MULTIPROCESSORS
AND THREAD-LEVEL
PARALLELISM

B649
Parallel Architectures and Programming

Motivation behind Multiprocessors

* Limitations of ILP (as already discussed)
* Growing interest in servers and server-performance
® Growth in data-intensive applications

* Increasing desktop performance relatively
unimportant

* Effectiveness of multiprocessors for server
applications

* [everaging design investment by replication

B629: Practical Compiling for Modern Machines

Flynn’s Classification of Parallel Architectures

* SISD: Single Instruction Single Data stream

* UNIProcessors

* SIMD: Single Instruction Multiple Data streams
* suitable for data parallelism
* Intel’s multimedia extensions, vector processors
* orowing popularity in graphics applications

* MISD: Multiple instruction Single Data stream

* no commercial multiprocessor to date

* MIMD: Multiple Instruction Multiple Data streams

* suitable for thread-level parallelism

B629: Practical Compiling for Modern Machines

MIMD

* Architecture of choice for general-purpose
multiprocessors

* Offers flexibility

* Can leverage the design investment in uniprocessors

* Can use oft-the-shelf processors
* “COTS” (Commercial, Off-The-Shelf) processors

* Examples

*x Clusters

* commodity and custom. clusters

* Multicores

B629: Practical Compiling for Modern Machines

Processor

Processor

Processor Processor

One or
more levels
of cache

One or
more levels
of cache

Main memory

£ 2007 Elsavier, Inc. All rights

One or One or
more levels more levels
of cache of cache

I/O system

Processor Processor
+ cache

I/O

Processor Processor Processor Processor
+ cache + cache + cache + cache

© 2007 Elsavier, Inc. All rights

Models for Memory and Communication

®* Memory architecture

* shared memory
* Uniform Memory Access (UMA)
* Symmetric (Shared-Memory) Multiprocessors (SMPs)

* distributed memory
* Non-Uniform Memory Access (NUMA)

* Communication architecture (programming)
* shared memory

* message-passing

B629: Practical Compiling for Modern Machines

Other Ways to Categorize Parallel Programming

B629: Practical Compiling for Modern Machines

cache

virtual memory
memory stall cycles
direct mapped

valid bit

block address

write through
instruction cache
average memory access time
cache hit

page

miss penalty

B649: Parallel Architectures and Programming, Spring 2009

Terminology

fully associative
dirty bit

block offset

write back

data cache

hit time

cache miss

page fault

miss rate

n-way set associative
least-recently used
tag field

write allocate

unified cache
misses per instruction
block

locality

address trace

set

random replacement
index field

no-write allocate
write buffer

write stall

Level

Name
Typical size
Implementation technology

Access time (ns)
Bandwidth (MB/sec)

Managed by

Backed by

1

registers
<1 KB

custom memory with
multiple ports, CMOS

0.25-0.5
50,000-500,000
compiler

2

cache
<16 MB

on-chip or off-chip
CMOS SRAM

0.5-25
5000-20,000
hardware

main memory

3

main memory
<512GB
CMOS DRAM

50-250
2500-10,000
operating system

4

disk storage
>1TB

magnetic disk

5,000,000
50-500

operating
system/
operator

CD or tape

Four Memory-Hierarchy Questions

®* Where can a block be placed in the upper level?

* block placement

* How is a block found if it is in the upper level?

* block identification

® Which block should be replaced on a miss?

* block replacement

* What happens on a write?

* write strategy

B649: Parallel Architectures and Programming, Spring 2009

Where Can a Block Be Placed in a Cache?
* Only one place for each block

* direct mapped
(Block address) MOD (Number of blocks in cache)

* Anywhere in the cache

* fully associative

* Restricted set of places

* set assoclative
(Block address) MOD (Number of sets in cache)

B649: Parallel Architectures and Programming, Spring 2009

Fully associative:
block 12 can go

anywhere

Block 01234567
no.

