Speculative Parallelization
- Technology’s only constant is CHANGE

Agenda

Moore’s law

What is speculation ?

What is parallelization ?

Amdahl’s law

Communication between parallely executing regions
Existing speculative systems

Formal programming model for speculative
parallelization

Comparison of results

Moore’s law

e The number of transistors that can be placed
inexpensively on an integrated circuit has
doubled approximately every 18 - 24 months

 Performance of processors also doubled every
18 — 24 months

Single core processor

* Increase in clock frequency
e Increase in Instructions per cycle (IPC)

e Optimization techniques
— Multiple instruction issue
— Deep pipelines
— Out of order execution
— Prefetching
— Speculative execution

Speculative Execution

e Basic concept of Speculative Execution

— The execution of code the results of which may not be
required

e Statements and Definitions in a Program

— Segments which must be run and mandatory
e Does not benefit from speculative execution
— Segments which do not need to be run because they are
irrelevant
e Can be discarded without execution
— Segments which cannot be proven to be in either of the
two groups

e Target of speculative execution as its members can be run
concurrently with mandatory computations

Projection Vs Reality

25

20 //
15 2ow

10
/ 2007 Roadmap
..._--’
Intel multicore

|] |] |]
2001 2003 2005 2007 2009 2011 2013

Clock Rate (GHz)

Microprocessor clock rates of Intel products Vs projects from
the international roadmap for semiconductors in 2005 and 2007

Indiana University- School of Inormatics 6

10/27/2010 and Computing

Former Intel CEO’s famous quote in
2005

“The future of GRIN is
multi core”

“If you want your computer
or your entertainment device
to do more for you, then you
want more processing power
and more communications
capability. And dual-core and
multi-core does that”

- Craig Barrett

[i ity- School of | Nath
10/27/2010 Indiana University- School of Inor

and Computing

Power and Frequency relation for
dual-core processor

Multi-Core Energy-Efficient Performance
Relative single-core frequency and Vcc

1.73x 1.73x%
1.13x 1.00x 1.02x
B Dual-core '
B Performance
& Power

Over-clocked (+20%) Max Frequency Dual-core (-20%)

Here we add a second core on the under-clocked
example. This results in a dual-core processor that at 20
percent reduced clock frequency effectively delivers 73
percent more performance while using approximately
the same power as a single-core processor at maximum
frequency.

Indiana University- School of Inormatics

10/27/2010 and Computing

Parallelism

e Single core processor

— mutex, semaphore, wait — signal or broadcast
(Multi threading - Process abstraction)

— pipes, shared memory, sockets (Multi processing -
Resource abstraction)

e Multi core Processor
— OpenMP (Shared memory)
e Multi processors
— OpenMPI, MPICH (Distributed memory)

Speculative parallelization

Hybrid model that speculatively executes
regions of code parallely on available
resources

Utilizes available resources completely to
improve performance

Reduces execution time of application (most
of the time)

May take more time than normal in worst case

Existing Speculative Parallelizing
Systems

e FastTrack

e FastForward
e Software BOP

Amdahl’s law

e Used to find Speedup for some enhancement

E,\'cculionlimc)ld 1
Speedup el = — =
overa Execution time Fraction_ ;..
““ (1 - Fraction) + L
= enhanced

Speedup

enhanced

* Fraction(enhanced) - The fraction of the computation time
in the original computer that can be converted to take
advantage of the enhancement

e Speedup(enhanced) - The improvement gained by the
enhanced execution mode; that is, how much faster the
task would run if the enhanced mode were used for the
entire program

Fast Track

Creates dual track regions which involves code
that can be run speculatively

Runs unoptimized code parallely (against
sequential version) on multiple processors

Checks correctness after sequential version is
executed

Proceeds with speculative version if results are
correct / sequential version otherwise

10/27/2010

Semantics for loop

while (...) {

if (FastTrack ()){
/+ unsafely =/

/* optimized =/
fast fortuitousi():

else {
/* safe code x/
safe_sequential();

}

EndDualTrack();

Unsafe loop optimization using fast track. Iterations of
fast_fortuitous() will execute sequentially. Iterations of
safe_sequential() will execute in parallel with one another,
checking the correctness of the fast iterations.

