

Parallel Programming

* A bagof tricks

* less structured and categorized than “sequential”
programming

* less well understood in theoretical terms

* still evolving

® Trends

* at an inflection point?
* legacy code and new code

* productivity a major concern

B649: Parallel Architectures and Programming, Spring 2009

High Productivity Computing Systems

INFORMATION PROCESSING TECHNIQUES OFFICE THRUSTAREAS ~ PROGRAMS SOLICITATIONS ~ PERSONNEL

IPTO >> Programs >> High Productivity Computing Systems (HPCS) QUICK LINKS:
| LTRSS b & q@m . COGNITIVE SYSTEMS
: Open Solicitations

BAA 08-03 Machine Reading
BAA 08-40 Deep Learning

COMMAND & CONTROL

Open Solicitations
BAA 08-36 ULTRA-Vis

High Productivity Computing Systems (HPCS) R ——

COMPUTING

Program Manager: Dr. Charles Holland
No Open Solicitations

Mission: LANGUAGE PROCESSING

No Open Solicitations

Programs Home

Conduct a focused research and development program that creates a new

Overview generation of high productivity computing systems. These computing SENSORS & PROCESSING
. systems will comprise software tools, architectures, and hardware |
Mission components. These systems will improve by orders of magnitude the e O ons
Background effectiveness of humans and computers in solving the problems in the high
Vision performance computing domain. . EMERGING TECHNOLOGIE
Open Solicitations
Technical Program Create economically viable high productivity computing systems for the BAA 08-34 IPTO Office-Wide

national security and industrial user communities. These systems must

Assessment : . .
have the following attributes: IPTO IS LOOKING FOR:
Challenges
e Performance: Improve the computational efficiency and reduce the Program Managers
Goals . . ek . . .t and New |deas
o execution time of critical national security applications.
Oojecives « Programmability: Reduce cost and time of developing HPCS
Program Plan applications.

o Portability: Insulate HPCS application software from system specifics.
e Robustness: Improve reliability and reduce vulnerability to intentional
attacks.

B649: Parallel Architectures and Programming, Spring 2009

http://www.darpa.mil/ipto/programs/hpcs/hpcs.asp
http://www.darpa.mil/ipto/programs/hpcs/hpcs.asp
http://www.darpa.mil/ipto/programs/hpcs/hpcs.asp

High Productivity Computing Systems

7 g High Productivity Computer Systems

Providing a New Generation of Economically Viable
High Productivity Computing Systems

. Introduction | The DARPA.High Producti-vity Co_mputin_g Systems .is.focused on providing a

| Meetings._| new generation of economically viable high productivity computing systems for
national security and for the industrial user community. HPCS program

|_References | researchers have initiated a fundamental reassessment of how we define and

Working Groups, measure performance, programmability, portability, robustness and ultimately,

- Management productivity in the HPC domain.

- Execution Time Modeling
- Development Time Exp
- Existing Codes Analysis A Project Sponsored by

- Workflows, Models & Metrics
- Benchmarks

- Prog Models & Definitions
- Test & Spec Environment

| Participants |

| Benchmarks |

- HPC Challenge

- HPC Chalkenge Award
- Compact Apps

- Kernel Matrix ¢ > A 2 o "
- NAS Benchmarks NI& " '(O) S Offlce of
National Nexlear)",/ \\“. [S S cience

U.S. DEPARTMENT OF ENERGY

ocurity ACmunistraton

| Home |

Monthly Meeting Info

B649: Parallel Architectures and Programming, Spring 2009

http://www.highproductivity.org/
http://www.highproductivity.org/
http://www.highproductivity.org/

Productivity and Performance

DEFINING AND MEASURING THE
PRODUCTIVITY OF PROGRAMMING
LANGUAGES

Ken Kennedy'
Charles Koelbel'
Robert Schreiber®

Abstract

The goal of programming support systems is to make it
possible for application developers to produce software
faster, without any degradation in software quality. How-
ever, it is essential that this goal must not be achieved at
the cost of performance: programs written in a high-level
language and intended to solve large problems on highly
parallel machines must not be egregiously less efficient
than the same applications written in a lower-level lan-
guage. Because this has been a traditional stumbling
block for high-level languages, metrics for productivity
analysis must explore the trade-off between programming
effort and performance.

