
Hardware and Software
for VLIW and EPICfor VLIW and EPIC

By

Divya Navaneetha Krishna
Sharanya Chinnusamy

Outline
Ø Detecting and Enhancing Loop-Level Parallelism

Ø Finding and Eliminating dependences

Ø Software Pipelining

Ø Global Code Scheduling
Ø Trace Scheduling
Ø Superblocks

Ø Hardware Support for Exploiting Parallelism - Predicate instructions

Ø Hardware Support for Compiler Speculation
Ø Preserving exception behavior
Ø Memory reference speculation

Ø Outline of Intel Architecture

Ø Demo

Ø Comparisons

VLIW
Ø Very Long Instruction Word

Ø One large instruction consisting of independent MIPS instructions (or)

Ø Packet of instructions which can be executed in parallel

Ø Compiler is responsible to minimize hazards and form packets

Ø Loop unrolling and code scheduling (Local and Global)

Detecting and Enhancing Loop-Level Parallelism

Ø Analyzed at the source level

Ø Determine the dependences that exist

Ø Data dependences
Ø Name dependences
Ø Loop carried dependences

Ø Loop carried dependency
Ø True dependency

Ø Loop carried dependency that
does not prevent parallelism

Detecting and Enhancing Loop-Level Parallelism

Overlapping iterations

A[1] = A[1] + B[1]
B[2] = C[1] + D[1]B[2] = C[1] + D[1]

A[2] = A[2] + B[2]
B[3] = C[2] + D[2]

•
•

A[100] = A[100] + B[100]
B[101] = C[100] + D[100]

Detecting and Enhancing Loop-Level Parallelism

Ø Loop-carried dependences are in the form of a recurrence

Ø Reasons:
Ø Provide support for recurrences (Vector computers)
Ø Helps in parallelismØ Helps in parallelism

Dependency distance is 5

Finding and Eliminating Dependences

Ø Data dependency using register renaming

Ø Dependency analysis using affine indices (a x i + b)
Ø 2 iteration indices j and k within a for loop such that

(m <= j <=n , m <= k <= n)

Ø indexed as (a x j + b) and (c x k + d), then a x j + b = c x k + dØ indexed as (a x j + b) and (c x k + d), then a x j + b = c x k + d

Ø GCD test [GCD (c , a) must divide (d-b)]

for (i=1; i<=100; i=i+1) {
X[2*i + 4] = X[2* i] + 5.0

}

a = 2
b = 4
c = 2
d = 0
GCD(c , a) = 2
d-b = -4

Finding and Eliminating Dependences

Limitations of array-oriented dependences :

Ø Using pointers to reference arrays

Ø Sparse array (X[Y[i]]) -- non affine

Ø False dependency
At runtime the inputs never take the value which may
have resulted in dependency

Ø Interprocedural analysis

Finding and Eliminating Dependences

Ø Back Substitution

Ø Copy Propagation

Ø Tree height reductionØ Tree height reduction

R8

R4 R7

R1 R6

R2 R3

R8

R1 R4

R2 R3 R6 R7

Finding and Eliminating Dependences

Ø Optimizing unrolled recurrence relation

Sum = Sum + X

Sum = Sum + X1 + X2 + X3 + X4 + X5

Unroll the loop

Sum = Sum + X1 + X2 + X3 + X4 + X5

Sum = ((Sum + X1) + (X2 + X3) + (X4 + X5))

((Sum + X1) + (X2+X3) +(X4+X5))

(Sum + X1) + (X2+X3)

Sum + X1 X2 + X3 X4 + X5

Sum X1 X2 X3 X4 X5

Software Pipelining

Ø Interleaves instruction from different iterations without unrolling
the loop

Software Pipelining

Ø Interleaves instruction from different iterations without unrolling
the loop

Start up
code

Finish
code

Software Pipelining

LOOP: L.D F0, 0(R1)
ADD.D F4, F0, F2
S.D F4,0(R1)
DADDUI R1,R1,#-8
BNE R1,R2, LOOP

Loop Unrolling 1 2 3
L.D
ADD.D L.D
S.D ADD.D L.D

LOOP: L.D F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

L.D F6,-8(R1)
ADD.D F8,F6,F2
S.D F8,-8(R1)

