
LIMITS OF ILP
B649

Parallel Architectures and Programming

B629: Practical Compiling for Modern Machines

A Perfect Processor

• Register renaming
★ infinite number of registers
★ hence, avoids all WAW and WAR hazards

• Branch prediction
★ perfect prediction

• Jump prediction
★ perfect jump and return prediction

• Memory address alias analysis
★ addresses perfectly disambiguated

• Cache
★ no misses

2

B629: Practical Compiling for Modern Machines

Available ILP on a Perfect Processor

3

B629: Practical Compiling for Modern Machines

What Needs to Happen?

4

• Look arbitrarily ahead
• Rename all registers
• Rename within an issue packet to avoid

dependences
• Handle memory dependences
• Provide sufficient replicated functional units

B629: Practical Compiling for Modern Machines

What Needs to Happen?

4

• Look arbitrarily ahead
• Rename all registers
• Rename within an issue packet to avoid

dependences
• Handle memory dependences
• Provide sufficient replicated functional units

Comparisons needed:
2n−2 + 2n−4 + ... + 2 = 2 ∑ i = 2((n−1)n/2) = n²−n

i=1
i=n−1

B629: Practical Compiling for Modern Machines

What Needs to Happen?

4

• Look arbitrarily ahead
• Rename all registers
• Rename within an issue packet to avoid

dependences
• Handle memory dependences
• Provide sufficient replicated functional units

Comparisons needed:
2n−2 + 2n−4 + ... + 2 = 2 ∑ i = 2((n−1)n/2) = n²−n

i=1
i=n−1

B629: Practical Compiling for Modern Machines

What Needs to Happen?

4

• Look arbitrarily ahead
• Rename all registers
• Rename within an issue packet to avoid

dependences
• Handle memory dependences
• Provide sufficient replicated functional units

Comparisons needed:
2n−2 + 2n−4 + ... + 2 = 2 ∑ i = 2((n−1)n/2) = n²−n

i=1
i=n−1

B629: Practical Compiling for Modern Machines

What Needs to Happen?

4

• Look arbitrarily ahead
• Rename all registers
• Rename within an issue packet to avoid

dependences
• Handle memory dependences
• Provide sufficient replicated functional units

Comparisons needed:
2n−2 + 2n−4 + ... + 2 = 2 ∑ i = 2((n−1)n/2) = n²−n

i=1
i=n−1

B629: Practical Compiling for Modern Machines

What Needs to Happen?

4

• Look arbitrarily ahead
• Rename all registers
• Rename within an issue packet to avoid

dependences
• Handle memory dependences
• Provide sufficient replicated functional units

Comparisons needed:
2n−2 + 2n−4 + ... + 2 = 2 ∑ i = 2((n−1)n/2) = n²−n

i=1
i=n−1

B629: Practical Compiling for Modern Machines

Effect of Window Size

5

B629: Practical Compiling for Modern Machines

Effect of Window Size

5
Recall techniques of Appendix G

B629: Practical Compiling for Modern Machines

Realistic Branch and Jump Prediction
(2K window, 64 issue)

6

B629: Practical Compiling for Modern Machines

Branch Misprediction Rate
(2K window, 64 issue)

7

B629: Practical Compiling for Modern Machines

Limited Number of Registers
(2K window, 64 issue, 150K bits tournament predictor)

8

B629: Practical Compiling for Modern Machines

Imperfect Alias Analysis
(2K window, 64 issue, 150K bits tournament predictor, 256 integer + 256 FP registers)

9

B629: Practical Compiling for Modern Machines

Realizable Processor

10

• 64 issues per cycle
★ no issue restriction
★ 10 times widest available in 2005

• Tournament branch predictor with 1K entries
★ comparable to best in 2005, not a primary bottleneck

• Perfect memory reference disambiguation
★ may be practical for small window sizes

• Register renaming with 64 integer and 64 FP
registers
★ comparable to IBM Power5

B629: Practical Compiling for Modern Machines

Performance on a Realizable Processor

11

B629: Practical Compiling for Modern Machines

Beyond These Limits

12

• WAW and WAR hazards through memory
★ stack frames (reuse of stack area)

• “Unnecessary” dependences
★ recurrences
★ code generation conventions (e.g., loop index, use of

specific registers)
✴ can we eliminate some of these?

• Data flow limits
★ value prediction (not very successful, so far)

B629: Practical Compiling for Modern Machines

CROSS-CUTTING ISSUES

13

B629: Practical Compiling for Modern Machines

Role of Software vs Hardware

• Memory reference disambiguation
★ alias analysis

• Speculation
★ hardware-based better with unpredictable branches
★ precise exceptions: both hardware and software
★ bookkeeping code not needed in hardware-based approach

• Scheduling
★ compiler has a bigger picture

• Architecture independence
★ hardware-based approach might be better (?)

14

B629: Practical Compiling for Modern Machines

SIMULTANEOUS
MULTITHREADING

15

B629: Practical Compiling for Modern Machines

Why Multithreading?

16

• Limitations of ILP
★ inherent limitations, in availability of instruction-level

parallelism
★ hardware limitations
★ hardware complexities limit further improvements

• Two ways to multithread
★ coarse-grained
★ fine-grained

B629: Practical Compiling for Modern Machines

Why Multithreading?

16

• Limitations of ILP
★ inherent limitations, in availability of instruction-level

parallelism
★ hardware limitations
★ hardware complexities limit further improvements

• Two ways to multithread
★ coarse-grained
★ fine-grained

Beware: textbook uses multithreading
and multiprocessing interchangeably

B629: Practical Compiling for Modern Machines

Simultaneous Multithreading

17

B629: Practical Compiling for Modern Machines

Design and Challenges

18

• Build on top of existing hardware
★ need per-thread register renaming tables
★ separate PCs
★ ability to commit from multiple threads

• Throughput vs per-thread performance
★ preferred thread
★ fetching far ahead for single thread vs throughput

• Large register file
• Maintaining clock cycle speed
• Handling cache and TLB misses

B629: Practical Compiling for Modern Machines

IBM Power5 Approach

• Increase the associativity of L1 instruction cache
and instruction address translation buffers

• Added per-thread load and store queues
• Increased the sizes of L2 and L3 caches
• Added separate instruction prefetch and buffering
• Increased the number of virtual registers from 152 to

240
• Increased the size of several issue queues

19

B629: Practical Compiling for Modern Machines

Potential Performance Improvement

20

B629: Practical Compiling for Modern Machines

Broad Comparison

21

B629: Practical Compiling for Modern Machines

What Limits These Processors?

22

• ILP limitations as already seen
• Hardware complexity increases rapidly
• Power

★ dynamic power dominates
★ multiple issues required much more hardware, increasing

power cost
★ growing gap between peak and sustained performance
★ speculation is inherently energy inefficient

B629: Practical Compiling for Modern Machines

NEXT: MULTICORE

23