Indiana University- School of Inormatics
and Computing

14

Semantics for functions

if (FastTrack ())
/* optimized =x/
fast_step_1();

else

if (FastTrack ())
/* optimized x/
fast_step_2();

else
e code x/

& B

a

N Hy

'O W

te

Unsafe function optimization using fast track. Routines
fast_step_2 and step_2 can start as soon as fast_step 1
completes. They are likely to run in parallel with step_1.

Indiana University- School of Inormatics

10/27/2010 and Computing

System design

e Compiler support
— Records changes made by both dual track regions
— Compiler’s inherent support for stack variables
— Copy on write + access map for global & heap

* Run time support

— Transfer pages of modified data using shared pipe

— Compare memory state at the end of dual track
region

Time

10/27/2010

1S

2S

3S

Code flow

Case 1: All speculations are correct

Indiana University- School of Inormatics
and Computing

S — Speculator
V — Verifier

17

Time

1S

2S

3S

10/27/2010

Code flow

S — Speculator
V — Verifier

Case 2: Result of 2S is wrong

Indiana University- School of Inormatics
and Computing

18

System limitations

Waste of system resources including electric
power

Cannot create dual track if that piece of code
involves interrupts, network interaction

Limitation on system memory

Special care for all Program termination points
inside speculative region

Fast Track — Contd

e Unsafe program optimization techniques

— Memoization

e Store results of previous execution and use it for
speculation

— Manual program tuning

 Programmer identifies speculative regions and creates
dual track regions

Fast Forward

Compiler + speculative multi threaded support

Compiler figures out hot spot for branches which are
regions of code that are executed with high
probability

Multiple basic blocks are transformed to form one
basic block containing all hot spots

New basic block is optimized during compilation

System design

Bl
a==]
B2 B3
-
X
(a) Source program
) (b) Control flow graph
(b)

(c) FFR region

a==1 abort

FFR

B3

B4
a==0 abort

FFR

B7

Bl
if (a!=1)
B2
else
B3 /* cold */
B4
if (a!=2)
B5
else
B6 /* cold */
B7
(a)
fastforward
B1'
B2'
B4'
B5'
FFR BT
3
commit
10/27/2010

Indiana University- School of Inormatics
and Computing

22

Fast forward region and checker

FIR spnt—lab:%

Buffer
Exeaution
Results

fastiorwerd

\:h:cka

assatifcn

) kall signal

Conmat(-wat)

conmmit

- abortif ¢l

abortif g
- motice

conmiit

cont-label

g

Buffer
Execution
Results

FFR region terminates itself if assert becomes true / gets abort

from checker

10/27/2010

Indiana University- School of Inormatics

and Computin

g

System limitations

 FFR has to wait until checker executes all
abort instructions

e FFR and checker threads has to terminate as

soon as possible to avoid unnecessary
computation

Formal Language for
Speculative Parallel Algorithms

* Inherently Sequential Algorithms
— Lexical Analysis
— Huffman Decoding

e Value Speculation
e Two new language constructs:

— Speculative composition
— Speculative iteration

Value Speculation

(a) —Producer P=——_}—»l——Consumer C—{iii
Value V

=—Producer P onsumer C==={i}
Value V

Re-execute with

Prediction correct value V

function

Speculative
=5 —1

Consumer

Speculative
Value V'

Total time without speculation =

Total time with correct
speculation

Total time with incorrect speculation =

Indiana University- School of Inormatics

10/27/2010 and Computing

26

Syntax and Semantics of Speculate

e Fold expressions

— Model a simple form of iteration where each iteration
depends on the value computed in the previous iteration

e Speculative application
— (spec p g c) : a producer p, a predictor g, a consumer c

e Speculative fold

— (specfold f g | u) : represents the loop body, g is a
prediction function in the range |..u, f is the fold expression

— Executes all iterations of the loop in parallel using the
predicted value and takes corrective action when
prediction fails

Safe Speculation without Rollback

* Correctness Criterion
— Final Equivalence
— Dependence Equivalence

e Safety Criterion

— Data races

— Heap updates in case of misprediction
 Termination Guarantees

— Speculation-validation step waits for both producer
and predictor to complete execution

— |f validation step detects misprediction, it attempts to
cancel the speculative consumer

10/27/2010

Speculative Library

1 public class Speculation {

2 public static void Apply<T>(

3 Func (T) producer,

4 Func (T) predictor,

5 void Action(T) consumer)