L.D F10,-16(R1)
ADD.D F12,F10,F2
S.D F12,-16(R1)

DADDUI R1,R1,#-24
BNE R1,R2,LOOP

LOOP: S.D F4, 16(R1)
ADD.D F4, F0, F2
L.D F0,0(R1)
DADDUI R1,R1,#-8
BNE R1,R2, LOOP

S.D ADD.D L.D
S.D ADD.D

S.D

Software Pipelining

Advantages:
Consume less code space

Advantage:
Reduces over head of the loop

Advantages:
Ø Consume less code space

Ø Reduces time when the loop
is not running at peak speed to
once per loop at the beginning
and end

Advantage:
Ø Reduces over head of the loop

Disadvantage :
Ø Fills and drains the pipeline
each time the loop is to be
executed

Ø Advantages of using both

Ø IA-64 added hardware support

Global Code Scheduling

Ø Effective scheduling require moving instructions across branches

Ø Preserves both data and control dependences

Ø Data dependence removed by unrolling and dependence analysis

Ø Control dependence is removed by unrolling and moving code

across branches

Ø Estimates the frequency of different paths for code movement

Global Code Scheduling

A[i]=0?

A[i] = A[i] + B[i]Then
section
(Frequently
executed)

Movement of B
Ø Dependency in X – Shadow copy

Movement of C
Ø Into then part – copy in X
Ø Across the branch

C[i] =

B[i] = X

Ø Across the branch

Global Code Scheduling

Factors to be considered

Ø Relative execution frequency of then and else clause

Ø Cost of executing B above branch

Ø Change in execution time – movement of B

Ø B or C – best code fragment to move

Ø Cost of compensation code

Trace Scheduling

Ø Used when

Ø Processors with large number of issues per clock

Ø Predicated or conditional branch unsupported

Ø Unrolling is not sufficientØ Unrolling is not sufficient

Ø Significant difference in frequency between different paths

Ø Steps

Ø Trace selection

Ø Trace compaction

Ø Loop unrolling

Ø Static branch prediction

Ø Branches are jumps into or out
of the trace

Ø Common set of instructions
are executed sequentially

ØBookkeeping for trace entrance
and exits

Ø Good for loop intensive code

Super blocks

Ø Reduces complication caused by various entries and exits into the
middle of the trace

Ø Similar to trace but only one entrance and many exits

Ø Tail duplication that corresponds to the portion of the trace after
entryentry

Ø The residual loop handles iterations when exited (unpredicted
path selected)

Ø Frequency of residual loop – high – create super block for it

Summary

Ø Loop unrolling helps reduce the loop overhead

Ø Software pipelining reduces stalls due to single loop body

Ø Advantages of using both Software pipelining and loop unrolling

Ø Trace Scheduling / Superblocks for global code scheduling across Ø Trace Scheduling / Superblocks for global code scheduling across
branches

Ø Hybrid usage – compilers

Ø All fail if branch prediction is unreliable

Hardware Support for Exposing Parallelism
Predicated Instructions

Motivation
ØLoop unrolling, software pipelining, and trace scheduling work well – But
only when branches are predicted at compile time
Ø In other situations branch instructions can severely limit parallelism!!!!

SolutionSolution
Ø Let the architect extend the instruction set to include conditional or
predicated instructions.

What do these instructions do?
Ø Instructions refer to a condition that is evaluated at the time of execution

Ø If the condition is true, the instruction is executed normally
Ø Else, it behaves like a no-op.

Example

Consider the following statement:
if (A == O) { S = T };

Assume that:
R1 A R2 S R3 T

The code for this would look like:
BNEZ R1, L ; if R1 is not equal to zero, jump to L
ADDU R2, R3, R0 ; else Move R3 to R2

L:
A better way to have this is with the use of a Conditional Move

CMOVZ R2, R3, R1 ;When R1 is zero, move R3 to R2

What does this do?
Ø Converting a control dependence to a data dependence
Ø For a pipelined processor this essential moves the dependence

From: front of the pipeline To: end of the pipeline
(where branches are resolved) (where register writes occur)

Ø Eliminates simple branches and improves the pipeline’s performance

When is this inefficient and why?When is this inefficient and why?
When branches guard large blocks of code. Because this will introduce many

conditional moves.

