Polyhedral Model

Fangzhou Jiao

Polyhedral Model

- A framework for performing loop transformation
- Loop representation: using polytopes to achieve fine-grain representation of program
- Loop transformation: transforming loop by doing affine transformation on polytopes
- Dependency test: several mathematical methods for validating transformation on loop polytopes
- Code generation: generate transformed code from loop polytopes

Benefits?

- Fine-grained representation of program
- Dependency Graph:
- Each node corresponds with one statement in source program
- Syntax based

Benefits?

- Fine-grained representation of program
- Dependency Graph:
- Each node corresponds with one statement in source program
- Syntax based
- Polyhedral Model:
- Each point in polytope corresponds with one instance of statement
- Finer grained analysis and transformation is possible

Program Abstraction Level

- Statement

$$
\begin{array}{r}
\text { For } \quad(I=1 ; I<=10 ; I++) \\
\operatorname{A}[I]=A[I-1]+1
\end{array}
$$

- Operation (Instance of statement)

$$
A[4]=A[3]+1
$$

Iteration Domain

- Iteration Vector
- A n-level loop nest can be represented as a n-entry vector, each component corresponding to each level loop iterator

```
For (x1=L1; x1<U1; x1++)
    For (x2=L2;x2<U2; x 2 + + )
    ...
    For (xn=Ln;xn<Un;xn++)
```

 \(\vec{x}=\left(\begin{array}{c}x 1 \\ x 2 \\ \cdot \\ \cdot \\ \cdot \\ x n\end{array}\right)\)

Iteration Domain

- Iteration Domain: Set of all possible iteration vectors for a given statement

```
For (i=1;i<=6;i++)
    For (j=min(max (6-1,1), 3);
        j<=max(8-i,2*i-5);
        j++)
        a[i][j]=a[i-1][j];
```


Iteration Domain

- Iteration Domain: Set of all possible iteration vectors for a given statement

```
For (i=1;i<=6;i++)
    For (j=min(max (6-1,1), 3);
        j<=max(8-i,2*i-5);
        j++)
        a[i][j]=a[i-1][j];
```


Notice:This iteration domain is not valid for polyhedral model!

Iteration Domain

- Iteration domain can be a polytope since it is the set of n dimension vectors
- For polyhedral model, the iteration domain must be a convex set.

Iteration Domain

- Iteration domain can be a polytope since it is the set of n dimension vectors
- For polyhedral model, the iteration domain must be a convex set.
- Convex Set:
- In simple words: For a line segment between any two point in set S , each point on this segment should be in S .

Iteration Domain

- Iteration domain can be a polytope since it is the set of n dimension vectors
- For polyhedral model, the iteration domain must be a convex set.
- Convex Set:
- In simple words: For a line segment between any two point in set S, each point on this segment should be in S.

Iteration Domain

- Iteration domain can be a polytope since it is the set of n dimension vectors
- For polyhedral model, the iteration domain must be a convex set.
- Convex Set:
- In simple words: For a line segment between any two point in set S, each point on this segment should be in S .
- Z-Polyhedron
- In most situation loop counters are integers
- So we use a polyhedron of integer points to represent loop iteration domain

Modeling Iteration Domains

- Dimension of Iteration Domain: Decided by loop nesting levels
- Bounds of Iteration Domain: Decided by loop bounds
- Using inequalities

```
For (i=1;i<=n;i++)
    For (j=1;j<=n;j++)
        if (i<=n+2-j)
        b[j]=b[j]+a[i];
```


Modeling Iteration Domains

- Dimension of Iteration Domain: Decided by loop nesting levels
- Bounds of Iteration Domain: Decided by loop bounds - Using inequalities

$$
\begin{gathered}
\text { For } \quad(i=1 ; i<=n ; i++) \\
\text { For } \quad(j=1 ; j<=n ; j++) \\
\text { if } \quad(i<=n+2-j) \\
\text { b }[j]=b[j]+a[i] ; \\
\\
1 \leq i \leq n, 1 \leq j \leq n \\
i \leq n+2-j
\end{gathered}
$$

Modeling Iteration Domains

- Representing iteration bounds by affine function:

$$
\begin{gathered}
1 \leq i \leq n:\left[\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right]\binom{i}{j}+\binom{-1}{n} \geq 0 \\
1 \leq j \leq n:\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right]\binom{i}{j}+\binom{-1}{n} \geq 0 \\
i \leq n+2-j:\left[\begin{array}{ll}
-1 & -1
\end{array}\right]\binom{i}{j}+(n+2) \geq 0 \\
{\left[\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
0 & -1 \\
-1 & -1
\end{array}\right]\binom{i}{j}+\left(\begin{array}{c}
-1 \\
n \\
-1 \\
n \\
n+2
\end{array}\right) \geq \overrightarrow{0}}
\end{gathered}
$$

Examples: Iteration Domain

$$
\begin{array}{ll}
\text { For } & (i=0 ; i<=N ; i++) \\
\text { For } & (j=0 ; j<=i ; j++) \\
\text { if } & (i>=M) \quad a[j]=0 ; \\
{\left[\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
1 & -1 \\
1 & 0
\end{array}\right]\binom{i}{j}+\left[\begin{array}{c}
N \\
0 \\
0 \\
-M
\end{array}\right] \geq \overrightarrow{0}}
\end{array}
$$

Examples: Iteration Domain

$$
\begin{aligned}
& \text { For }(i=0 ; i<=N ; i+=2) \\
& \text { For }(j=0 ; j<=N ; j++) \\
& \text { if }(i \% 3==1 \& \& \quad j \% 2==0) \quad A[i]=0
\end{aligned}
$$

$>$ Can this loop be represented in polyhedral model?
$>$ The if statement can cause "cavities" in polyhedral.