Block frame address

Block
no. 0123456789

Direct mapped:
block 12 can go

only into block 4
(12 mod 8)

Block 01234567

m.

Block

no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

01234567

Set Set Set Set
2 3

How 1s a Block Found 1t 1t 1s in Cache?

* “Tags” in each cache block gives the block address

* all possible tags searched in parallel (associative memory)

*x valid bit. tells whether a tag match valid

Fields in a memory address

Block address Block
Index offset

© 2007 Elsavier, Inc. All rights resarved.

* No “index” field in fully associative caches

B649: Parallel Architectures and Programming, Spring 2009

Which Block Should be Replaced on a Miss?

e Random

* easy to implement

* [east-recently used (LRU)

* idea: rely on the past to predict the future

* replace the block unused for the longest time

® First in, First out (FIFO)

* approximates LRU (o/dest., rather than least recently used)

* simpler to implement

B649: Parallel Architectures and Programming, Spring 2009

Comparison of Replacement Policies

Data cache misses per 1000 instructions on five
SPECint2000 and five SPECfp2000 benchmarks

Associativity

Two-way Four-way Eight-way

LRU Random FIFO Random FIFO LRU Random FIFO

114.1 117. [15.5 [15.1 [13.3

3.3 109.0 [11.8 110.4
103.4 104.: 103.9 102.3 103.1 99.7 100.5 100.3

92.2 92.1 92.5 92.1

92.5 92.1 92.1 92.5

B649: Parallel Architectures and Programming, Spring 2009

What Happens on a Write?

® Reads dominate

* 700 of the overall memory traffic are writes

* 289% of the data cache traffic are writes

* Write takes longer

* reading cache line and validity check can be parallel

* reads can read the whole line, write must modify only the

specified bytes

B649: Parallel Architectures and Programming, Spring 2009

Handling Writes

® Write strategy
* write through

* write to cache block and to the block in the lower-level memory

* write back

* write only to cache block, update the lower-level memory when

block replaced
* Block allocation strategy

* write allocate

* allocate a block on cache miss

* no-write allocate

* do not allocate, no affect on cache

B649: Parallel Architectures and Programming, Spring 2009

Block
Block address offset CPU
<25> <9> <6> address

m- Data Data
in

out

Valid Tag
<1> <25>

O —
-

=
ONe)

Victim
buffer

Lower-level memo

cache

virtual memory
memory stall cycles
direct mapped

valid bit

block address

write through
instruction cache
average memory access time
cache hit

page

miss penalty

B649: Parallel Architectures and Programming, Spring 2009

Terminology

fully associative
dirty bit

block offset
write back

data cache

hit time

cache miss

miss rate

n-way set associative
least-recently used
tag field

write allocate

unified cache

misses per instruction
block

locality

set

random replacement
index field

no-write allocate
write buffer

write stall

SYMMETRIC SHARED-MEMORY:

CACHE COHERENCE

We are dedicating all of our future product development to
multicore designs. We believe this is a key inflection point for
the industry.

Intel President Paul Otellini,
describing Intel’s future direction at the Intel Developers Forum
in 2005

B649: Parallel Architectures and Programming, Spring 2009

Quotes

The turning away from conventional organization came in the
middle 1960s, when the law of diminishing returns began to
take effect in the effort to increase the operational speed of a
computer ... Electronic circuits are ultimately limited in their
speed of operation by the speed of light ... and many of the
circuits were already operating in the nanosecond range.
W. Jack Bouknight et al.
The llliac IV System (1972)

We are dedicating all of our future product development to
multicore designs. We believe this is a key inflection point for
the industry.

Intel President Paul Otellini,
describing Intel’s future direction at the Intel Developers Forum
in 2005

B649: Parallel Architectures and Programming, Spring 2009

Multiprocessor Cache Coherence

X is not in any cache initially. The caches are write-through.