6

7 public enum ValidationMode { Seq, Par };
8

9 public static void Iterate<T>(

10 int low, int high,

11 Func(int, T, T) loopBody ,

12 Func (int, T) predictor,

13 ValidationType val /* optiomnal */)
14

15 public static void Iterate<T, U>(
16 int low, int high,

17 Func(U) initializer,

18 Func(int, U, T) loopBody,

19 Func (int, T) predictor,

20 Action(int, U) finalizer,

21 ValidationMode val)

22 ¥

Indliana university- SChool OT Inormatics

and Computing 29

Speculative Parallelization of Loops

* Main Thread- maintains the non-speculative
state of the computation

 Multiple Parallel Threads- execute parts of the
computation using speculatively-read operand
values from non-speculative state

e State Separation
e Copy or Discard Mechanism

Speculative Parallel Execution Model

e The shared memory space is divided into three
partitions:
— D: Non-speculative State
— P: Parallel or Speculative State
— C: Coordinating State

 Misspeculation- Detection and Recovery

— Version Numbers for Variables in D State Memory—C
state of the main thread

— Mapping Table for Variables in P State Memory—C
state of a parallel thread

Loop Sections

* Dividing the Loop Iteration into three sections:
— The prologue
— The speculative body
— The epilogue

e Main Thread non-speculatively executes the
prologues and epilogues

e The Parallel Threads are created to
speculatively execute the bodies of the
iterations on separate cores

Software Behavior Oriented
Parallelization (BOP)

Programmable software speculation

— Program parallelized based on “partial” information
about program behavior

— User or analysis tool marks “possibly” parallel regions
— Runtime system executes these regions speculatively

Critical-path minimization
Value-based correctness checking

No change to the underlying hardware or
operating system

BOP Overview

e |ssues addressed

— Unknown data access and control flow make
applications difficult to parallelize

— Input-dependent behavior where both the degree and
the granularity of parallelism are not predictable
* Design
— Possibly Parallel Regions (PPR)

 Marking the start and end of the region with matching
markers: BeginPPR(p) and EndPPR(p)

— Protects the entire address space by dividing it into
possible shared and privatizable subsets

Possibly Parallel Regions (PPR)

At a start marker, BOP forks a process that jumps to the matching end marker and
speculatively executes from there

At any point t, the next PPR instance starts from the first start marker operation
BeginPPR(p) after t and then ends at the first end marker operation EndPPR(p)
after the BeginPPR(p).

Example:

— A program, from the start t,, executes the markers six times from t, to t, as follows:

b b e b e e
mp mP mP mQ mp mQ

— Two dynamic PPR instances are from t; to t; and from t, to t;, which will be run in parallel. The other
fragments of the execution will be run sequentially, although the part from t; to t, is also speculative

PPR markers can be inserted anywhere in a program and executed in any order at
run-time

— The system tolerates incorrect marking of parallelism

The markers are programmable hints

— The quality of hints affects the parallelism but not the correctness nor the worst-case performance

Parallel Ensemble

The execution starts as the “lead” process

— continues to execute the program non-speculatively until
the program exits

Uses concurrent executions to hide the speculation
overhead off the critical path

— determines the worst-case performance where all
speculation fails and the program runs sequentially.

At a (pre-specified) speculation depth k, up to k
processes are used to execute the next k PPR instances.

— for a machine with p available processors, the speculation
depth is set to p—1 to make the full use of the CPU
resource

init

b, s™)

I)

e s s g g,

(0. 572

(a) sequential execution

[)

(Pb. Sim'.')

(P S!ead)

System Design

Hie

Jinit

(.5)
| |
. I
|}
- |
[|
|
s 9
[|
2 spec
o S)

(b) parallel execution
(lead on the left,
spec on the right)

States of Sequential and Parallel Execution

lead process
b
m h
P mfp
spec 1 starts
g P
"1’% I"fg
understudy EE—
branch me. WSPEC 2 starts
IH’ é starts A Q
. m
= R
1
Q O mg m
(]
© - specl
mg 1 commils
* pec 2
- ;15 o> c omm its
{parual) spec 2 finishes first next lead
- R and aborts understudy
mp (parallel exe. wins)”
(a) Sequential (b) A successful parallel execution, with

execution of PPR
instances P, Q, and
R and their start and
end markers.

lead on the left, spec 1 and 2 on the right.
Speculation starts by jumping from the
start to the end marker. It commits when
reaching another end marker.

