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B629: Practical Compiling for Modern Machines

A Perfect Processor

• Register renaming
★ infinite number of registers
★ hence, avoids all WAW and WAR hazards

• Branch prediction
★ perfect prediction

• Jump prediction
★ perfect jump and return prediction

• Memory address alias analysis
★ addresses perfectly disambiguated

• Cache
★ no misses
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Available ILP on a Perfect Processor
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What Needs to Happen?

4

• Look arbitrarily ahead
• Rename all registers
• Rename within an issue packet to avoid 

dependences
• Handle memory dependences
• Provide sufficient replicated functional units
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Effect of  Window Size
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Effect of  Window Size

5
Recall techniques of Appendix G
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Realistic Branch and Jump Prediction
(2K window, 64 issue)
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Branch Misprediction Rate
(2K window, 64 issue)
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Limited Number of  Registers
(2K window, 64 issue, 150K bits tournament predictor)
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Imperfect Alias Analysis
(2K window, 64 issue, 150K bits tournament predictor, 256 integer + 256 FP registers)
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Realizable Processor
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• 64 issues per cycle
★ no issue restriction
★ 10 times widest available in 2005

• Tournament branch predictor with 1K entries
★ comparable to best in 2005, not a primary bottleneck

• Perfect memory reference disambiguation
★ may be practical for small window sizes

• Register renaming with 64 integer and 64 FP 
registers
★ comparable to IBM Power5
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Performance on a Realizable Processor
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Beyond These Limits

12

• WAW and WAR hazards through memory
★ stack frames (reuse of stack area)

• “Unnecessary” dependences
★ recurrences
★ code generation conventions (e.g., loop index, use of 

specific registers)
✴ can we eliminate some of these?

• Data flow limits
★ value prediction (not very successful, so far)
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CROSS-CUTTING ISSUES
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Role of  Software vs Hardware

• Memory reference disambiguation
★ alias analysis

• Speculation
★ hardware-based better with unpredictable branches
★ precise exceptions: both hardware and software
★ bookkeeping code not needed in hardware-based approach

• Scheduling
★ compiler has a bigger picture

• Architecture independence
★ hardware-based approach might be better (?)
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SIMULTANEOUS 
MULTITHREADING
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Why Multithreading?
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• Limitations of ILP
★ inherent limitations, in availability of instruction-level 

parallelism
★ hardware limitations
★ hardware complexities limit further improvements

• Two ways to multithread
★ coarse-grained
★ fine-grained
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Why Multithreading?

16

• Limitations of ILP
★ inherent limitations, in availability of instruction-level 

parallelism
★ hardware limitations
★ hardware complexities limit further improvements

• Two ways to multithread
★ coarse-grained
★ fine-grained

Beware: textbook uses multithreading 
and multiprocessing interchangeably
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Simultaneous Multithreading
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Design and Challenges
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• Build on top of existing hardware
★ need per-thread register renaming tables
★ separate PCs
★ ability to commit from multiple threads

• Throughput vs per-thread performance
★ preferred thread
★ fetching far ahead for single thread vs throughput

• Large register file
• Maintaining clock cycle speed
• Handling cache and TLB misses
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IBM Power5 Approach

• Increase the associativity of L1 instruction cache 
and instruction address translation buffers

• Added per-thread load and store queues
• Increased the sizes of L2 and L3 caches
• Added separate instruction prefetch and buffering
• Increased the number of virtual registers from 152 to 

240
• Increased the size of several issue queues

19



B629: Practical Compiling for Modern Machines

Potential Performance Improvement
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Broad Comparison
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What Limits These Processors?
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• ILP limitations as already seen
• Hardware complexity increases rapidly
• Power

★ dynamic power dominates
★ multiple issues required much more hardware, increasing 

power cost
★ growing gap between peak and sustained performance
★ speculation is inherently energy inefficient
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NEXT: MULTICORE
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