Remedy to this?
Ø Have support for full predication
Ø Execution of all the instructions is controlled by a predicate
Ø When the predicate is true, the instruction is executed else it becomes a no-op
Ø It is valuable for Global Code Scheduling because it eliminates non loop branches

Conditional Instructions in a Superscalar processor

Two – issue superscalar that can issue – one memory reference + either
An ALU operation / branch

First Instruction Slot Second Instruction Slot

LW R1, 40(R2) ADD R3, R4, R5

ADD R6, R3,R7

Problems?
Ø Waste of a memory operation slot in cycle -2
Ø Incurs a data dependence (RAW) if the branch is not taken

BEQZ R10, L

LW R8, O(R10)

LW R9, O(R8)

How can this code be improved with a predicated LW instr?

First Instruction Slot Second Instruction Slot

LW R1, 40(R2) ADD R3, R4, R5

LW C R8, O(R10), R10 ADD R6, R3,R7

BEQZ R10, L

LW R9, O(R8)

Ø The predicate is – if R10 is not zero
Ø If the predicate is true: R8 R10
Ø Else – The operation turns to a no-op

This improves performance! How?
Ø Eliminates an issue cycle for one instruction
Ø Saves the last load from stalling due to a stall
Ø Overall we remove control dependences by making instruction predicted

Problems with Predicated instructions?

What happens when a predicated instruction generates an exception ?
(NOTE: The predicate was false)

Its hard to implement. Why?
When do you annul an instruction?

Two ways:

ØAnnulled during the execution issueØAnnulled during the execution issue
Ø Requires that the value of the controlling condition be available early in the
pipeline - Might cause a potential data hazard

Ø Or later before they commit any results
Ø All existing processors follow this
ØDisadvantage is that these annulled instructions have already consumed
functional resource
ØMight affect performance

So when are predicated instructions useful?

ØImplementing short alternative control flows
ØEliminating some unpredictable branches
ØReducing the overhead of global code scheduling
Ø When the predicate can be evaluated early – will help potential data hazards

Factors that limit its usefulness:Factors that limit its usefulness:

Ø Predicated instructions that are annulled also consume processor resources
Ø Slows the program down if the predicated instructions were not going to be
executed during the normal program flow
Ø When the control flow involves more than a simple alternative sequence
Ø Consume more cycles than an unconditional instruction. Must be used
judiciously when they are expensive

Hardware Support for Compiler Speculation
Speculation:
Compiler speculation is desired for improving the scheduling or increase the issue
rate

Three capabilities are required to speculate ambitiously:

ØAbility of the compiler to speculatively move instructions using register
renaming without affecting program data flow - Compiler Capability

ØAbility to be able to ignore exceptions in speculated instructions
ØThe ability to speculatively interchange loads and stores, or stores and stores,
which may have address conflicts - Hardware Support

Hardware support to preserve Exception Behavior

How can exception behavior be preserved?
ØThe results of a mis-predicted speculated sequence should not used in the
final computation
ØSuch an instruction should not cause an exception

Four methods have been investigated

ØHardware and OS cooperatively ignore exceptions for speculated instructions.
Ø Speculated instructions should never raise exceptions. Introduce checks to
determine when an exception should occur
Ø Poison bits are attached to the result registers written by such instructions
that cause exceptions. The poison bits cause a fault when a normal a instruction
attempts to use the register
Ø A mechanism to indicate that an instruction is speculative. So that the
hardware can buffer the instruction result until it is certain that the instruction
is no longer speculative

Two kinds of exceptions:

ØExceptions that cause the program to terminate

Ø Eg: Memory protection violation, illegal operation
Ø Should not be handled for speculated instructions unless it is certain
that the instruction is no longer speculative

ØExceptions that can be handled and program can be resumed

Ø Eg: Page fault, I/o
Ø Such exceptions can be handled for speculated instructions as for
normal instructions
Ø Drawback is that it might cause performance penalty if the instruction
was not executed during normal program execution

Speculation by hardware and OS co-operation
ØResumable exceptions are handled normally (even for speculated instr ‘s)
ØReturns an undefined value for exceptions that cause termination

Okay….Not okay????
Example: if (A == O) A = B; else A = A+4;

A O(R3)
B O(R2)

Instructions Comments

LD R1, O(R3) Load A

BNEZ R1, L1 Test A

LD R1, O(R2) Then clause

J L2 Skip else

L1: DADDI R1, R1, #4 Else clause

L2: SD R1, O(R3) Store A

How can this code be compiled speculatively?