Memory
Cache contents Cache contents contents for
Time Event for CPUA for CPUB location X

0 I
l CPU A reads X I
2 CPU B reads X I
3 CPU A stores 0 into X

B649: Parallel Architectures and Programming, Spring 2009

Multiprocessor Cache Coherence

X is not in any cache initially. The caches are write-through.

Memory
Cache contents Cache contents contents for
Time Event for CPUA for CPUB location X

0 |
I CPU A reads X l
2 CPU B reads X l
3 CPU A stores 0 into X : 0

Proposed definition: Memory system is coherent if any read of a
data item returns the most recently written value of that data item.

B649: Parallel Architectures and Programming, Spring 2009

Multiprocessor Gache Coherence

X is not in any cache initially. The caches are write-through.

Memory

Cache contents
for CPUA

Time Event

Cache contents
for CPUB

0

l

| CPU A reads X

l

)

CPU B reads X

l

3 CPU A stores 0 into X

Proposed definition: Memory SysS
data item returns the most

0

contents for
location X

[)
vwoi herent if any read of a

ritten value of that data item.

4

B649: Parallel Architectures and Programming, Spring 2009

Coherency: Take 2

* A memory system is coherent if:

1. Writes and Reads
by one processor

)

.&M

B649: Parallel Architectures and Programming, Spring 2009

Coherency: Take 2

* A memory system is coherent if:

1. Writes and Reads 2. Writes and Reads
by one processor by two processors

LS) M

.&M '&M

B649: Parallel Architectures and Programming, Spring 2009

Coherency: Take 2

* A memory system is coherent if:

1. Writes and Reads 2. Writes and Reads 3. Writes by two processors
by one processor by two processors (serialization)

LS) M éM

.&M .&M

B649: Parallel Architectures and Programming, Spring 2009

What Needs to Happen for Coherence?

* Migration
* data can move to local cache, when needed
* Replication
* data may be replicated in local cache, when needed

* Need a protocol to maintain the coherence property

* specialized hardware

B649: Parallel Architectures and Programming, Spring 2009

Coherence Protocols

* Directory based

* central location (directory) maintains the sharing state of a

block of physical memory
* slightly higher implementation cost
* scalable
* most used for distributed-memory multiprocessors
® Snooping
* each cache maintains sharing state of the blocks it contains
* shared broadcast medium (e.g., bus)

* each cache snoops on the medium to determine whether
they a copy of the block that is requested

* most used for shared-memory multiprocessors

B649: Parallel Architectures and Programming, Spring 2009

Snooping Protocols: Handling Writes

e \rite invalidate

* write requires exclusive access

* any copy held by the reading processor is invalidated

* if two processors attempt to write, one wins the race

* Write update (or write broadcast)

* update all t|

ne cached copies of a data item when written

* consumes su|

pstantially more bandwidth than invalidating-

based protocol

* not used in recent multiprocessors

B649: Parallel Architectures and Programming, Spring 2009

Example of Invalidation Protocol

Write-back caches

Contents of
Contents of Contents of memory
Processor activity Bus activity CPU A’s cache CPUB’s cache location X

0
CPU A reads X Cache miss for X 0
CPU B reads X Cache miss for X ﬁ 0
CPU A writes a 1 to X Invalidation for X 0
CPU B reads X Cache miss for X I

B649: Parallel Architectures and Programming, Spring 2009

Write Invalidate Protocol: Observations

e Serialization through access to the broadcast medium

* Need to locate data item upon miss

* simple on write-through caches
* write-buffers may complicate this
* write-through increases the memory bandwidth requirement
* more complex on write-back caches
* caches snoop for read addresses, supply matching dirty block
* no need to write back dirty block if cached elsewhere

* preferred approach on most modern multiprocessors, due to lower memory
bandwidth requirements

e Cache tags and valid bits can do double duty

e Additional bit to indicate whether block shared

* Desirable to reduce contention on cache between processor

and snooping
B649: Parallel Architectures and Programming, Spring 2009

Invalidation-Based Coherence Protocol for
Write-Back Caches with Allocate on Write

