
MOTIVATION
B649

Parallel Architectures and Programming

B649: Parallel Architectures and Programming

Growth in Processor Performance

2

From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, October, 2006!

B649: Parallel Architectures and Programming 3

Sea Change in Chip Design
• Intel 4004 (1971): 4-bit processor,

2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

• RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

• 125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache

– RISC II shrinks to ~ 0.02 mm2 at 65 nm
– Caches via DRAM or 1 transistor SRAM (www.t-ram.com) ?
– Proximity Communication via capacitive coupling at > 1 TB/s ?

(Ivan Sutherland @ Sun / Berkeley)

http://www.t-ram.com/
http://www.t-ram.com/

B649: Parallel Architectures and Programming 3

Sea Change in Chip Design
• Intel 4004 (1971): 4-bit processor,

2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

• RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

• 125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache

– RISC II shrinks to ~ 0.02 mm2 at 65 nm
– Caches via DRAM or 1 transistor SRAM (www.t-ram.com) ?
– Proximity Communication via capacitive coupling at > 1 TB/s ?

(Ivan Sutherland @ Sun / Berkeley)

http://www.t-ram.com/
http://www.t-ram.com/

B649: Parallel Architectures and Programming 3

Sea Change in Chip Design
• Intel 4004 (1971): 4-bit processor,

2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

• Processor is the new transistor?

• RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

• 125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache

– RISC II shrinks to ~ 0.02 mm2 at 65 nm
– Caches via DRAM or 1 transistor SRAM (www.t-ram.com) ?
– Proximity Communication via capacitive coupling at > 1 TB/s ?

(Ivan Sutherland @ Sun / Berkeley)

http://www.t-ram.com/
http://www.t-ram.com/

B649: Parallel Architectures and Programming

Concurrency Trends
(ExaScale Computing Study, Peter Kogge et al.)

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1/1/93 1/1/95 1/1/97 1/1/99 1/1/01 1/1/03 1/1/05 1/1/07 1/1/09

T
o

ta
l

C
o

n
c
u

rr
e
c
n

c
y

Top 10 Top System Top 1 Trend

Figure 4.16: Total hardware concurrency in the Top 10 supercomputers.

1

10

100

1000

10000

1 10 100 1000 10000

Rpeak(TF)

S
to

ra
g

e
 (

T
B

)

1 Byte/Flops 0.5 Byte/Flops

0.3 Byte/Flops

0.1 Byte/Flops

0.01 Byte/Flops

0.001 Byte/Flops

Figure 4.17: Memory capacity in the Top 10 supercomputers.

58

4

B649: Parallel Architectures and Programming

Courtesy: Vivek Sarkar, Rice University

Types of (Parallel) Programmers

Mainstream
Parallelism-Oblivious

Developers

Parallelism–Aware
Developers

Concurrency
Experts

(Doug)

(Stephanie)

(Joe)

Joe needs high level
Programming Models
designed for Domain

Experts

Stephanie needs simple
Parallel Programming

Models with safety nets

Focus of today’s Parallel
Programming Models

5

B649: Parallel Architectures and Programming 6

Déjà vu all over again?

B649: Parallel Architectures and Programming 6

Déjà vu all over again?

• Multiprocessors imminent in 1970s, ‘80s, ‘90s, …
★ “… today’s processors … are nearing an impasse as technologies

approach the speed of light..”
• David Mitchell, The Transputer: The Time Is Now (1989)

B649: Parallel Architectures and Programming 6

Déjà vu all over again?

• Multiprocessors imminent in 1970s, ‘80s, ‘90s, …
★ “… today’s processors … are nearing an impasse as technologies

approach the speed of light..”
• David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer was premature
⇒ Custom multiprocessors strove to lead uniprocessors
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

B649: Parallel Architectures and Programming 6

Déjà vu all over again?

• Multiprocessors imminent in 1970s, ‘80s, ‘90s, …
★ “… today’s processors … are nearing an impasse as technologies

approach the speed of light..”
• David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer was premature
⇒ Custom multiprocessors strove to lead uniprocessors
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to multicore
designs. … This is a sea change in computing”

• Paul Otellini, President, Intel (2004)

B649: Parallel Architectures and Programming 6

Déjà vu all over again?

