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An Overview to 



Polyhedral Model 

 A framework for performing loop transformation 

 Loop representation: using polytopes to achieve fine-grain 

representation of program 

 Loop transformation: transforming loop by doing affine 

transformation on polytopes 

 Dependency test: several mathematical methods for 

validating transformation on loop polytopes 

 Code generation: generate transformed code from loop 

polytopes 



Benefits? 

 Fine-grained representation of program 

 Dependency Graph: 

 Each node corresponds with one statement in source program 

 Syntax based 



Benefits? 

 Fine-grained representation of program 

 Dependency Graph: 

 Each node corresponds with one statement in source program 

 Syntax based 

 Polyhedral Model: 

 Each point in polytope corresponds with one instance of 

statement 

 Finer grained analysis and transformation is possible 

 

 



Program Abstraction Level 

 Statement 
 For (I=1;I<=10;I++) 

   A[I] = A[I-1] + 1 

 

 Operation (Instance of statement) 
 A[4] = A[3] + 1 

 

 



Iteration Domain 

 Iteration Vector 

 A n-level loop nest can be represented as a n-entry vector, 

each component corresponding to each level loop iterator 

For (x1=L1;x1<U1;x1++) 

  … 

  For (x2=L2;x2<U2;x2++) 

    … 

    … 

    For (xn=Ln;xn<Un;xn++) 

      … 

𝑥 =  

𝑥1
𝑥2
.
.
.

𝑥𝑛

 



Iteration Domain 

 Iteration Domain: Set of all possible iteration vectors for 

a given statement 

For (i=1;i<=6;i++) 

  For (j=min(max(6-1,1),3); 

       j<=max(8-i,2*i-5); 

       j++) 

    a[i][j]=a[i-1][j]; 



Iteration Domain 

 Iteration Domain: Set of all possible iteration vectors for 

a given statement 

For (i=1;i<=6;i++) 

  For (j=min(max(6-1,1),3); 

       j<=max(8-i,2*i-5); 

       j++) 

    a[i][j]=a[i-1][j]; 

Notice: This iteration domain is not valid for polyhedral model! 



Iteration Domain 

 Iteration domain can be a polytope since it is the set of n-

dimension vectors 

 For polyhedral model, the iteration domain must be a 

convex set. 
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Iteration Domain 

 Iteration domain can be a polytope since it is the set of n-

dimension vectors 

 For polyhedral model, the iteration domain must be a 

convex set. 

 Convex Set: 

 In simple words: For a line segment between any two point in 

set S, each point on this segment should be in S. 

 ℤ-Polyhedron 

 In most situation loop counters are integers 

 So we use a polyhedron of integer points to represent loop 

iteration domain 



Modeling Iteration Domains 

 Dimension of Iteration Domain: Decided by loop nesting 

levels 

 Bounds of Iteration Domain: Decided by loop bounds 

 Using inequalities 

For (i=1;i<=n;i++) 

 For (j=1;j<=n;j++) 

  if (i<=n+2-j) 

   b[j]=b[j]+a[i]; 



Modeling Iteration Domains 

 Dimension of Iteration Domain: Decided by loop nesting 

levels 

 Bounds of Iteration Domain: Decided by loop bounds 

 Using inequalities 

For (i=1;i<=n;i++) 

 For (j=1;j<=n;j++) 

  if (i<=n+2-j) 

   b[j]=b[j]+a[i]; 

1 ≤ 𝑖 ≤ 𝑛 , 1 ≤ 𝑗 ≤ 𝑛 

𝑖 ≤ 𝑛 + 2 − 𝑗 



Modeling Iteration Domains 

 Representing iteration bounds by affine function: 

1 ≤ 𝑖 ≤ 𝑛 ∶  
1 0

−1 0

𝑖
𝑗

+
−1
𝑛

≥ 0   

1 ≤ 𝑗 ≤ 𝑛 ∶  
0 1
0 −1

𝑖
𝑗

+
−1
𝑛

≥ 0   

i ≤ 𝑛 + 2 − 𝑗 ∶ −1 −1
𝑖
𝑗

+ 𝑛 + 2 ≥ 0 

1 0
−1
0
0

−1

0
1

−1
−1

𝑖
𝑗

+

−1
𝑛
−1
𝑛

𝑛 + 2

≥ 0 



Examples: Iteration Domain 

For (i=0;i<=N;i++) 