B649: Parallel Architectures and Programming, Spring 2009

Invalidation-Based Coherence Protocol for
Write-Back Caches with Allocate on Write

® [dea: Shared read, exclusive write

B649: Parallel Architectures and Programming, Spring 2009

Invalidation-Based Coherence Protocol for
Write-Back Caches with Allocate on Write

® [dea: Shared read, exclusive write

® Read

* Hit: get from local cache

* Miss: get from memory or another processor’s cache; write-

back existing block if needed

B649: Parallel Architectures and Programming, Spring 2009

Invalidation-Based Coherence Protocol for
Write-Back Caches with Allocate on Write

® [dea: Shared read, exclusive write

® Read

* Hit: get from local cache

* Miss: get from memory or another processor’s cache; write-

back existing block if needed
* Write

* Hit: write in cache, mark the block exclusive (invalidate
copies at other processors)

* Miss: get from memory or another processor’s cache; write-

back existing block if needed

B649: Parallel Architectures and Programming, Spring 2009

Cache Coherence Mechanism (MESI or MOESI

State of
addressed Type of
Request Source cache block cache action

Function and explanation

Read hit processor shared or normal hit
modified

Read data in cache.

Read miss processor invalid normal miss

Place read miss on bus.

Read miss processor shared replacement

Address conflict miss: place read miss on bus.

Read miss processor modified replacement

Address conflict miss: write back block, then place read miss on
bus.

Write hit processor modified normal hit

Write data in cache.

Write hit processor shared coherence

Place invalidate on bus. These operations are often called
upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss processor invalid normal miss

Place write miss on bus.

Write miss processor shared replacement

Address conflict miss: place write miss on bus.

Write miss processor modified replacement

Address conflict miss: write back block, then place write miss on
bus.

Read miss bus shared no action

Allow memory to service read miss.

Read miss bus modified coherence

Attempt to share data: place cache block on bus and change state
to shared.

Invalidate bus shared coherence

Attempt to write shared block: invalidate the block.

Write miss bus shared coherence

Attempt to write block that is shared: invalidate the cache block.

Write miss bus modified coherence

B649: Parallel Architectures and Programming, Spring 2009

Attempt to write block that is exclusive elsewhere: write back the
cache block and make its state invalid.

wme miss for this block

Invalldate for
this block
CPU

Read miss

Cache state transitions for this block | cache state transitions based
based on requests from CPU on requests from the bus

CPU write miss

Write-back cache block
Place write miss on bus

PU write hit
PU read hit

© 2007 Elsavier, Inc. All rights resarved.

Write miss for this block

Invalidate for this block

CPU read Siiared
(read only)

Place read miss on bus

CPU
CPU write read

miss

Place read
miss on bus

=
S
Ee]
x
8
Ko
g
=

Place write miss on bus

Write miss
for block

Exclusive

(read/write)
CPU write miss

PU write hit
PU read hit

Write-back data
Place write miss on bus

© 2007 Elsavier, Inc. All rights reserved.

a

Processor

One or
more levels
of cache

Processor

One or
more levels
of cache

Processor

One or
more levels
of cache

© 2007 Elsavier, Inc. All rights

Processor

One or
more levels
of cache

I/O system

SYMMETRIC SHARED-MEMORY:

PERFORMANCE

Pertformance Issues

® Cache misses
* capacity
* compulsory
* conflict
® Cache coherence

* true-sharing misses

* false-sharing

B649: Parallel Architectures and Programming, Spring 2009

Pertformance Issues

® Cache misses
* capacity
* compulsory
* conflict
® Cache coherence
* true-sharing misses

* false-sharing

B649: Parallel Architectures and Programming, Spring 2009

P1

P2

Write x1

Read x2

Write x1

Write x2

Read x2

Pertormance: Alpha-Server

e Machine

* Alpha-Server 4100, 4 processors: processor Alpha 21164
(four issue)

