LIMITS OF ILP

B649
Parallel Architectures and Programming

A Pertect Processor

® Register renaming

* infinite number of registers

* hence, avoids all WAW and WAR hazards

* Branch prediction

* perfect prediction
® Jump prediction

* perfect jump and return prediction

* Memory address alias analysis

* addresses perfectly disambiguated
e Cache

* NO Misses

B629: Practical Compiling for Modern Machines

gcc
espresso

SPEC |

benchmarks
fPppp

doduc

tomcatv

20 40 60 80 100 120 140 16C

Instruction issues per cycle

© 2007 Elsavier, Inc. All rights resarved.

What Needs to Happen?
* Look arbitrarily ahead

* Rename all registers

* Rename within an issue packet to avoid
dependences

* Handle memory dependences

* Provide sufficient replicated functional units

B629: Practical Compiling for Modern Machines

What Needs to Happen?
* Look arbitrarily ahead

* Rename all registers

* Rename within an issue packet to avoid
dependences

* Handle memory dependences

* Provide sufficient replicated functional units

Comparisons needed:
2N-2 +2Nn-4 + ... + 2 = 22

|n1

= 2((n—=1)n/2) = n2-n

B629: Practical Compiling for Modern Machines

What Needs to Happen?
* Look arbitrarily ahead

* Rename all registers

* Rename within an issue packet to avoid
dependences

* Handle memory dependences

* Provide sufficient replicated functional units

Comparisons needed:
2n—2)+ 2n—-4 + ... + 2 = 22'”1 2((n=1)n/2) = n2—n

B629: Practical Compiling for Modern Machines

What Needs to Happen?
* Look arbitrarily ahead

* Rename all registers

* Rename within an issue packet to avoid
dependences

* Handle memory dependences

* Provide sufficient replicated functional units

Comparisons needed:

2n-2 ++ +2=2 Z' i = 2((n=1)n/2) = n2-n

B629: Practical Compiling for Modern Machines

What Needs to Happen?
* Look arbitrarily ahead

* Rename all registers

* Rename within an issue packet to avoid
dependences

* Handle memory dependences

* Provide sufficient replicated functional units

Comparisons needed:
ON—2 + 2N—4 + ... + 2 {2 5

|n1

= 2((n—=1)n/2) = n2-n

B629: Practical Compiling for Modern Machines

What Needs to Happen?
* Look arbitrarily ahead

* Rename all registers

* Rename within an issue packet to avoid
dependences

* Handle memory dependences

* Provide sufficient replicated functional units

Comparisons needed:
2N-2 +2Nn-4 + ... + 2 = 22

|n1

= 2((n—=1)n/2) = n2-n

B629: Practical Compiling for Modern Machines

Window size

M Infinite
3 2K

M 512
128

espresso @ 32

60
45
34

14

20 40 60 80 100 120 140 160
Instruction issues per cycle

© 2007 Elsavier, Inc. All rights reserved.

Window size

M Infinite
@3 2K

M 512
128

espresso "

—
—

- Benchmarks

60
45
34
14

0 20 40 60 80 1 60 1 éO 1 4I'O
Iq ues of Ap pend iX G Instruction issues per cycle

OOY Elsavier, Inc. All rights resarved.

160

Branch predictor

M Perfect

O Tournament predictor
M Standard 2-bit

O Profile-based

M None
espresso

Benchmarks

19

20 30 40

Instruction issues per cycle
£ 2007 Elsavier, Inc. All rights resarved.

tomcatv

Benchmarks

espresso

gce

B Profile-based
M 2-bit counter

O Tournament

14%
18%

12%
30%
6%

0%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Branch misprediction rate
© 2007 Elsavier, Inc. All rights reserved.

Benchmarks

espresso

| IS
0

7

10 20

28

30

Renaming registers
M Infinite

[256 integer + 256 FP | =

M 128 integer + 128 FP
[64 integer + 64 FP
[32 integer + 32 FP
[J None

40

Instruction issues per cycle

£ 2007 Elsavier, Inc. All rig

s resarved.

Impertect Alias Analysis

(2K window, 64 1ssue, 150K bits tournament predictor; 256 integer + 256 FP reguisters)

B Perfect

B Global/stack
perfect

ion
espresso M Inspectio

CINone

Benchmarks

tomcatv

20 25 30 35

Instruction issues per cycle

© 2007 Elsavier, Inc. All rights resarved.