To that end, we propose the use of two dimensionless
ratins relative nower and relative efficiencv to measiire

1 Introduction

The overall objective of programming support systems
is to make it possible to produce software faster with
the same workforce, with no degradation, and possibly an
improvement, in software quality. Generally, there are two
ways to approach this goal. First, we can increase the
effectiveness of individual application developers by pro-
viding programming languages and tools that enhance
programming productivity. Secondly, we can broaden the
community of application developers by making program-
ming more accessible. As it happens, the use of higher-
level languages and programming interfaces supports both
these strategies: by incorporating a higher level of abstrac-
tion, such languages make application development both
easier and faster. (For the purposes of this paper, we will
define “programming language” to encompass the entire
toolset — language, compiler, debugger, tuning tools —
associated with the language.)

We must, however, ensure that these advantages do not
come at the cost of performance. Programs written in a
high-level language and intended to solve large problems
on highly parallel machines must not be egregiously less
efficient than the same applications written in a lower-
level language. If they are, then the language is unlikely to
be accepted. Because this has been a traditional stum-
bling block for high-level languages, our productivity
analysis must incorporate metrics of both programming
effort and performance. Furthermore, these metrics must

Ken Kennedy, Charles Koelbel and Robert Schreiber. Defining and Measuring
the Productivity of Programming Languages, International Journal of High
Performance Computing Applications, Vol. 18, No. 4, 441-448 (2004).

B649: Parallel Architectures and Programming, Spring 2009

http://dx.doi.org/10.1177/1094342004048537
http://dx.doi.org/10.1177/1094342004048537
http://dx.doi.org/10.1177/1094342004048537
http://dx.doi.org/10.1177/1094342004048537

Productivity and Performance
A
Matlab Desired
Productivity
Region

A

-~ DS O U

Fortran

Efficiency

Fig. 1 Power—efficiency graph.

Ken Kennedy, Charles Koelbel and Robert Schreiber. Defining and Measuring

the Productivity of Programming Languages, International Journal of High
Performance Computing Applications, Vol. 18, No. 4, 441-448 (2004).

B649: Parallel Architectures and Programming, Spring 2009

http://dx.doi.org/10.1177/1094342004048537
http://dx.doi.org/10.1177/1094342004048537
http://dx.doi.org/10.1177/1094342004048537
http://dx.doi.org/10.1177/1094342004048537

Case Studies in HPC

ASC Codes MP Codes
of projects 5 5
Environment Academia (ASC-Alliance projects) Mission Partners (DoD, DOE, NASA)
Classified No Some
Code size 200-600 KLOC 80-760 KLOC
Type Coupled multi-physics applications Single physics to coupled multi-physics and
engineering

Table 1. Types of projects examined.

Jeffrey C. Carver, Lorin M. Hochstein, Richard P. Kendall, Taiga Nakamura, Marvin V.
Zelkowitz, Victor R. Basili, and Douglass E. Post. Observations about Software
Development for High End Computing, CTWatch Quarterly, 2(4A), November 2006.

B649: Parallel Architectures and Programming, Spring 2009

http://www.ctwatch.org/quarterly/articles/2006/11/observations-about-software-development-for-high-end-computing/
http://www.ctwatch.org/quarterly/articles/2006/11/observations-about-software-development-for-high-end-computing/
http://www.ctwatch.org/quarterly/articles/2006/11/observations-about-software-development-for-high-end-computing/
http://www.ctwatch.org/quarterly/articles/2006/11/observations-about-software-development-for-high-end-computing/

Case Studies in HPC

« Project organization: structure, staff,
configuration management
« Development activities: adding new

ASC Codes MP Codes
Type Ongoing Retrospective
Interviewees Technical leads Projects leads, project staff
Overview 1. Pre-interview questionnaire 1. Identify project and sponsors
2. Telephone interview 2. Negotiate case study participation
3. Generate summary document 3. Pre-interview questionnaire
4. Send summary document for approval/com- | 4. On-site interview
ments 5. Initial list of findings
5. Generate synthesis report across all projects | 6. Follow-up
6. Send synthesis report to all centers for 7. Write report
approval/ comments
Focus « Product: attributes, machine target, history | - Goals, requirements, deliverables

- Project characteristics, structure,
organization and risks
- Code Characteristics

features, testing, tuning, debugging, porting, | - Staffing

effort distribution, bottlenecks, achieving « Workflow Management
performance « V&V, Testing

« Programming models and productivity: « Success Measures
choice of model, adoption of language, « Lessons Learned

productivity measures

Table 3. Methodology.

