
GPUs and GPGPUs

Greg Blanton

John T. Lubia

PROCESSOR ARCHITECTURAL ROADMAP
• Design CPU

 Optimized for sequential performance

• ILP increasingly difficult to extract from instruction stream
 Control hardware to check for dependencies, out-of-order

execution, prediction logic etc

• Control hardware dominates CPU
 Complex, difficult to build and verify
 Takes substantial fraction of die
 Increased dependency checking the deeper the pipeline
 Does not do actual computation but consumes power

Move from Instructions per second to
Instructions per watt

➲ Power budget and sealing becomes important

➲ More transistors on the chip

 Difficult to scale voltage requirements

PARALLEL ARCHITECTURE

Hardware architectural change from sequential
approach to inherently parallel

• Microprocessor manufacture moved into multi-core

• Specialized Processor to handle graphics
GPU - Graphics Processing Unit

Extracted from NVIDIA research paper

GPU

• Graphics Processing Unit

 High-performance many-core processors

• Data Parallelized Machine - SIMD Architecture

• Pipelined architecture

 Less control hardware

 High computation performance

 Watt-Power invested into data-path computation

PC ARCHITECTURE

Bus transfers

commands, texture

and vertex data

between CPU and

GPU – (PCI-E BUS)

BUS

BUS

How the GPU fits into the Computer System

GPU pipeline

Program/
API

GPU Front End

Vertex
Processing

Primitive
Assembly

Rasterization &
Interpolation

Fragment
Processing

Raster
Operations

Framebuffer

Driver

CPU

GPU
PCI-E Bus

• Ideal for graphics processing

Extracted from NVIDIA research paper

Extracted from NVIDIA research paper

Programmable GPU

Extracted from NVIDIA research paper

• Transforming GPU to GPGPU (General Purpose GPU)

Shaders are execution Kernel of each pipeline stage

Programmable GPU

Extracted from NVIDIA research paper

Extracted from NVIDIA research paper

Extracted from NVIDIA research paper

Extracted from NVIDIA research paper

GeForce 8 GPU has 128 thread processors.

Each thread processor has a single-precision FPU and 1,024
registers, 32
bits wide.

Each cluster of eight thread processors has 16KB of shared
local memory supporting parallel data accesses.

A hardware thread-execution manager automatically issues
threads to the processors without requiring programmers
to write explicitly threaded code.

GeForce 7800 GTX

FLOPS: CPU vs GPU

Figure 1.1, Chapter 1, http://courses.ece.illinois.edu/ece498/al/textbook/Chapter1-Introduction.pdf

LATEST NVIDIA DESKTOP GPU

GeForce GTX 295

Release Date: 01/08/2009

Series: GeForce GTX 200

Core Clock: 576 MHz

Shader Clock: 1242 MHz

Memory Clock: 999MHz (1998 DDR)

Memory Bandwidth: 223.776 GB/sec

FLOPS: 1.79 TFLOPS (1788.48 GFLOPS)

Processor Cores: 480 (240 per GPU)

NVIDIA CUDA
(Compute Unified Device Architecture)

 Software platform for massively parallel high-

performance computing on NVIDIA's powerful

GPUs

 Repositioning its GPUs as versatile devices

suitable for much more than electronic games and

3D graphics

 Insurance against an uncertain future for discrete

GPUs

Mix Code

 NVIDIA now prefers shaders to be called “stream

processors” or “thread processor”

 Requires special code for parallel programming, but

not to explicitly manage threads in a conventional

sense

 GPU code can mix with general-purpose code for the

host CPU

 Aims at data-intensive applications that need single-

precision floating-point math

Overview of GeForce 8 architecture

 128 thread processors

 Each capable of managing up to 96 concurrent

threads (for a maximum of 12,288 threads)

 Each thread has its own stack, register file,

program counter, and local memory.

 Each thread processor has 1024 physical registers,

32 bits wide implemented in SRAM instead of

latches.

 NVIDIA can completely redesign this architecture

in the next release of GPUs without making the

API obsolete or breaking anyone's application

software.

CUDA Automatically Manages Threads

Divides the data set into smaller chunks stored in on-chip

memory

Storing locally reduces the need to access off-chip memory,

thereby improving performance - latency

Application programmers don't write explicitly threaded

code

A Hardware threading manager handles threading

automatically

Three different models for

High Performance Computing (HPC)

CUDA makes deadlocks among

threads impossible (in theory)

 CUDA eliminates deadlocks, no matter how many

threads

 Special API call, syncthreads, provides explicit

barrier synchronization

 Invokes a compiler-intrinsic function that translates

into a single instruction for the GPU

 Barrier instruction blocks threads from operating

on data that another thread is using

Developers Must Analyze Data

 Problems must be analyzed to determine how best to

divide the data into smaller chunks for distribution

among the thread processors

 Possible real-world example using CUDA:

Scanning network packets for malware

One array compared to another (data vs sigs)

Dedicate a lightweight thread to each virus sig

 Developers face challenges in analyzing their

algorithms and data to find the optimal number of

threads and blocks to keep the GPU fully utilized

CUDA programming example

CONs of CUDA

CONs

 Single-precision floating point is sufficient for

consumer graphics, so GPUs don't yet support

double precision (planned for future GPU releases)

 Isn't the only option for software development on

NVIDIA's GPUs

 Could see resistance from developers

 Tied to one vendor, NVIDIA

Conclusion

Massive amount of power available to users through

the use of GPUs and GPGPUs

NVIDIA's approach CUDA

CUDA is limited to just NVIDA's platform

Real-time CUDA Examples

Some Real-time CUDA Demos

 deviceQuery

 histogram64

 nbody

 nbody (emulated)

 fluidsGL

 particles

 oceanFFT

 smoke

References

http://www.nvidia.com

Extracted some slides from work done by David Luebke, NVIDIA Research presentation

http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

http://www.gpgpu.org

Jeff A. Stuart and John D. Owens, Message Passing on Data-Parallel Architectures, Proceedings

of the 23rd IEEE International Parallel and Distributed Processing Symposium

http://www.nvidia.com/docs/IO/55972/220401_Reprint.pdf

http://www.youtube.com/watch?v=nlGnKPpOpbE

http://www.nvidia.com/object/product_geforce_gtx_295_us.html

http://www.gpureview.com/GeForce-GTX-295-card-603.html

http://courses.ece.illinois.edu/ece498/al/textbook/Chapter1-Introduction.pdf

http://www.nytimes.com/2003/05/26/business/technology-from-playstation-to-supercomputer-

for-50000.html

Special Thanks:

Xuan Wu for the idea of running CUDA demos during the presentation