® Three-level cache

* L1: §KB direct-mapped, separate instruction and data, 32-
byte block size, write through, on-chip

* [.2: 96K B 3-way set-associative, unified, 32-byte block size,
write back, on-chip

* [.3: 2MB direct-mapped, unified, 64-byte block size, write
back, oft-chip

* [atencies
* [2: 7 cycles, L3: 21 cycles, memory: 8o cycles

B649: Parallel Architectures and Programming, Spring 2009

Performance: Commercial Workload

® Online Transaction-Processing (OLTP)
* modeled after TPC-B
* client-server

® Decision Support System (DSS)
* modeled after TPC-D

* Jong-running queries against large complex data structures

(obsoleted)
® Web index search

* AltaVista, using 200 GB memory-mapped database

* [/O time ignored (substantial for these applications)

B649: Parallel Architectures and Programming, Spring 2009

B Instruction execution
M L2 access
[L3 access

O Memory access
@ Other stalls

~ Percentage
- of execution

DSS

© 2007 Elsavier, Inc. All rights

M Instruction execution
B L2/L3 cache access
0 Memory access

O PAL code

M Idle

2 4
L3 cache size (MB)

© 2007 Elsavier, Inc. All rights

=
L
I3
=)
=
®
£=
o
o)
a
0
D
o
>
@)
ay
o
&
0}
=

2

M True sharing

B False sharing

O Compulsory

O Capacity/conflict
[Instruction

4

Cache size (MB)

© 2007 Elsevier, Inc. All rig

s resarved.

OLTP Mem. Access Cycles with Processor Count

B True sharing

M False sharing

[0 Compulsory

O Capacity/conflict
@ Instruction

Memory cycles per instruction

2 4

Processor count

© 2007 Elsavier, Inc. All rights resarved.

B649: Parallel Architectures and Programming, Spring 2009

M True sharing
M False sharing
O Compulsory

O Capacity/conflict
[Instruction

Misses per 1000 instructions

64 128
Block size (bytes)

£ 2007 Elsavier, Inc. All rights resarved.

Multiprogramming and OS Workload

® Models user and OS activities

* Andrew benchmark, emulates software development
* compiling
* installing object files in a library

* removing object files

* Memory hierarchy

* L1 instruction cache: 32KB, 2-way set-associative, 64-byte
block; L1 data cache: 32KB 2-way set-associative, 32-byte

block
* [2: IMB unified, 2-way set assoc., 128-byte block

* Memory: 100 clock cycles access

B649: Parallel Architectures and Programming, Spring 2009

Distribution of Execution 11me

User Kernel Synchronization CPU idle
execution execution wait (waiting for 1/0O)

J0 1nstructions 27 3 | 69
executed

J0 execution time 27 | 64

B649: Parallel Architectures and Programming, Spring 2009

Block size (bytes)

© 2007 Elsavier, Inc. All rights resarved.

— -
& }-._.-
. ey e ———
= - - iy W o e et
e ~—— ——y i =
— e m— s Wy —— e e
g

[—— P———
>
P o

B Compulsory
[0 Coherence
B Capacity

32 64 128 256 16 32 64 128
Cache size (KB) Block size (bytes)

Omyar, Inc. All rights resarved.

e e

Kernel traffic

Memory traffic
easured as bytes
per data reference

Block size (bytes)

© 2007 Elsavier, Inc. All rights resarved.

DISTRIBUTED SHARED-MEMORY:

DIRECTORY-BASED COHERENCE

Processor Processor
+ cache

I/O

Processor Processor Processor Processor
+ cache + cache + cache + cache

© 2007 Elsavier, Inc. All rights

Processor Processor Processor Processor
+ cache + cache + cache + cache

omon {70 [Waron (70 [veron {70 [voron

Processor Processor
+ cache + cache

© 2007 Elsavier, Inc. All rights resarved.