• Multiprocessors imminent in 1970s, ‘80s, ‘90s, …
★ “… today’s processors … are nearing an impasse as technologies

approach the speed of light..”
• David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer was premature
⇒ Custom multiprocessors strove to lead uniprocessors
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to multicore
designs. … This is a sea change in computing”

• Paul Otellini, President, Intel (2004)
• Difference is all microprocessor companies switch to multiprocessors

(AMD, Intel, IBM, Sun; all new Apples 2 CPUs)
⇒ Procrastination penalized: 2X sequential perf. / 5 yrs
⇒ Biggest programming challenge: 1 to 2 CPUs

B649: Parallel Architectures and Programming 7

Problems with Sea Change

• Algorithms, Programming Languages, Compilers,
Operating Systems, Architectures, Libraries, … not ready
to supply Thread Level Parallelism or Data Level
Parallelism for 1000 CPUs / chip,

• Architectures not ready for 1000 CPUs / chip
• Unlike Instruction Level Parallelism, cannot be solved by just by

computer architects and compiler writers alone, but also cannot be
solved without participation of computer architects

• The 4th Edition of textbook Computer Architecture: A
Quantitative Approach explores shift from Instruction
Level Parallelism to Thread Level Parallelism / Data
Level Parallelism

B649: Parallel Architectures and Programming

INSTRUCTION-SET
ARCHITECTURE (ISA)

B649: Parallel Architectures and Programming 9

Instruction Set Architecture: Critical Interface

instruction set

software

hardware

• Properties of a good abstraction
★ Lasts through many generations (portability)
★ Used in many different ways (generality)
★ Provides convenient functionality to higher levels
★ Permits an efficient implementation at lower levels

B649: Parallel Architectures and Programming 10

Example: MIPS
0r0

r1
°
°
°

r31
PC
lo
hi

Programmable storage
 2^32 x bytes
 31 x 32-bit GPRs (R0=0)
 32 x 32-bit FP regs (paired DP)
 HI, LO, PC

Data types ?
Format ?
Addressing

Modes?

Arithmetic logical
 Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,
 AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI
 SLL, SRL, SRA, SLLV, SRLV, SRAV
Memory Access
 LB, LBU, LH, LHU, LW, LWL,LWR
 SB, SH, SW, SWL, SWR
Control
 J, JAL, JR, JALR
 BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL

32-bit instructions on word boundary

B649: Parallel Architectures and Programming 11

Instruction Set Architecture

“... the attributes of a [computing] system as seen by the
programmer, i.e. the conceptual structure and functional
behavior, as distinct from the organization of the data flows and
controls the logic design, and the physical implementation.”
 – Amdahl, Blaauw, and Brooks, 1964

SOFTWARE
-- Organization of Programmable
 Storage

-- Data Types & Data Structures:
 Encodings & Representations

-- Instruction Formats

-- Instruction (or Operation Code) Set

-- Modes of Addressing and Accessing Data Items and Instructions

-- Exceptional Conditions

B649: Parallel Architectures and Programming 12

ISA vs. Computer Architecture
• Old definition of computer architecture

= instruction set design
★Other aspects of computer design called implementation
★ Insinuates implementation is uninteresting or less challenging

• Our view is computer architecture >> ISA
• Architect’s job much more than instruction set design;

technical hurdles today more challenging than those in
instruction set design

• Since instruction set design not where action is, some
conclude computer architecture (using old definition) is not
where action is
★We disagree on conclusion
★ Agree that ISA not where action is (ISA in CA:AQA 4/e appendix)

B649: Parallel Architectures and Programming 13

Comp. Arch. is an Integrated Approach

• What really matters is the functioning of the
complete system
★hardware, runtime system, compiler, operating system, and

application
★In networking, this is called the “End to End argument”

• Computer architecture is not just about transistors,
individual instructions, or particular implementations
★E.g., Original RISC projects replaced complex instructions

with a compiler + simple instructions

B649: Parallel Architectures and Programming 14

Computer Architecture is
Design and Analysis
Architecture is an iterative process:
• Searching the space of possible designs
• At all levels of computer systems

Creativity

Good Ideas

Mediocre IdeasBad Ideas

Cost /
Performance

Analysis

B649: Parallel Architectures and Programming

Time to Wake Up!

