GPUs and GPGPUSs

Greg Blanton
John T. Lubia

PROCESSOR ARCHITECTURAL ROADMAP

* Design CPU
" Optimized for sequential performance

* |LP increasingly difficult to extract from instruction stream
= Control hardware to check for dependencies, out-of-order
execution, prediction logic etc

e Control hardware dominates CPU
= Complex, difficult to build and verify
* Takes substantial fraction of die
" Increased dependency checking the deeper the pipeline
" Does not do actual computation but consumes power

Move from Instructions per second to
Instructions per watt

> Power budget and sealing becomes important

> More transistors on the chip
= Difficult to scale voltage requirements

PARALLEL ARCHITECTURE

Hardware architectural change from sequential
approach to inherently parallel

* Microprocessor manufacture moved into multi-core

e Specialized Processor to handle graphics
GPU - Graphics Processing Unit

CPU/GPU Parallelism <X

nvibDiA

® Moore’s Law gives you more and more transistors
® What do you want to do with them?

® CPU strategy: make the workload (one compute thread) run as
fast as possible
® Tactics:
— Cache (area limiting)
— Instruction/Data prefetch
— Speculative execution
—>limited by “perimeter” — communication bandwidth
...then add task parallelism...multi-core

® GPU strategy: make the workload (as many threads as possible)
run as fast as possible

® Tactics:
— Parallelism (1000s of threads)
— Pipelining
-2 limited by “area” — compute capability

© NVIDIA Corporation 2007

Extracted from NVIDIA research paper

GPU

* Graphics Processing Unit
" High-performance many-core processors
* Data Parallelized Machine - SIMD Architecture
* Pipelined architecture
= Less control hardware
= High computation performance
= \Watt-Power invested into data-path computation

PC ARCHITECTURE

How the GPU fits into the Computer System

CPU

l6.4 GB/s

6.4 GB/s Up to

. or More 8 GB/s)
System DRAM <——> North Bridge ~—> — To Display

BUS

transfers

and vertex data Up to 35 GB/s
between CPU and

] commands, texture
GPU - (PCI-E BUS)

South Bridge Graphics DRAM
BUS

|

Other Peripherals

GPU pipeline

Program/
API
'
Driver
CPU
* PCI-E Bus
‘ GPU
GPU Front End
'
Vertex [, Primitive , Rasterization & | Fragment
Processing Assembly Interpolation Processing
'
Raster
Operations

l

Framebuffer

The Graphics Pipeline o

SIGGRAPH2008

» Key abstraction of real-time graphics
» Hardware used to look like this
» Distinct chips/boards per stage

» Fixed data flow through pipeline

|Ideal for graphics processing

Pro rammablg Shadlng In Action

om NVIDIA re

SIGGRAPH2003

The Graphics Pipeline o

« Remains a useful abstraction

« Hardware used to look like this

B@gmd Pruarammablg Shading: In Action
Extracted from NVIDIA research paper

The Graphics Pipeline 7

SIGGRAPHZ2008

#f Bach thread performs one pair-wise addition
wold * A, float* B, float* C)

[

int 4 = + * '
Cli) = A[L] + Bli)»

-l _—I-'.'-.--_

« Hardware used to look like this:

- Vertex, pixel processing became
programmable

Programmable GPU

Boyond Pro

Extracted from N%rDIA research paper

ammable Shading: In Action

The Graphics Pipeline o

SIGGRAPH2008

£ EBEach thread parforms one palr-wise additliom
wold * A, float* B, float* C}

int i = + * !
Cli] = A[L] + Blils

._I _—--"""——.-_

« Hardware used to look like this

- Vertex, pixel processing became
programmable

Programmable GPU
- New stages added

Transforming GPU to GPGPU (General Purpose GPU)

GPU architecture increasingly centers
around shader execution

Beyond Programmable Shading: In Action Shaders are execution Kernel of each pipeline stage

Extracted from NVIDIA research paper

Goal: Performance per millimeter __

« For GPUs, perfomance == throughput

« Strategy: hide latency with computation not cache
= Heavy multithreading!