Jeffrey C. Carver, Lorin M. Hochstein, Richard P. Kendall, Taiga Nakamura, Marvin V.
Zelkowitz, Victor R. Basili, and Douglass E. Post. Observations about Software

Development for High End Computing, CTWatch Quarterly, 2(4A), November 2006.

B649: Parallel Architectures and Programming, Spring 2009

http://www.ctwatch.org/quarterly/articles/2006/11/observations-about-software-development-for-high-end-computing/
http://www.ctwatch.org/quarterly/articles/2006/11/observations-about-software-development-for-high-end-computing/
http://www.ctwatch.org/quarterly/articles/2006/11/observations-about-software-development-for-high-end-computing/
http://www.ctwatch.org/quarterly/articles/2006/11/observations-about-software-development-for-high-end-computing/

HPC Case Studies: Cases

FALCON HAWK CONDOR EAGLE NENE
Appllcaflon Product Manufacturing Product Slgna-l Process Modeling
Domain Performance Performance Processing
Duration ~ 10 years ~ 6 years ~ 20 years ~ 3 years ~ 25 years
of Releases 9 (production) 1 7 1 ?
Staffing 15 FTEs 3 FTEs 3-5 FTEs 3 FTEs ~10 FTEs (100’
of contributors)
Customers <50 10s 100s None ~ 100,000
Code Size ~ 405,000 LOC | ~ 134,000 LOC | ~200,000 LOC | <100,000 LOC 750,000 LOC
Primary F77 (24%), C++ (67%), o C++, 0
Languages C (12%) C (18%) F77 (85%) Matlab F77(95%)
Other F90, Python, o
Languages Perl, ksh/csh/sh Python, F90 F90, C, Slang Java Libraries C
Target Parallel Parallel PCs to Parallel Embedded PCs to Parallel
Hardware Supercomputer | Supercomputer | Supercomputer Hardware Supercomputer
Status Production Production Production Demonstration Production
Ready Code

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post. Software Development
Environment for Scientific and Engineering Software: A Series of Case Studies, In Proceedings of
the 29th International Conference on Software Engineering (ICSE), pages 550-559, 2007.

B649: Parallel Architectures and Programming, Spring 2009

http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886

HPC Case Studies: Lessons

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post. Software Development
Environment for Scientific and Engineering Software: A Series of Case Studies, In Proceedings of
the 29th International Conference on Software Engineering (ICSE), pages 550-559, 2007.

B649: Parallel Architectures and Programming, Spring 2009

http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886

HPC Case Studies: Lessons

* Verification and validation is extremely difficult

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post. Software Development
Environment for Scientific and Engineering Software: A Series of Case Studies, In Proceedings of
the 29th International Conference on Software Engineering (ICSE), pages 550-559, 2007.

B649: Parallel Architectures and Programming, Spring 2009

http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886

HPC Case Studies: Lessons

* Verification and validation is extremely difficult

e Primary language does not change over time

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post. Software Development

Environment for Scientific and Engineering Software: A Series of Case Studies, In Proceedings of
the 29th International Conference on Software Engineering (ICSE), pages 550-559, 2007.

B649: Parallel Architectures and Programming, Spring 2009

http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886

HPC Case Studies: Lessons

® Verification and validation is extremely difficult

e Primary language does not change over time

* The use of higher-level languages is low

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post. Software Development

Environment for Scientific and Engineering Software: A Series of Case Studies, In Proceedings of
the 29th International Conference on Software Engineering (ICSE), pages 550-559, 2007.

B649: Parallel Architectures and Programming, Spring 2009

http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886

HPC Case Studies: Lessons

* Verification and validation is extremely difhcult

e Primary language does not change over time
* The use of higher-level languages is low
* Developers prefer UNIX command-line over IDE

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post. Software Development

Environment for Scientific and Engineering Software: A Series of Case Studies, In Proceedings of
the 29th International Conference on Software Engineering (ICSE), pages 550-559, 2007.

B649: Parallel Architectures and Programming, Spring 2009

http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886

HPC Case Studies: Lessons

* Verification and validation is extremely difhcult

e Primary language does not change over time

* The use of higher-level languages is low

* Developers prefer UNIX command-line over IDE
e Externally developed software is a risk

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post. Software Development

Environment for Scientific and Engineering Software: A Series of Case Studies, In Proceedings of
the 29th International Conference on Software Engineering (ICSE), pages 550-559, 2007.