Directory-Based Protocol States

¢ Shared

* one or more processors have the block cached

* memory has up to date value

® Uncached

* no processor has a copy of the cache block

e Modified

* exactly one processor has a copy of the cache block
* memory copy is out of date

* the processor with the copy is the block’s owner

B649: Parallel Architectures and Programming, Spring 2009

Message type

Source

Destination

Message
contents

Possible Messages

Function of this message

Read miss

local cache

home directory

P. A

Processor P has a read miss at address A
request data and make P a read sharer.

Write miss

local cache

home directory

P. A

Processor P has a write miss at address A
request data and make P the exclusive owner.

Invalidate

local cache

home directory

Request to send invalidates to all remote caches
that are caching the block at address A.

Invalidate

home directory

remote cache

Invalidate a shared copy of data at address A.

Fetch

home directory

remote cache

Fetch the block at address A and send 1t to i1ts
home directory: change the state of A in the
remote cache to shared.

Fetch/invalidate

home directory

remote cache

Fetch the block at address A and send i1t to its
home directory: invalidate the block in the
cache.

Data value reply

home directory

local cache

Return a data value from the home memory.

Data write back

remote cache

home directory

B649: Parallel Architectures and Programming, Spring 2009

Write back a data value for address A.

Invalidate

Shared
PU read
Bhires (read only)

Send read miss message

CPU

CPU write . e read
mISS

Read miss

()]
[e)]
o 8
[0}]
g| €
.ﬂ“
2| @
| .
x| 3
S| £
8| 3
e
=
Q
w

Fetch
invalidate

Modified

(read/write)
CPU write miss

PU write hit

PU read hit
Data write back
Write miss

Uncached

Write miss

25
S
30
s
s

aﬁ

Data
write back

Exclusive
(read/write)

Data value reply; Shared
are

Read miss

Data value reply
Sharers = Sharers + {P}

Fetch/Invalldate
Data value reply
Sharers = {P}

- N
—— = -

g
e

)

i

h:__.m }

Basic Idea

® Hardware support for atomically reading and writing
a memory location

* enables software to implement locks

* a variety of synchronizations possible with locks

® Multiple (equivalent) approaches possible

* Synchronization libraries on top of hardware
primitives

B649: Parallel Architectures and Programming, Spring 2009

Some Examples

* Atomic exchange

* exchange a register and memory value atomically

* return the register value if failed, memory value if
succeeded

¢ Test-and-set

* test a memory location and set its value if the test passed

¢ Fetch-and-increment

B649: Parallel Architectures and Programming, Spring 2009

Paired Instructions

* Problems with single atomic operations

* complicates coherence
* Alternative: pair of special load and store
Instructions
* Joad linked or load locked
* store conditional

* can implement atomic exchange with the pair

try: MOV R3,R4 smov exchange value
LL R2,0(R1) s Toad Tinked
SC R3,0(R1) :store conditional
BEQZ R3,try sbranch store fails
MOV R4,R2 ;put Toad value in R4

B649: Parallel Architectures and Programming, Spring 2009

Other Primitives can also be built

* Atomic exchange

try: MOV R3,R4 smov exchange value
LL R2,0(R1) s 1oad Tinked
SC R3,0(R1) ;store conditional
BEQZ R3,try sbranch store fails
MOV R4,R2 ;put Toad value in R4

¢ Fetch-and-increment

try: LL R2,0(R1) ;load linked
DADDUI R3,R2,#1 ;increment
SC R3,0(R1) ;store conditional
BEQZ R3,try sbranch store fails

* Implemented with a /ink register to track the address
of LL instruction

B649: Parallel Architectures and Programming, Spring 2009

Implementing Spin Locks: Uncached

DADDUI R2,R0,#1
lockit: EXCH R2,0(R1) ;atomic exchange
BNEZ RZ2, Tockit ;already locked?