« Implication: need many threads to hide latency
- Occupancy - typically prefer 128 or more threads/TPA
- Multiple thread blocks/TPA help minimize effect of barriers

« Strategy: Single Instruction Multiple Thread (SIMT)

- Support SPMD programming model
- Balance performance with ease of programming

Beyond Programmable Shading: In Action
Extracted from NVIDIA research paper

Modern GPUs: Unified Design CJ .

Discrete Design Unified Design

L

L

Shader B

|

! '

Vertex shaders, pixel shaders, etc. become threads
running different programs on a flexible core

Extracted from NVIDIA research paper

e High-level description of SIMT:

- Launch zillions of threads

- When they do the same thing, hardware makes
them go fast

- When they do different things, hardware handles
it gracefully

Beyond Programmable Shading: In Action
Extracted from NVIDIA research paper

GeForce 8 GPU has 128 thread processors.

Each thread processor has a single-precision FPU and 1,024

registers, 32
bits wide.

Each cluster of eight thread processors has 16KB of shared
local memory supporting parallel data accesses.

A hardware thread-execution manager automatically issues
threads to the processors without requiring programmers
to write explicitly threaded code.

Input Assembler

Thread Execution Manager

: l l l l ' l ;

Thread Processors || Thread Processors || Thread Processors || Thread Processors || Thread Processors || Thread Processors || Thread Processors || Thread Processors

Load/Store

Global Memory

GeForce 7800 GTX

Most Complex Graphics
Processor Ever Built

302M Transistors

XBOX GPU (60M)
PS2 Graphics Synthesizer (43M)
Game Cube Flipper (51M)
Game Cube Gekko (21M)
XBOX Pentium3 CPU (SM) Ry
PS2 Emotion Engine (10.5M) ; =&
Athlon FX 55 (105.9M) :

+ + + + + + +

300.4M

FLOPS: CPU vs GPU

600
Tesla
C870
500 Vs
GeForce
8800 GTX
400
" Quadro
% FX 5600
300
™ G71
© G70-512
G70
200
100 3.0 GHz
NV35 NVV 3.0 GHz Core 2 Quad
NV30 . Core 2 Duo —
0 _/:3?0 GHz Pentllfm4 — I N l - l .__.—-l-t-f |

Jan 2003 Jul 2003 Jan 2004 Jul2004 Jan 2005 Jul2005 Jan?2006 Jul2006 Jan 2007 Jul 2007

Figure 1.1, Chapter 1, http://courses.ece.illinois.edu/ece498/al/textbook/Chapterl-Introduction.pdf

LATEST NVIDIA DESKTOP GPU

GeForce GTX 295

Release Date: 01/08/2009

Series: GeForce GTX 200

Core Clock: 576 MHz

Shader Clock: 1242 MHz

Memory Clock: 999MHz (1998 DDR)
Memory Bandwidth: 223.776 GB/sec
FLOPS: 1.79 TFLOPS (1788.48 GFLOPS)

Processor Cores: 480 (240 per GPU)

NVIDIA CUDA
(Compute Unified Device Architecture)

« Software platform for massively parallel high-
performance computing on NVIDIA's powerful
GPUs

« Repositioning its GPUs as versatile devices
suitable for much more than electronic games and
3D graphics

» INsurance against an uncertain future for discrete
GPUs

Mix Code

« NVIDIA now prefers shaders to be called “stream
processors’ or “thread processor”

« Requires special code for parallel programming, but
not to explicitly manage threads in a conventional
sense

« GPU code can mix with general-purpose code for the
host CPU

« Aims at data-intensive applications that need single-
precision floating-point math

Overview of GeForce 8 architecture

» 128 thread processors

 Each capable of managing up to 96 concurrent
threads (for a maximum of 12,288 threads)

« Each thread has its own stack, register file,
program counter, and local memory.

« Each thread processor has 1024 physical registers,
32 bits wide implemented in SRAM instead of
latches.

« NVIDIA can completely redesign this architecture
In the next release of GPUs without making the
API obsolete or breaking anyone's application
software.