B649: Parallel Architectures and Programming, Spring 2009

http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886

HPC Case Studies: Lessons

® Verification and validation is extremely difficult

e Primary language does not change over time

* The use of higher-level languages is low

* Developers prefer UNIX command-line over IDE
e Externally developed software is a risk

e Performance competes with other important goals

* correctness, performance, portability, maintainability

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post. Software Development

Environment for Scientific and Engineering Software: A Series of Case Studies, In Proceedings of
the 29th International Conference on Software Engineering (ICSE), pages 550-559, 2007.

B649: Parallel Architectures and Programming, Spring 2009

http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886

HPC Case Studies: Lessons

® Verification and validation is extremely difficult

e Primary language does not change over time

* The use of higher-level languages is low

* Developers prefer UNIX command-line over IDE
e Externally developed software is a risk

e Performance competes with other important goals

* correctness, performance, portability, maintainability

e Agile methodologies are better accepted

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post. Software Development

Environment for Scientific and Engineering Software: A Series of Case Studies, In Proceedings of
the 29th International Conference on Software Engineering (ICSE), pages 550-559, 2007.

B649: Parallel Architectures and Programming, Spring 2009

http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886

HPC Case Studies: Lessons

® Verification and validation is extremely difficult

e Primary language does not change over time

* The use of higher-level languages is low

* Developers prefer UNIX command-line over IDE
e Externally developed software is a risk

e Performance competes with other important goals

* correctness, performance, portability, maintainability

e Agile methodologies are better accepted

* Multidisciplinary teams are important to success

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post. Software Development

Environment for Scientific and Engineering Software: A Series of Case Studies, In Proceedings of
the 29th International Conference on Software Engineering (ICSE), pages 550-559, 2007.

B649: Parallel Architectures and Programming, Spring 2009

http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886

HPC Case Studies: Lessons

® Verification and validation is extremely difficult

e Primary language does not change over time

* The use of higher-level languages is low

* Developers prefer UNIX command-line over IDE
e Externally developed software is a risk

e Performance competes with other important goals

* correctness, performance, portability, maintainability

e Agile methodologies are better accepted
* Multidisciplinary teams are important to success

® Success or failure depends on keeping customers satisfied

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post. Software Development

Environment for Scientific and Engineering Software: A Series of Case Studies, In Proceedings of
the 29th International Conference on Software Engineering (ICSE), pages 550-559, 2007.

B649: Parallel Architectures and Programming, Spring 2009

http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886
http://portal.acm.org/citation.cfm?id=1248886

Measuring Productivity in HPC

Folklore/ .
Heroic scale

applications

Experimental designs
Hypotheses

Folklore/

Results ,
Folklore/ Insights
Results Models
Blue collar Results
applications
/ Insights
' Insights Models
ingle Models Results
\@ programmer Results

CX

Quantitative insights
Models in context

DECISION SUPPORT BASE

Figure 1: Process of Refining and Evaluating HPC Programmer Productivity Hypotheses.

Lorin Hochstein, Jeff Carver, Forrest Shull, Sima Asgari, and Victor Basili. Parallel Programmer Productivity:
A Case Study of Novice Parallel Programmers, In Proceedings of the 2005 ACM/IEEE Conference on High
Performance Networking and Computing (SC '05), 2005.

B649: Parallel Architectures and Programming, Spring 2009

10

http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800

Measuring Productivity in HPC

Serial MPI OpenMP Co-Array | StarP XMT
Fortran

Nearest-Neighbor Type Problems
Game of Life C3A3 C3A3 C3A3

COALl

Cl1A1
Grid of Resistors C2A2 C2A2 C2A2 C2A2
Sharks & Fishes C6A2 C6A2 C6A2
Laplace’s Eq. C2A3 P2A3
SWIM COA2
Broadcast Type Problems
LU Decomposition C4A1
Parallel Mat-vec C3A4
Quantum Dynamics C7Al
Embarrassingly Parallel Type Problems
Buffon-Laplace Nee- C2Al1 C2A1 C2Al1
dle C3Al C3A1 C3A1
(Miscellaneous Problem Types)
Parallel Sorting C3A2 C3A2 C3A2
Array Compaction C5Al
Randomized Selection C5A2

Table 1: Matrix describing the problem space of HPC studies being run. Columns show the parallel program-
ming model used. Rows show the assignment, grouped by communication pattern required. Each study is indi-
cated with a label CxAy, identifying the participating class (C) and the assignment (A). Studies analyzed in this
paper are grey-shaded.