B629: Practical Compiling for Modern Machines

Realizable Processor

® (64 issues per cycle
* NO 1ssue restriction

* 10 times widest available in 20045

* Tournament branch predictor with 1K entries

* comparable to best in 2004, not a primary bottleneck

® Perfect memory reference disambiguation

* may be practical for small window sizes

* Register renaming with 64 integer and 64 FP
registers

* comparable to IBM Powers

B629: Practical Compiling for Modern Machines

Window size
M Infinite
@256
128

064

espresso w32

Benchmarks

tomcatv
22

14

10 20 30 40

Instruction issues per cycle
© 2007 Elsavier, Inc. All rights reserved.

Beyond These Limits

* WAW and WAR hazards through memory

* stack frames (reuse of stack area)

* “Unnecessary” dependences

* recurrences

* code generation conventions (e.g., loop index, use of
specific registers)

* can we eliminate some of these?

® Data flow limits

* value prediction (not very successful, so far)

B629: Practical Compiling for Modern Machines

Role of Software vs Hardware

* Memory reference disambiguation

* alias analysis

* Speculation
hardware-based better with unpredictable branches

precise exceptions: both hardware and software

bookkeeping code not needed in hardware-based approach

* Scheduling

* compiler has a bigger picture

* Architecture independence

* hardware-based approach might be better (?)

B629: Practical Compiling for Modern Machines

-

e
——

SIMULTANEOUS

MULITITHREADING

Why Multithreading?

e [.imitations of ILP

* inherent limitations, in availability of instruction-level
parallelism

*x hardware limitations

* hardware complexities limit further improvements

* Two ways to multithread

* coarse-grained

* fine-grained

B629: Practical Compiling for Modern Machines

Why Multithreading?

e [.imitations of ILP

* inherent limitations, in availability of instruction-level
parallelism

*x hardware limitations

* hardware complexities limit further improvements

* Two ways to multithread

* coarse-grained

* fine-grained

Beware: textbook uses multithreading
and multiprocessing interchangeably

B629: Practical Compiling for Modern Machines

Simultaneous Multithreading

Issue slots ——

Superscalar Coarse MT Fine MT

B629: Practical Compiling for Modern Machines

Design and Challenges

® Build on top of existing hardware
* need per-thread register renaming tables
* separate PCs

* ability to commit from multiple threads

® Throughput vs per-thread performance

* preferred thread
* fetching far ahead for single thread vs throughput

* Large register file
* Maintaining clock cycle speed

* Handling cache and TLB misses

B629: Practical Compiling for Modern Machines

IBM Powerd Approach

* Increase the associativity of L1 instruction cache
and instruction address translation buffers

* Added per-thread load and store queues
® Increased the sizes of L2 and L3 caches
* Added separate instruction prefetch and buffering

® Increased the number of virtual registers from 152 to
240

* Increased the size of several issue queues

B629: Practical Compiling for Modern Machines

1:2
Speedup

© 2007 Elsavier, Inc. All rights resarved.

Processor

Broad Comparison

Microarchitecture

Fetch/
issue/
execute

Func.
units

Clock
rate
(GHz)

Transistors
and die size

Power

Intel
Pentium 4 Extreme

Speculative dynamically
scheduled:; deeply

pipelined; SMT

3/3/4

7 1int.
| FP

3.8

125M
2
122 mm~

[1SW

AMD Athlon 64
FX-57

Speculative dynamically
scheduled

3/3/4

6 1int.
3 FP

[14M
15 mm?

104 W

IBM Power5

| processor

Speculative dynamically
scheduled; SMT:; two CPU

cores/chip

8/4/8

6 1nt.
2 FP

200M
300 mm?
(estimated)

80 W

(estimated)

Intel
[tanium 2

EPIC style; primarily
statically scheduled

B629: Practical Compiling for Modern Machines

6/5/11

9 int.
2 FP

592M
2
423 mm~

130 W

What Limits These Processors?

* [P limitations as already seen

® Hardware complexity increases rapidly

® Power

* dynamic power dominates

* multiple issues required much more hardware, increasing
power cost

* orowing gap between peak and sustained performance

* speculation is inherently energy inefhicient

B629: Practical Compiling for Modern Machines

v

R
- I, " S0 -
- —

.

—
>
Q
O
=
D
=

NEXT

i

it