B649: Parallel Architectures and Programming, Spring 2009

Implementing Spin Locks: Cached

LD R2,0(R1) :1oad of lock

BNEZ R2, Tockit ;not available-spin
DADDUI R2 ,R0, #1 ;1load locked value

EXCH R2,0(R1) ;swap

BNEZ R2, 1ockit sbranch if lock wasn't O

B649: Parallel Architectures and Programming, Spring 2009

Step Processor PO ProcessorP1

Processor P2

Coherence
state of lock

Bus/directory activity

1 Has lock

Spins, testing if
lock =0

Spins, testing if
lock =0

Shared

None

Set lock to 0

(Invalidate received)

(Invalidate received)

Exclusive (P0O)

Write invalidate of lock
variable from PO

Cache miss

Cache miss

Shared

Bus/directory services P2
cache miss; write back

from PO

(Waits while bus/
directory busy)

Lock =0

Shared

Cache miss for P2 satisfied

Lock =0

Executes swap, gets
cache miss

Shared

Cache miss for P1 satisfied

Executes swap,
gets cache miss

Completes swap:
returns 0 and sets

Lock =1

Exclusive (P2)

Bus/directory services P2
cache miss: generates
invalidate

Swap completes and

returns |, and sets
Lock =1

Enter critical section

Exclusive (P1)

Bus/directory services P1

cache miss: generates write
back

Spins, testing if
lock =0

None

Implementing Spin Locks: Linked lL.oad/Store

LL R2,0(R1) s 1oad Tinked

BNEZ R2, 1ockit ;not available-spin
DADDUI R2 ,R0, #1 s locked value

SC R2,0(R1) ;store

BEQZ R2, 1ockit sbranch if store fails

B649: Parallel Architectures and Programming, Spring 2009

Coherence vs Consistency

® Coherence defines the behavior of reads and writes
to the same memory location

* Consistency defines the behavior of reads and writes
with respect to accesses to other memory locations

* we will return to consistency later

* Working assumptions:

* a write does not complete until all processors have seen the
eftect of that write

* processor does not change the order of a write with respect
to any other memory access

B649: Parallel Architectures and Programming, Spring 2009

Memory Consistency

* Related to accesses to multiple shared memory
locations

*x coherence deals with accesses to a shared location

B649: Parallel Architectures and Programming, Spring 2009

* Related to accesses to multiple shared memory
locations

Memory Consistency

*x coherence deals with accesses to a shared location

L1:

A =0;

A=1,;
if (B==0) ... L2:

P2:

B =0;

52,
if (A==0)...

Sequential Consistency

B649: Parallel Architectures and Programming, Spring 2009

Programmer’s View

* Sequential consistency “easy” to reason about

® Most real programs use synchronization
* synchronization primitives usually implemented in libraries

* not using synchronization = data races

* Allowing sequential consistency for synchronization
variables ensure correctness

* can implement relaxed consistency for the rest

B649: Parallel Architectures and Programming, Spring 2009

Relaxed Consistency Models

® Jdea: allow reads and writes to finish out of order, but
use synchronization to enforce ordering

® Ways to relax consistency (weak consistency)

* Relaxing W—R: processor consistency

* Relaxing W—W: partial store order

* Relaxing R—=W and R—R: weak ordering, PowerPC
consistency, release consistency

* Two approaches to optimize performance
* use weak consistency, rely on synchronization for correctness

* use sequential or processor consistency with speculative
execution

B649: Parallel Architectures and Programming, Spring 2009

Fallacies and Pittalls

* Pitfall: Measuring performance of multiprocessors
by linear speedup versus execution time

* sequential vs parallel algorithms

* superlinear speedups and cache effects

* strong vs weak scaling

* Pitfall: Not developing software to take advantage
of, or optimize for, a multiprocessor architecture

B629: Practical Compiling for Modern Machines

