists of three steps
Multiplies the significands using ordinary integer

multiplication.
Rounds the result to take care of the precision.
Computes the new exponent.

Rounding Algorithm

 If MSB of P is 0, shift P left by 1 bit.
 If MSB of P is 1, then set s=s OR r and r=g where r is

the round bit, g is the guard bit and s is the sticky bit.

Rounding Algorithm

Floating Point Addition
Takes two inputs of p bits and returns a p-bit

result
 Ideal algorithm would first perform the addition

and then round the result to p bits

Floating Point Addition
 Consider, two 6 bit numbers 1.10011 and 1.10001*2-5

 Discarding the lower order bits of the second addend,
we get

Floating Point Addition
Designate from the discarded bits, the MSB as g

(guard bit), the next MSB as r (round bit) and the
logical OR of the remaining bits as s(sticky bit)

Round the sum using the Rounding Algorithm
specified for multiplication.

 In case of subtraction 2’s complement taken and
the sum is computed as above.

Floating Point Division
Approach to compute division converges to the

quotient using an iterative technique called
Newton’s iteration.

Cast the problem as finding the zero of a
function.

Floating Point Division
 If xi is the guess at zero,

 The equation has zero at

 By recasting zero as finding zero of a function, f(x)=x-1-b.
Hence f ’(x)=-1/x2

Floating Point Division
Now a/b is computed by
 Scale b in the range 1≤b<2 and get an

approximate value of 1/b.
 Iterate xi+1=xi(2-xib) until it is accurate enough

(xn).
Compute axn and reverse the scaling done.
Iterate until, |(xi-1/b)/(1/b)|=2-p.

More on Floating Point Arithmetic
Fused Multiply-Add
Motivated by IBM RS/6000 which has an

instruction that computes ab+c the fused
multiply-add.

Used to implement efficient floating-point
multiple precision packages.

Exceptions
Five types
1. Underflow
2. Overflow
3. Divide by zero
4. Inexact
5. Invalid

Exceptions
Underflow:
Underflow occurs when there is loss of accuracy
 It is set whenever the delivered result is different

from what would be delivered in a system with
the same fraction size.

Overflow:
Occurs when the result of an arithmetic

operation is too large to hold.

Exceptions
Divide by Zero:
Occurs when the divisor is zero
Inexact:
 If there was a result that couldn’t be represented

exactly and had to be rounded, inexact is
signaled.

Invalid:
 If the arithmetic operation results in NAN

Speeding Up Integer Addition
Carry-Lookahead
The ith sum will be

Rewriting ci in terms of ai and bi

Speeding Up Integer Addition

Speeding Up Integer Addition
It takes one logic level to form p and g, two levels
to form the carries and two for the sum in all five
logic levels.
Carry Lookahead idea is used to build an adder
that has log2n logic levels.
c1 = g0 + c0p0

c2 = G01 + c0P01

G01 = g1 + p1g0

P01 = p1p0

Speed Up Integer Addition

Speed Up Integer Addition

Speed Up Integer Addition

Speed Up Integer Addition
Carry Skip Adder
 If any block generates carry, the carry-out of a

becomes true
The carry-out from each least-significant block is

fed to AND gate with the P signal
 If carry-out and P signals both are true, then

carry skips the block
Practical only if carry-in signals are cleared at the

start of each operations

Speed Up Integer Addition

Speed Up Integer Addition
Carry-Select Adder
Performs two additions in parallel, with carry-in

as zero and carry-in as one

On determining final carry-in correct sum is
selected

Speeding Up Integer Addition

Speeding Up Integer Addition

Asymptotic time and space
requirements

Speeding Up Integer Multiplication
and Division
SRT Division
1. If B has k leading zeros, shift all registers left by k bits
For i = 0 to n-1
2.a. If top 3 bits of P are equal, Qi = 0, shift (P,A) one bit left
2.b. If top 3 bits of P are not all equal and P is negative, set Qi