Lorin Hochstein, Jeff Carver, Forrest Shull, Sima Asgari, and Victor Basili. Parallel Programmer Productivity:
A Case Study of Novice Parallel Programmers, In Proceedings of the 2005 ACM/IEEE Conference on High
Performance Networking and Computing (SC '05), 2005.

B649: Parallel Architectures and Programming, Spring 2009

10

http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800

Measuring Productivity in HPC

Programming | Effort (person-hrs)
Model

Serial mean 4.4, sd 4.3, n=15
MPI mean 10.7, sd 8.9, n=16
OpenMP mean 5.0, sd 3.5, n=16

Table 4: The Mean and standard deviation of the total effort
along with the number of subjects 1s shown for each pro-

gramming model. All data sets are for C implementations of
the Game of Life for data set C3A3.

Lorin Hochstein, Jeff Carver, Forrest Shull, Sima Asgari, and Victor Basili. Parallel Programmer Productivity:
A Case Study of Novice Parallel Programmers, In Proceedings of the 2005 ACM/IEEE Conference on High
Performance Networking and Computing (SC '05), 2005.

B649: Parallel Architectures and Programming, Spring 2009

http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800

Productivity with M P1

Abstract— There is widespread belief in the computer science
community that MPI is a difficult and time-intensive approach to
developing parallel software. Nevertheless, MPI remains the
dominant programming model for HPC systems, and many
projects have made effective use of it. It remains unknown how
much impact the use of MPI truly has on the productivity of
computational scientists.

In this paper, we examine a mature, ongoing HPC project, the
Flash Center at the University of Chicago, to understand how
MPI is used and to estimate the time that programmers spend on
MPI-related issues during development. Our analysis is based on
an examination of the source code, version control history, and
regression testing history of the software. Based on our study, we
estimate that about 20% of the development effort is related to
MPI. This implies a maximum productivity improvement of 25%
for switching to an alternate parallel programming model.

Keywords: MPI, debugging, effort, productivity, case study

Lorin Hochstein, Forrest Shull, Lynn B. Reid. The Role of MPI in Development Time: A Case Study, In

Proceedings of the 2008 ACM/IEEE Conference on High Performance Networking and Computing (SC '08),
2008.

B649: Parallel Architectures and Programming, Spring 2009

12

http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800

Productivity with M P1

TABLE I. SIZE OF CODE BASE

With PARAMESH Without PARAMESH
Language SLLOC % of total SLOC % of total
FORTRAN 377,149 87.2% 148,118 80.3%
C 29,058 6.7% 11,661 6.3%
Parameter 16,566 3.8% 16,566 9.0%
(FLASH)
Config 3,841 0.9% 3,841 2.1%
(FLASH)
Make 2,247 0.5% 1,403 0.8%
Perl 1,753 0.4% 1,753 1.0%
Python 1,576 0.4% 889 0.5%
Shell 475 0.1% 221 0.1%
Total 432,665 100% 184,452 100%

Lorin Hochstein, Forrest Shull, Lynn B. Reid. The Role of MPI in Development Time: A Case Study, In

Proceedings of the 2008 ACM/IEEE Conference on High Performance Networking and Computing (SC '08),
2008.

B649: Parallel Architectures and Programming, Spring 2009

13

http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800

Productivity with M P1

TABLE II. AMOUNT OF MPI CODE

of files SLLOC
With MPI 471 files 213,397 SLOC
PARAMESH Total 2625 files 406,207 SLOC
Percentage 17.9% 52.5%
Without MPI 145 files 23,335 SLOC
PARAMESH Total 1925 files 159,779 SLOC
Percentage 7.5% 14.6%

Lorin Hochstein, Forrest Shull, Lynn B. Reid. The Role of MPI in Development Time: A Case Study, In

Proceedings of the 2008 ACM/IEEE Conference on High Performance Networking and Computing (SC '08),
2008.

B649: Parallel Architectures and Programming, Spring 2009

13

http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800

Productivity with MPI: MPI Calls vs SLOC

o
o _
@
o
o o
0
8 | c)OO . @O
2 @09 °©
S o
— o °© % o
289 ° o7
O o
2 R,
o _
N
o - o oo o o
I I | | I
0 1000 2000 3000 4000
SLOC

Lorin Hochstein, Forrest Shull, Lynn B. Reid. The Role of MPI in Development Time: A Case Study, In

Proceedings of the 2008 ACM/IEEE Conference on High Performance Networking and Computing (SC '08),
2008.

