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A Pertect Processor

® Register renaming

* infinite number of registers

* hence, avoids all WAW and WAR hazards

* Branch prediction

* perfect prediction
® Jump prediction

* perfect jump and return prediction

* Memory address alias analysis

* addresses perfectly disambiguated
e Cache

* NO Misses
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What Needs to Happen?
* Look arbitrarily ahead

* Rename all registers

* Rename within an issue packet to avoid
dependences

* Handle memory dependences

* Provide sufficient replicated functional units
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* Provide sufficient replicated functional units

Comparisons needed:
2N-2 +2Nn-4 + ... + 2 = 22
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Branch predictor
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Impertect Alias Analysis

(2K window, 64 1ssue, 150K bits tournament predictor; 256 integer + 256 FP reguisters)
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Realizable Processor

® (64 issues per cycle
* NO 1ssue restriction

* 10 times widest available in 20045

* Tournament branch predictor with 1K entries

* comparable to best in 2004, not a primary bottleneck

® Perfect memory reference disambiguation

* may be practical for small window sizes

* Register renaming with 64 integer and 64 FP
registers

* comparable to IBM Powers
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Beyond These Limits

* WAW and WAR hazards through memory

* stack frames (reuse of stack area)

* “Unnecessary” dependences

* recurrences

* code generation conventions (e.g., loop index, use of
specific registers)

* can we eliminate some of these?

® Data flow limits

* value prediction (not very successful, so far)
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Role of Software vs Hardware

* Memory reference disambiguation

* alias analysis

* Speculation
hardware-based better with unpredictable branches

precise exceptions: both hardware and software

bookkeeping code not needed in hardware-based approach

* Scheduling

* compiler has a bigger picture

* Architecture independence

* hardware-based approach might be better (?)

B629: Practical Compiling for Modern Machines




-

e
——

SIMULTANEOUS

MULITITHREADING




Why Multithreading?

e [.imitations of ILP

* inherent limitations, in availability of instruction-level
parallelism

*x hardware limitations

* hardware complexities limit further improvements

* Two ways to multithread

* coarse-grained

* fine-grained
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Why Multithreading?

e [ .imitations of ILP

* inherent limitations, in availability of instruction-level
parallelism

*x hardware limitations

* hardware complexities limit further improvements

* Two ways to multithread

* coarse-grained

* fine-grained

Beware: textbook uses multithreading
and multiprocessing interchangeably

B629: Practical Compiling for Modern Machines




Simultaneous Multithreading

Issue slots ——

Superscalar Coarse MT Fine MT
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Design and Challenges

® Build on top of existing hardware
* need per-thread register renaming tables
* separate PCs

* ability to commit from multiple threads

® Throughput vs per-thread performance

* preferred thread
* fetching far ahead for single thread vs throughput

* Large register file
* Maintaining clock cycle speed

* Handling cache and TLB misses
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IBM Powerd Approach

* Increase the associativity of L1 instruction cache
and instruction address translation buffers

* Added per-thread load and store queues
® Increased the sizes of L2 and L3 caches
* Added separate instruction prefetch and buffering

® Increased the number of virtual registers from 152 to
240

* Increased the size of several issue queues
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Processor

Broad Comparison

Microarchitecture

Fetch/
issue/
execute

Func.
units

Clock
rate
(GHz)

Transistors
and die size

Power

Intel
Pentium 4 Extreme

Speculative dynamically
scheduled:; deeply

pipelined; SMT

3/3/4

7 1int.
| FP

3.8

125M
2
122 mm~

[1SW

AMD Athlon 64
FX-57

Speculative dynamically
scheduled

3/3/4

6 1int.
3 FP

[14M
15 mm?

104 W

IBM Power5

| processor

Speculative dynamically
scheduled; SMT:; two CPU

cores/chip

8/4/8

6 1nt.
2 FP

200M
300 mm?
(estimated)

80 W

(estimated)

Intel
[tanium 2

EPIC style; primarily
statically scheduled
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9 int.
2 FP

592M
2
423 mm~

130 W




What Limits These Processors?

* [P limitations as already seen

® Hardware complexity increases rapidly

® Power

* dynamic power dominates

* multiple issues required much more hardware, increasing
power cost

* orowing gap between peak and sustained performance

* speculation is inherently energy inefhicient
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