 For (j=0;j<=i;j++) 

  if (i>=M) a[j]=0; 

1 0
−1
0
1
1

0
1

−1
0

𝑖
𝑗

+

0
𝑁
0
0

−𝑀

≥ 0 



Examples: Iteration Domain 

For (i=0;i<=N;i+=2) 

 For (j=0;j<=N;j++) 

  if (i%3==1 && j%2==0) A[i]=0 

 Can this loop be represented in polyhedral model? 

 The if statement can cause “cavities” in polyhedral. 



Examples: Iteration Domain 

For (i=0;i<=N;i+=2) 

 For (j=0;j<=N;j++) 

  if (i%3==1 && j%2==0) A[i]=0 

 Can this loop be represented in polyhedral model? 

 The if statement can cause “cavities” in polyhedral. 

 Use loop normalization 



Loop Normalization 

 Algorithm: 

  

 1. Replace loop boundaries and steps: 

     DO I=L,U,S  ->  DO i=1,(U-L+S)/S,1 

 2. Replace each reference to original loop variable I with: 

     i*S-S+L 

 3. Reset the loop variable value to ensure the after loop 

     reference to loop variable can get correct value: 

     I = i*S-S+L 



Example 

For (i=0;i<=N;i+=2) 

 For (j=0;j<=N;j++) 

  if (i%3==1 && j%2==0) A[i]=0 



Example 

For (i=0;i<=N;i+=2) 

 For (j=0;j<=N;j++) 

  if (i%3==1 && j%2==0) A[i]=0 

For (i=4;i<=N;i+=6) 

 For (j=0;j<=N;j+=2) 

  A[i]=0 



Example 

For (i=0;i<=N;i+=2) 

 For (j=0;j<=N;j++) 

  if (i%3==1 && j%2==0) A[i]=0 

For (i=4;i<=N;i+=6) 

 For (j=0;j<=N;j+=2) 

  A[i]=0 

For (ii=1;ii<=(N+2)/6;ii++) 

 For (jj=1;jj<=(N+2)/2;jj++) 

  i=ii*6-6+4 

  j=jj*2-2 

  A[i]=0 



Example 

For (ii=1;ii<=(N+2)/6;ii++) 

 For (jj=1;jj<=(N+2)/2;jj++) 

  i=ii*6-6+4 

  j=jj*2-2 

  A[i]=0 

1 0
−1
0
0

0
1

−1

𝑖
𝑗

+

1
(𝑁 + 2)/6

1
(𝑁 + 2)/2

≥ 0 



Review: Dependency 

 There exists a data dependency from statement s1 to s2 if 

and only if: 

 s1 and s2 access to same memory location and at least one of 

them stores into it 

 A feasible execution path exists from s1 to s2 

 

 These rules can be extended to polyhedral model. 



Review: Dependency 

 There exists a data dependency from statement s1 to s2 if 

and only if: 

 s1 and s2 access to same memory location and at least one of 

them stores into it 

 A feasible execution path exists from s1 to s2 

 

 These rules can be extended to polyhedral model. 

 Dependency Polyhedral: 

 Array reference function: indicating reference to same memory 

 Iteration domain 

 Precedence order: indicating execution path 



Dependency Polyhedral 

 Array reference function: 

 For statement s and r accessing same array: 

 𝐹𝑠𝑥𝑠 + 𝑎𝑠 = 𝐹𝑟𝑥𝑟 + 𝑎𝑟 

 

 



Dependency Polyhedral 

 Array reference function: 

 For statement s and r accessing same array: 

 𝐹𝑠𝑥𝑠 + 𝑎𝑠 = 𝐹𝑟𝑥𝑟 + 𝑎𝑟 

 

 Precedence order function: 

 Statement s is textually before statement r: 

 𝑃𝑠𝑥𝑠 − 𝑃𝑟𝑥𝑟 + 𝑏 ≥ 0 

 