B649: Parallel Architectures and Programming, Spring 2009

14

http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800

Productivity with MPIl: MP1 Calls vs Commits

with PARAMESH without PARAMESH
g | o g | o
(@) (@)
N & 4
8 8
o o
S S 4
£ 32
2 o 2 o
g @ g @
(@] (@]
(&] (]
S o o o
w © 5 ©
o©° ° o ©
(o)
S S ° o
(@]
(o] (o]
o o _] o o fo)
N o o N
o) 05% 0 04
@%@gg 38 §§ BB, 3 88° o0 ° % O
o - o - '0808 8o o©® © °
I I I I I I I T I I T T I
0 20 40 60 80 0 5 10 15 20 25 30 35
of MPI calls # of MPI calls

Lorin Hochstein, Forrest Shull, Lynn B. Reid. The Role of MPI in Development Time: A Case Study, In

Proceedings of the 2008 ACM/IEEE Conference on High Performance Networking and Computing (SC '08),
2008.

B649: Parallel Architectures and Programming, Spring 2009

15

http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800

Productivity with MPI: MPI Calls vs Commuts

TABLE III. COMMITS RELATED TO BUG-FIXING
of commits
Non-MPI 2366 (69.9%)
MPI 1021 (30.1%)
Total 3387 (100%)

TABLE IV. COMMITS ACROSS DEVELOPERS

Developer # of source # of MPI commits % MPI-related
commits development

A 666 (16.2%) 112 (12.3%) 16.8%

B 630 (15.3%) 110 (12.1%) 17.5%

C 557 (13.6%) 162 (17.9%) 29.1%

D 484 (11.8%) 81 (8.9%) 16.7%

B 358 (8.7%) 36 (4.0%) 10.1%

15 286 (7.0%) 43 (4.7%) 15.0%

G 246 (6.0%) 41 (4.5%) 16.7%

H 241 (5.9%) 122 (13.5%) 50.6%

I 115 (2.8%) 81 (8.9%) 70.4%

J 102 (2.5%) 19 (2.1%) 18.6%

Total 4110 1220

Lorin Hochstein, Forrest Shull, Lynn B. Reid. The Role of MPI in Development Time: A Case Study, In
Proceedings of the 2008 ACM/IEEE Conference on High Performance Networking and Computing (SC '08),
2008.

B649: Parallel Architectures and Programming, Spring 2009

16

http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800

Productivity with MPI: Code Layout
(with PARAMESH)

mp
D .

Lorin Hochstein, Forrest Shull, Lynn B. Reid. The Role of MPI in Development Time: A Case Study, In

Proceedings of the 2008 ACM/IEEE Conference on High Performance Networking and Computing (SC '08),
2008.

B649: Parallel Architectures and Programming, Spring 2009

17

http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800

Productivity with MPI: Code Layout
(with PARAMESH)

"

Lorin Hochstein, Forrest Shull, Lynn B. Reid. The Role of MPI in Development Time: A Case Study, In

Proceedings of the 2008 ACM/IEEE Conference on High Performance Networking and Computing (SC '08),
2008.

B649: Parallel Architectures and Programming, Spring 2009

17

http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800

Productivity with MPI: Conclusion

VII. CONCLUSION

In this paper, we have examined the role of MPI on a large-
scale HPC code development project, and characterized the
degree to which coding activities deal with MPI specifically.
We addressed the issues inherent in any study of software
engineering 1ssues based on archaeological data by applying a
rigorous case study methodology wusing triangulation:
combining different measures to provide insight on the same
topic. The general agreement among our measures (number of
files, number of SLOC, number of commits, number of
debugging activities) provides confidence that the results,
showing that MPI-specific issues make up a small percentage
of the overall coding activities, are indicative of real
phenomena.

Lorin Hochstein, Forrest Shull, Lynn B. Reid. The Role of MPI in Development Time: A Case Study, In

Proceedings of the 2008 ACM/IEEE Conference on High Performance Networking and Computing (SC '08),
2008.