Assume that the then case will almost always be taken

Instructions CommentsInstructions Comments

LD R1, O(R3) Load A

LD R14, O(R2) Speculatively Load B

BEQZ R1, L3 Other branch of the if

DADDI R14, R1, #4 Else clause

L3: SD R14, O(R3) Non-Speculative store

Second Approach: Poison Bits

ØExceptions are tracked as they occur
ØTerminating exceptions are postponed until when their value is actually used

How is this accomplished?

ØTwo bits are added to each register: ØTwo bits are added to each register:
Ø A poison bit

Ø Another bit to indicate if the instruction was speculative
ØThe poison bit is set for the destination register whenever a speculative
instruction results in a terminating exception
ØNormal exceptions are handled immediately
ØIf a normal instruction attempts to use a source register with its poison bit
turned on then an exception is raised
ØMay require special support for instructions that set and reset the poison bit

Third Approach: Reorder Buffer (ROB)

ØCompiler marks instructions as speculative, also indicating the compilers
assumption of taken/not taken
ØThis information is used by the hardware to locate where the speculated
instruction originally was.
ØEach original location is marked by a sentinel, that tells the hardware that the
earlier speculative instruction is no longer speculativeearlier speculative instruction is no longer speculative
ØAll instructions are placed in the ROB, and commit is forced in the program
order
ØThe ROB postpones write-back of speculated instructions until:

Ø All the braches that were speculated for the instruction are ready to commit
Ø Or the sentinel for the instruction is reached

ØIf the speculated instruction should have been executed and it generated a
terminating exception, the program is terminated

Hardware support for Memory Reference Speculation

ØThe critical path length can be reduced by the compiler by moving loads
across stores
ØMoving loads across stores - requires checks to see there are no address
conflicts
ØThis special instruction is left at the original location of the load, and the load
is then moved across one or more stores
ØHardware stores the address of the memory location after a speculated load
ØIf subsequent stores change the location before the check, speculation has ØIf subsequent stores change the location before the check, speculation has
failed, else it was successful

Two ways to handle failed Speculation

ØIf only the load was speculated – Redo the load at the point of the check
ØIf additional instructions dependent on the load were speculated – Redo all
the speculated instructions after the load

EPIC – Explicitly Parallel Instruction Computer

ØRISC architectures were reaching a limit at one instruction per cycle

ØVLIW allowed for multiple operations to be encoded in every instruction,
which could then be processed by multiple execution units

ØEPIC aimed to move the complexity of instruction scheduling from the CPU
hardware to the software compiler

ØAlso, to further exploit ILP, by using the compiler to find and exploit
additional opportunities for parallel execution

ØVLIW had fixed instruction formats and the load instructions from the
memory hierarchy did not have deterministic delays

Is this a drawback???
ØThis made scheduling of load instructions by the compiler very difficult!

Features of EPIC architecture:

ØHad greater flexibility in expressing parallelism among instructions and
formats

ØImplements speculative loads – as a form of data prefetch

ØSupports a check load instruction to check for dependencies over the previous
stores

ØSupports Predicated execution to decrease the occurrences of branches

ØSupports Delayed exceptions to increase speculation

ØSupports large architectural register files avoid the need for register renaming

Demo

http://www.intel.com/products/processor/itanium2/demo/index.htm?iid=itanium
+body_demo?iid=itanium+body_demo

Demo

Demo

References

Ø Computer Architecture – A Quantitative Approach
Author: John L Hennessy and David A. Patterson

Ø http://www.intel.com/intelpress/chapter-scientific.pdf

Ø http://www.cs.clemson.edu/~mark/epic.html

Øhttp://www.siliconintelligence.com/people/binu/coursework/686_vli
w/vliw.pdf

Øhttp://en.wikipedia.org/wiki/Explicitly_Parallel_Instruction_Computi
ng