Time

Attention

20 min “And in
conclusion”

15

B649: Parallel Architectures and Programming 16

Course Focus

Understanding the design techniques, machine
structures, technology factors, evaluation methods that
will determine the form of computers in 21st Century

Technology Programming
Languages

Operating
Systems History

Applications Interface Design
(ISA)

Measurement &
Evaluation

Parallelism

Computer Architecture:
• Organization
• Hardware/Software Boundary

Compilers

B649: Parallel Architectures and Programming 17

What Computer Architecture brings to Table
• Other fields often borrow ideas from architecture
• Quantitative Principles of Design

1. Take Advantage of Parallelism
2. Principle of Locality
3. Focus on the Common Case
4. Amdahl’s Law
5. The Processor Performance Equation

• Careful, quantitative comparisons
– Define, quantity, and summarize relative performance
– Define and quantity relative cost
– Define and quantity dependability
– Define and quantity power

• Culture of anticipating and exploiting advances in technology
• Culture of well-defined interfaces that are carefully

implemented and thoroughly checked

B649: Parallel Architectures and Programming 18

1) Taking Advantage of Parallelism
• Increasing throughput of server computer via multiple

processors or multiple disks
• Detailed HW design

– Carry lookahead adders uses parallelism to speed up computing sums
from linear to logarithmic in number of bits per operand

– Multiple memory banks searched in parallel in set-associative caches

• Pipelining: overlap instruction execution to reduce the total
time to complete an instruction sequence.
★ Not every instruction depends on immediate predecessor ⇒ executing

instructions completely/partially in parallel possible
★ Classic 5-stage pipeline:

1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)

B649: Parallel Architectures and Programming 19

Pipelined Instruction Execution

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

B649: Parallel Architectures and Programming 20

Limits to pipelining
• Hazards prevent next instruction from executing during its

designated clock cycle
– Structural hazards: attempt to use the same hardware to do two

different things at once
– Data hazards: Instruction depends on result of prior instruction still in

the pipeline
– Control hazards: Caused by delay between the fetching of instructions

and decisions about changes in control flow (branches and jumps).

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

B649: Parallel Architectures and Programming 21

2) The Principle of Locality

• The Principle of Locality:
–Program access a relatively small portion of the address space at

any instant of time.

• Two Different Types of Locality:
–Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)
–Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

• Last 30 years, HW relied on locality for memory perf.

P MEM$

B649: Parallel Architectures and Programming
22

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
~$1 / GByte

Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
32-64 bytes

OS
4K-8K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

L2 Cache
cache cntl
64-128 bytesBlocks

B649: Parallel Architectures and Programming 23

3) Focus on the Common Case
• Common sense guides computer design
★ Since its engineering, common sense is valuable

• In making a design trade-off, favor the frequent case over
the infrequent case
★ E.g., Instruction fetch and decode unit used more frequently than

multiplier, so optimize it 1st
★ E.g., If database server has 50 disks / processor, storage dependability

dominates system dependability, so optimize it 1st

• Frequent case is often simpler and can be done faster than
the infrequent case
★ E.g., overflow is rare when adding 2 numbers, so improve performance

by optimizing more common case of no overflow
★ May slow down overflow, but overall performance improved by

optimizing for the normal case

• What is frequent case and how much performance
improved by making case faster => Amdahl’s Law

B649: Parallel Architectures and Programming 24

4) Amdahl’s Law

Best you could ever hope to do:

B649: Parallel Architectures and Programming 25

Amdahl’s Law example
• New CPU 10X faster
• I/O bound server, so 60% time waiting for I/O

• Apparently, its human nature to be attracted by 10X
faster, vs. keeping in perspective its just 1.6X faster

B649: Parallel Architectures and Programming 26

5) Processor performance equation

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

 Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time

B649: Parallel Architectures and Programming 27

What’s a Clock Cycle?

• Old days: 10 levels of gates
• Today: determined by numerous time-of-flight

issues + gate delays
★clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic

B649: Parallel Architectures and Programming 28

Summary

• Computer Architecture >> instruction sets
• Computer Architecture skill sets are different
★ 5 Quantitative principles of design
★ Quantitative approach to design
★ Solid interfaces that really work
★ Technology tracking and anticipation

• Course designed to learn new skills, transition to research
• Computer Science at the crossroads from sequential to

parallel computing
★ Salvation requires innovation in many fields, including computer

architecture

• Read Chapter 1, then Appendix A