B649: Parallel Architectures and Programming, Spring 2009

18

http://portal.acm.org/citation.cfm?id=1105760.1105800
http://portal.acm.org/citation.cfm?id=1105760.1105800

Recap

e [LP

* Exploiting ILP

® Dynamic scheduling

® Thread-level Parallelism

* Memory Hierarchy

* Other topics through student presentations

* Parallel programming and productivity

B649: Parallel Architectures and Programming, Spring 2009

20

© 2007 Elsavier, Inc. All rights

EERRRRRR

£ 2007 Elsavier, Inc. Al rights

DADD R1, R2, R3

DSUB R4, R1, RS

wn
=
s
=
E
e
o
5
3
?
x
@
£
s
o
o

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

© 2007 Elsavier, Inc. All rights resarved.

a) From before

DADD R1, R2, R3

if R2 = 0 then

becomes

if R2 = 0 then

b) From target

DSUB R4, R5, R6

DADD R1, R2, R3

if R1 = 0 then

becomes

DSUB R4, R5, R6

DADD R1, R2, R3

if R1 =0 then

£ 2007 Elsavier, Inc. All rights resarved.

c) From fall-through

DADD R1, R2, R3

if R1 =0 then

OR R7, R8, R9

DSUB R4, R5, R6

becomes

DADD R1, R2, R3

if R1 = 0 then

DSUB R4, R5, R6

nteger unit

IF

D

FP/integer multiply

FP/integer divider

i uii

© 2007 Elsavier, Inc. All ri

MEM

Exploiting 1LLP Through Compiler Techniques

* Loop unrolling

* Making use of branch delayed slots
® Static branch prediction

* Loop fusion

* Unroll and jam

B649: Parallel Architectures and Programming, Spring 2009

26

Dynamic Branch Prediction

Address bits

bits to index BPB

(.UOLAOJ

B649: Parallel Architectures and Programming, Spring 2009

Branch
Prediction
Buffer

i

Not taken

Predict taken Predict taken
11 10

Not taken

Not taken

Not taken

£ 2007 Elsavier, Inc. All rights

General n-bit Correlating Branch Predictors

Address bits

bits to index BPB

global shift register
(m bits)

Use Branch Target Buffers (BTBs) for caching branch targets

B649: Parallel Architectures and Programming, Spring 2009

Branch
Prediction
Buffer

29

rom instruction unit

Instruction FP registers
queue

Load-store
operations
Floating-point SS se er:nd

operations

.

~ Store buffers

[3 Load buffers e
—

. Operation bus l

Reservation

Common data bus (CDB)

£ 2007 Elsavier, Inc. All rights resarved.

Tomasulo’s Approach: Observations

* RAW hazards handled by waiting for operands
* WAR and WAW hazards handled by register
renaming

* only WAR and WAW hazards between instructions
currently in the pipeline are handled; is this a problem?

* larger number of hidden names reduces name dependences

* CDB implements forwarding

B649: Parallel Architectures and Programming, Spring 2009 31

Tomasulo’s Approach + Speculation

Fields in ROB b
t m twer Reorder buffer
% WFI From instruction unit

4. Ready '
Reg # Data
Instruction Y Y ,
queue
FP registers
Load-store
operations
Y . . Operand
Address unit Floating-point buses
operations '
Load buffers Y Y
\

Operation bus

Store 3 5
address 2 Reservation 1
Store - 1 stations
data y Address
Memory unit FP adders

Common data bus (CDB)

© 2007 Elsavier, Inc. All rights resarved.

B649: Parallel Architectures and Programming, Spring 2009

Observations on Speculation

* Speculation enables precise exception handling

* defer exception handling until instruction ready to commit

® Branches are critical to performance
* prediction accuracy
* latency of misprediction detection

* misprediction recovery time

® Must avoid hazards through memory

* WAR and WAW already taken care of (how?)
* for RAW

* don’t allow load to proceed if an active ROB entry has
Destination field matching with A field of load

* maintain program order for effective address computation

(why?)

B649: Parallel Architectures and Programming, Spring 2009 33

Common name

Issue
structure

Hazard
detection

Scheduling

Distinguishing
characteristic

Examples

Superscalar
(static)

dynamic

hardware

static

in-order execution

mostly in the
embedded space:
MIPS and ARM

Superscalar
(dynamic)

dynamic

dynamic

some out-of-order
execution, but no
speculation

none at the present

Superscalar
(speculative)

dynamic

hardware

dynamic with
speculation

out-of-order execution
with speculation

Pentium 4,
MIPS R12K, IBM
Power5

VLIW/LIW

static

primarily
software

static

all hazards determined
and indicated by compiler
(often implicitly)

most examples are in
the embedded space,
such as the TT Cé6x

primarily static

primarily
software

mostly static

all hazards determined
and indicated explicitly
by the compiler

[tanium

Dyn. Scheduling+Multiple Issue+Speculation

* Design parameters
* two-way issue (two instruction issues per cycle)
* pipelined and separate integer and FP functional units
* dynamic scheduling, but not out-of-order issue