Table 1. BOP actions for unexpected behavior

| behavior | prog. exitorerror | unexpected PPR markers |
lead exit continue
understudy exit continue
spec(s) abort speculation i qpnue ity School .
02773010 heiReoRiversity—Senoo) of Inormatics

and Computlng

Execution Flow

37

State Isolation

e Thread-based systems
— Weak isolation
— The updates of one thread are visible to other threads

* BOP

— Strong isolation

— The intermediate results of the lead process are not
made visible to speculation processes until the lead
process finishes the first PPR

— Strong isolation comes naturally with process-based
protection

Data Validation

Table 2. Three types of data protection

type shared data Dsnared checked data D pecked (likely) private data Dprivate
protection Not written by lead Value at BeginPPR is the same at EndPPR | no read before Ist write in spec.
and read by spec in lead. Concurrent read/write allowed. Concurrent read/write allowed.
granularity page/element element element
needed support | compiler, profiler, run-time compiler, profiler, run-time compiler (run-time)
overhead on 1 fault per mod. page copy-on-write copy-on-write
critical path copy-on-write

 Three disjoint address spaces
— Shared
— Checked
— Private

 Three types of data protection
— Page-based protection of shared data
— Value-based checking
— Likely private data

Indiana University- School of Inormatics

and Computing 9

10/27/2010

Limitations of BOP

* Not efficient- extra CPU, memory and energy
usage)
e Speculative region cannot invoke general

forms of I/O and other operations with
unrecoverable side-effects

Comparative Study
________ FastTack ___JFastforward __JBOP_______

Speculation Type Process-based Thread-based Process-based
Overheads High Low High
Speedup 2 — 4 times 1.2 times (average) 1.2-2.1times
Speculation Depth Multiple Two Multiple

10/27/2010 Indiana University- School of Inormatics a1

and Computing

10/27/2010

References

L. Rauchwerger and D. Padua, “The LRPD test: Speculative run-time parallelization of loops with privatization and reduction
parallelization,” in Proceedings of the ACM SIGPLAN 1995 Conference on Programming Language Design and Implementation (PLDI),
1995, pp. 218-232, http://doi.acm.org/10.1145/207110.207148

L.-L. Chen and Y. Wu, “Aggressive compiler optimization and parallelization with thread-level speculation,” in International Conference
on Parallel Processing (ICPP), 2003, http://doi.ieeecomputersociety.org/10.1109/ICPP.2003.1240629

K. Kelsey, T. Bai, C. Ding, and C. Zhang, “Fast Track: A software system for speculative program optimization,” in Proceedings of the
International Symposium on Code Generation and Optimization, 2009, pp. 157-168,
http://doi.ieeecomputersociety.org/10.1109/CG0.2009.18

M. F. Spear, K. Kelsey, T. Bai, L. Daless, M. L. Scott, C. Ding, and P. Wu, “Fastpath speculative parallelization,” in Proceedings of the 22nd
International Workshop on Languages and Compilers for Parallel Computing (LCPC), 2009,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.157.4762

C. Tian, M. Feng, V. Nagarajan, and R. Gupta, “Speculative parallelization of sequential loops on multicores,” International Journal of
Parallel Programming, vol. 37, no. 5, pp. 508-535, Oct. 2009, http://dx.doi.org/10.1007/s10766-009-0111-z

C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang, “Software behavior oriented parallelization,” in Proceedings of the 2007
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2007, pp. 223-234,
http://doi.acm.org/10.1145/1250734.1250760

P. Prabhu, G. Ramalingam, and K. Vaswani, “Safe programmable speculative parallelism,” in Proceedings of the ACM SIGPLAN 2010
International Conference on Programming Language Design and Implementation, 2010, http://doi.acm.org/10.1145/1806596.1806603

D. Bruening, S. Devabhaktuni, and S. Amarasinghe, “Softspec: Software-based speculative parallelism,” in Proceedings of the 3rd ACM
Workshop on Feedback-Directed and Dynamic Optimization, 2000, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.9885

Indiana University- School of Inormatics

. 42
and Computing

10/27/2010

Thank you

Indiana University- School of Inormatics
and Computing

43