CUDA Automatically Manages Threads

Divides the data set into smaller chunks stored in on-chip
memory

Storing locally reduces the need to access off-chip memory,
thereby improving performance - latency

Application programmers don't write explicitly threaded
code

A Hardware threading manager handles threading
automatically

High Performance Computing (HPC)

Three different models for

Control

Single Thread Out of Cache

B Data/Computation
B Program/Control

DRAM

GPGPU

GPGPU
P1, P2
p3, P4
PnI=F1 +PQ+P3+ Pq_
P1, P2
P3, P4
Pnr=F-1 +P:__|'|'P_:r|' P-ﬂ.
.
P1, P2
P3, P4
Multiple Passes Through

Video Memaory

Thread
Execution
Manager

Contral

P nI=F-1 el PE+P3+ P_.1

Control

P nI=F-1 o P2+P3+ P_q_

Control

P ,-II:F 1+ P2+P3+ F‘.q_

DRAM

Parallel Execution Through Shared Memory

CUDA makes deadlocks among
threads impossible (in theory)

« CUDA eliminates deadlocks, no matter how many
threads

 Special API call, syncthreads, provides explicit
barrier synchronization

o Invokes a compiler-intrinsic function that translates
Into a single instruction for the GPU

o Barrier instruction blocks threads from operating
on data that another thread is using

Developers Must Analyze Data

« Problems must be analyzed to determine how best to
divide the data into smaller chunks for distribution
among the thread processors

» Possible real-world example using CUDA:
« Scanning network packets for malware
+One array compared to another (data vs sigs)
« Dedicate a lightweight thread to each virus sig

« Developers face challenges in analyzing their
algorithms and data to find the optimal number of
threads and blocks to keep the GPU fully utilized

CUDA programming example

Computing v _ ax + y with a serial loop:!
vold saxpy serial{int n, float alpha, flcat *x, float *vy)
d
for{(int i = 0; i<n; ++i)

¥[i] = alpha*x[i] + ¥[i];
}
// Invoke serial SAXPY kernel
saxpy serial(n, 2.0, %, ¥);

Computing ¥ _ ax + ¥ in parallék‘uﬂing CUDA:

__global
void saxpy parallel{int n, float alpha, float *x, float *y)
I
L

int 1 = blockIdx.x*blockDim.x 4+ threadIdx.x:

1f(i<n) v[i] = alpha®*x[i] + v[1];
}
ff Invoke parallel SAXPEY kernel (256 threads per block)
int nblocks = (n + 255) / 256
saxpy parallel<<<nblocks, 256>>>(n,

CONs of CUDA

CONs

« Single-precision floating point is sufficient for
consumer graphics, so GPUs don't yet support
double precision (planned for future GPU releases)

o Isn't the only option for software development on
NVIDIA's GPUs

» Could see resistance from developers

« T1ed to one vendor, NVIDIA

Conclusion

Massive amount of power available to users through
the use of GPUs and GPGPUs

NVIDIA's approach CUDA

CUDA is limited to just NVIDA's platform

Real-time CUDA Examples

Some Real-time CUDA Demos
deviceQuery
histogram64
nbody
nbody (emulated)
fluidsGL
particles
oceanFFT
smoke

References

http://www.nvidia.com

Extracted some slides from work done by David Luebke, NVIDIA Research presentation
http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

http://www.gpgpu.org

Jeff A. Stuart and John D. Owens, Message Passing on Data-Parallel Architectures, Proceedings
of the 23rd IEEE International Parallel and Distributed Processing Symposium

http://www.nvidia.com/docs/10/55972/220401 Reprint.pdf
http://www.youtube.com/watch?v=nlGnKPpOpbE
http://www.nvidia.com/object/product_geforce gtx 295 us.html
http://www.gpureview.com/GeForce-GTX-295-card-603.html
http://courses.ece.illinois.edu/ece498/al/textbook/Chapterl-Introduction.pdf

http://www.nytimes.com/2003/05/26/business/technology-from-playstation-to-supercomputer-
for-50000.html

Special Thanks:
Xuan Wu for the idea of running CUDA demos during the presentation