* speculative execution

* Task per issue: assign reservation station and update
pipeline control tables (i.e., control signals)

* Two possible techniques
* do the task in half a clock cycle

* build wider logic to issue any pair of instructions together

® Modern processors use both (4 or more way
superscalar)

B649: Parallel Architectures and Programming, Spring 2009 35

Processor

Processor

Processor Processor

One or
more levels
of cache

One or
more levels
of cache

Main memory

One or One or
more levels more levels
of cache of cache

I/O system

Processor Processor
+ cache

I/O

Processor Processor Processor Processor
+ cache + cache + cache + cache

© 2007 Elsavier, Inc. All rights

Other Ways to Categorize Parallel Programming

B649: Parallel Architectures and Programming, Spring 2009 38

Wrile miss for this block

Invalidate for
this block
CPU

mlss

Read miss

for this block | cache state transitions based
on requests from the bus

Cache state transitions
based on requests from CPU

CPU write miss

Write-back cache block
Place write miss on bus

PU write hit

PU read hit

© 2007 Elsavier, Inc. All rights resarved.

Processor Processor Processor Processor
+ cache + cache + cache + cache

omon {70 [Waron (70 [veron {70 [voron

Processor Processor
+ cache + cache

© 2007 Elsavier, Inc. All rights resarved.

Fetch
invalidate

4
S
o
o
o
=
3
s
©
o

Invalidate

CPU read

Send read miss message

CPU write

Send write miss message

Modified

(read/write)
CPU write miss

Data write back
Write miss

Shared
(read only)

Uncached

Data value reply;
Sharers = {P} Shared

Write miss

= (P}

Sharers

Data value reply

Data
write back

Exclusive
(read/write)

(read only)
Read miss

Data value reply
Sharers = Sharers + {P}

Fetch/Invalldate

Data value reply
Sharers = {P}

Other Topics

* x86 assembly programming

e VLIW / EPIC

® Vector processors

* Embedded systems

* Scientific applications

* GPUs and GPGPUs

* Interconnection networks

® Multi-stage interconnection networks

* Parallel graphs

B649: Parallel Architectures and Programming, Spring 2009

42

WHAT’S NEX'T?

Future

* Continued importance of parallel programming
* challenge: how to program multiprocessors

* role of programming languages and compilers

* Convergence or specialization?

* “standardization” of general purpose architecture

* migration of “special-purpose” CPUs for general use

B649: Parallel Architectures and Programming, Spring 2009

44

-~
A View From Berkeley

navigation

2 Login/create account

article | | discussion | | edit || history |

Berkeley View
The View Blog
People
Publications
Articles
Presentations
Symposiums
Recent changes

search

|

(Go) (search)

|

toolbox

What links here

Related changes
Upload file

Special pages
Printable version
Permanent link

The Lan dsc?pe of Parallel Computing Research: A View
From Berkele

(Redirected from Main Page)

The recent switch to parallel microprocessors is a milestone in the history of computing. A
multidisciplinary group of researchers here in Berkeley has been meeting since Spring 2005 to discuss
this change from the conventional wisdom. Our white paper & summarizes our learnings from these
discussions. This wiki is a meetingplace for us as a research community to explore the future of parallel
processing. The video interview @& with Dave Patterson, Krste Asanovic and Kurt Keutzer, or Dave
Patterson's presentation @& at a recent Distinguished Colloguium here at Berkeley are great introductions
to the Berkeley View project. Here are the slides from a related talk by Dave Patterson &.

= People
= The View Blog g
= White Paper g
A = Chip Multi Processor Watch
= Parallel Programming Model Watch
x = Dwarf Mine
= Autotuners
= Benchmarks and Performance Metrics
= Glossary of terms

We believe that much can be learned by examining the success of parallelism at the extremes of the
computing spectrum, namely embedded computing and high performance computing. This led us to

http://view.eecs.berkeley.edu/wiki/Main_Page
http://view.eecs.berkeley.edu/wiki/Main_Page
http://view.eecs.berkeley.edu/wiki/Main_Page