Construction Dependency Polyhedral 

 The dependence polyhedron for 𝑅𝛿𝑆 at a given level i and 

for a given pair of references to statement r and s is 

described as Cartesian product of: 

 
𝐹𝑠 −𝐹𝑟
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0
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Examples for Dependency Polyhedron  

For (i=0;i<=N;i++) 

 For (j=0;j<=N;j++) 

  A[i][j]=A[i+1][j+1] 



Examples for Dependency Polyhedron  

For (i=0;i<=N;i++) 

 For (j=0;j<=N;j++) 

  A[i][j]=A[i+1][j+1]  (S1) 

Iteration Domain: 

𝒟𝑆1 =

1 0 0 0
−1 0 1 0
0 1 0 0
0 −1 1 0

𝑖
𝑗
𝑛
1

≥ 0 



Examples for Dependency Polyhedron  

For (i=0;i<=N;i++) 

 For (j=0;j<=N;j++) 

  A[i][j]=A[i+1][j+1]  (S1) 

Array Reference Function: 

𝐹𝐴 𝑥𝑠1 =
1 0 0 0
0 1 0 0

𝑖
𝑗
𝑛
1

 

 

𝐹𝐴′ 𝑥𝑠1 =
1 0 0 1
0 1 0 1

𝑖
𝑗
𝑛
1

 



Examples for Dependency Polyhedron  

For (i=0;i<=N;i++) 

 For (j=0;j<=N;j++) 

  A[i][j]=A[i+1][j+1]  (S1) 

Precedence Order: 
 For statement S1 in two consecutive loop,  i-i’=1 , j-j’=1 

 

 

𝑃𝑠1 =
1 0 0 0
0 1 0 0

𝑖
𝑗
𝑛
1

 

 

 To satisfy 𝑃𝑠𝑥𝑠 − 𝑃𝑟𝑥𝑟 + 𝑏 ≥ 0 , 𝑏 should be −1 −1 . 



Examples for Dependency Polyhedron  

For (i=0;i<=N;i++) 

 For (j=0;j<=N;j++) 

  A[i][j]=A[i+1][j+1]  (S1) 
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F: Array Reference 

Function 



Examples for Dependency Polyhedron  

For (i=0;i<=N;i++) 

 For (j=0;j<=N;j++) 
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A: Iteration Domain 



Examples for Dependency Polyhedron  

For (i=0;i<=N;i++) 

 For (j=0;j<=N;j++) 

  A[i][j]=A[i+1][j+1]  (S1) 

1 0 1 0
0 1 0 1
1 0 0 0

−1 0 0 0
0 1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 0
0 0 0 1
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P: Precedence      

Order 



Examples for Dependency Polyhedron 

 Matrix format using in polyhedral compiling library: 



Transformation using Polytopes:  

Loop Interchange 

Before: 
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For (i=1;i<=2;i++) 

  For (j=1;j<=3;j++) 



Transformation using Polytopes:  

Loop Interchange 

Before: After: 
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 Transformation Function 
𝑖′

𝑗′
=

0 1
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For (i=1;i<=2;i++) 

  For (j=1;j<=3;j++) 

For (j=1;j<=3;j++) 

  For (i=1;i<=2;i++) 



Transformation using Polytopes: 

Loop Reversal 

Before: 
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For (i=1;i<=2;i++) 

  For (j=1;j<=3;j++) 



Transformation using Polytopes: 

Loop Reversal 

Before: After: 
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 Transformation Function: 
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For (i=1;i<=2;i++) 

  For (j=1;j<=3;j++) 

For (i=-1;i>=-2;i--) 

  For (j=1;j<=3;j++) 



Polyhedral Model: Pros and Cons 

 Pros: 

 Finer grained representation, analysis, optimization 

 Especially appropriate for loop transformation 



Example of Loop Tiling 

 (From the C-to-CUDA paper, this tiling intends to improve locality) 



Polyhedral Model: Pros and Cons 

 Cons: 

 Efficiency: Compile-time efficiency, since integer programming is 

NP-complete 

 Building polyhedrons in compile time is also memory 

consuming 
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Thanks! 