= -1, shift (P,A) one bit left, add B
2.c. Otherwise set Qi = 1, shift (P,A) one bit left, subtract B
End loop
3. If remainder is –ve, correct by adding B and correct

quotient by subtracting 1 from Qo. Shift the remainder k
bits right

Speeding Up Integer Multiplication
and Division

Difference Between nonrestoring
division and SRT division
ALU decision rule: In non-restoring it is

determined by sign of P, in SRT it is determined
by two most significant bits of P

Final quotient: In non-restoring it is immediate
from successive signs of P, in SRT there are
three quotient digits (0,1,-1) and the final
quotient is computed in full n-bit adder

 Speed: SRT division will be faster on operands
that produce zero quotient bits

Speeding Up Integer Multiplication
using single Adder
 Load sum and carry bits of P to zero
 Shift lower order sum bit of P into A
 n-1 high order bits of P are shifted to next lower-adder

in next cycle
 Two Drawbacks to carry-save adders

i. Requires more hardware
ii. After last step higher order word must be fed into an
ordinary adder to combine the sum and carry parts

 Speedup without using extra adder is to examine k low
order bits of A at each step than just one bit

Speeding Up Integer Multiplication
using single Adder

Speeding Up Multiplication using
single Adder

Faster Multiplication with many
Adders

Faster Multiplication with many
Adders
An array Multiplier
Latency similar to carry-save adder
Multiplication can be pipelined, increasing total

throughput
 Space available may not hold the array to

multiply two double precision numbers

Faster Multiplication with many
Adders

Faster Multiplication with many
Adders
The above design cannot be pipelined
Array has smaller latency than using single adder,

array is combinational circuit, signal flows
directly without being clocked

Even/odd array design for speedup
The notion of running two adds in parallel

Faster Multiplication with many
Adders

Faster Multiplication with many
Adders
Even/odd array has time of O(n)
Can be reduced to logn using tree
Tree that uses full adders known as Wallace tree
Wallace tree was designed of choice for high

speed multipliers
Due to irregular structure of Wallace trees, not

used in VLSI designs

Faster Multiplication with many
Adders

References
Computer Architecture - John L Hennessy,

David Patterson

Computer Organization Architecture – William
Stallings

THANK YOU

	Computer Arithmetic
	Introduction
	Integer Arithematic
	Integer Arithematic
	Integer Arithematic
	Integer Multiplication
	Integer Multiplication
	Integer Division
	Integer Division
	Integer Division
	Signed Numbers
	Booth Recoding
	Booth Recoding
	System Issues
	System Issues
	System Issues
	System Issues
	Floating Point Arithmetic
	Floating Point Multiplication
	Rounding Algorithm
	Rounding Algorithm
	Floating Point Addition
	Floating Point Addition
	Floating Point Addition
	Floating Point Division
	Floating Point Division
	Floating Point Division
	More on Floating Point Arithmetic
	Exceptions
	Exceptions
	Exceptions
	Speeding Up Integer Addition
	Speeding Up Integer Addition
	Speeding Up Integer Addition
	Speed Up Integer Addition
	Speed Up Integer Addition
	Speed Up Integer Addition
	Speed Up Integer Addition
	Speed Up Integer Addition
	Speed Up Integer Addition
	Speeding Up Integer Addition
	Speeding Up Integer Addition
	Asymptotic time and space requirements
	Speeding Up Integer Multiplication and Division
	Speeding Up Integer Multiplication and Division
	Difference Between nonrestoring division and SRT division
	Speeding Up Integer Multiplication using single Adder
	Speeding Up Integer Multiplication using single Adder
	Speeding Up Multiplication using single Adder
	Faster Multiplication with many Adders
	Faster Multiplication with many Adders
	Faster Multiplication with many Adders
	Faster Multiplication with many Adders
	Faster Multiplication with many Adders
	Faster Multiplication with many Adders
	Faster Multiplication with many Adders
	References
	Slide Number 58