Examples: Iteration Domain

$$
\begin{aligned}
& \text { For }(i=0 ; i<=N ; i+=2) \\
& \text { For }(j=0 ; j<=N ; j++) \\
& \quad \text { if }(i \% 3==1 \& \& \quad j \% 2==0) \quad A[i]=0
\end{aligned}
$$

$>$ Can this loop be represented in polyhedral model?
$>$ The if statement can cause "cavities" in polyhedral.
> Use loop normalization

Loop Normalization

- Algorithm:

1. Replace loop boundaries and steps:

DO I=L,U,S -> DO i=1,(U-L+S)/S,1
2. Replace each reference to original loop variable I with: i*S-S+L
3. Reset the loop variable value to ensure the after loop reference to loop variable can get correct value: $\mathrm{I}=\mathrm{i}^{*} \mathrm{~S}-\mathrm{S}+\mathrm{L}$

Example

$$
\begin{aligned}
& \text { For }(i=0 ; i<=N ; i+=2) \\
& \text { For }(j=0 ; j<=N ; j++) \\
& \quad \text { if }(i \% 3==1 \& \& \quad j \% 2==0) \quad A[i]=0
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { For } \quad(i=0 ; i<=N ; i+=2) \\
& \text { For } \quad(j=0 ; j<=N ; j++) \\
& \text { if } \quad(i \% 3==1 \& \& j \% 2==0) \quad A[i]=0 \\
& \text { For }(i=4 ; i<=N ; i+=6) \\
& \text { For } \quad(j=0 ; j<=N ; j+=2) \\
& \text { A[i] }=0
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { For } \quad(i=0 ; i<=N ; i+=2) \\
& \text { For } \quad(j=0 ; j<=N ; j++) \\
& \text { if } \quad(i \% 3==1 \& \& j \% 2==0) \quad A[i]=0 \\
& \text { For }(i=4 ; i<=N ; i+=6) \\
& \text { For } \quad(j=0 ; j<=N ; j+=2) \\
& \text { A[i]=0 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } \quad(i i=1 ; i i<=(N+2) / 6 ; i i++) \\
& \text { For } \quad(j j=1 ; j j<=(N+2) / 2 ; j j++) \\
& \quad \text { i=ii*6-6+4 } \\
& \text { j=jj*2-2 } \\
& \text { A[i] }=0
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { For } \quad(i i=1 ; i i<=(N+2) / 6 ; i i++) \\
& \text { For }(j j=1 ; j j<=(N+2) / 2 ; j j++) \\
& \quad \text { i=ii*6-6+4 } \\
& j=j j \star 2-2 \\
& \text { A }[i]=0
\end{aligned}
$$

$$
\left[\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
0 & -1
\end{array}\right]\binom{i}{j}+\left[\begin{array}{c}
1 \\
(N+2) / 6 \\
1 \\
(N+2) / 2
\end{array}\right] \geq \overrightarrow{0}
$$

Review: Dependency

- There exists a data dependency from statement s_{1} to s_{2} if and only if:
b s_{1} and s_{2} access to same memory location and at least one of them stores into it
- A feasible execution path exists from s_{1} to s_{2}
- These rules can be extended to polyhedral model.

Review: Dependency

- There exists a data dependency from statement s_{1} to s_{2} if and only if:
b s_{1} and s_{2} access to same memory location and at least one of them stores into it
- A feasible execution path exists from s_{1} to s_{2}
- These rules can be extended to polyhedral model.
- Dependency Polyhedral:
- Array reference function: indicating reference to same memory
- Iteration domain
- Precedence order: indicating execution path

Dependency Polyhedral

- Array reference function:
, For statement s and r accessing same array:
- $F_{s} \overrightarrow{x_{s}}+\overrightarrow{a_{s}}=F_{r} \overrightarrow{x_{r}}+\overrightarrow{a_{r}}$

Dependency Polyhedral

- Array reference function:
- For statement s and r accessing same array:
- $F_{s} \overrightarrow{x_{s}}+\overrightarrow{a_{s}}=F_{r} \overrightarrow{x_{r}}+\overrightarrow{a_{r}}$
- Precedence order function:
- Statement s is textually before statement r :
- $P_{s} \overrightarrow{x_{s}}-P_{r} \overrightarrow{x_{r}}+\vec{b} \geq \overrightarrow{0}$

Construction Dependency Polyhedral

- The dependence polyhedron for $R \delta S$ at a given level i and for a given pair of references to statement r and s is described as Cartesian product of:

$$
\left[\begin{array}{cc}
\overline{F_{s}} & -F_{r} \\
D_{s} & 0 \\
0 & D_{r} \\
P_{s} & -P_{r}
\end{array}\right]\binom{\overrightarrow{x_{s}}}{\overrightarrow{x_{r}}}+\left(\begin{array}{c}
a_{s}-a_{r} \\
c_{s} \\
c_{r} \\
b
\end{array}\right) \geq \overrightarrow{0}
$$

Examples for Dependency Polyhedron

$$
\begin{aligned}
& \text { For } \quad(i=0 ; i<=N ; i++) \\
& \text { For } \quad(j=0 ; j<=N ; j++) \\
& \quad A[i][j]=A[i+1][j+1]
\end{aligned}
$$

Examples for Dependency Polyhedron

$$
\begin{align*}
& \text { For } \quad(i=0 ; i<=N ; i++) \\
& \text { For } \quad(j=0 ; j<=N ; j++) \\
& \quad A[i][j]=A[i+1][j+1] \tag{S1}
\end{align*}
$$

Iteration Domain:

$$
\mathcal{D} S_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0
\end{array}\right]\left(\begin{array}{l}
i \\
j \\
n \\
1
\end{array}\right) \geq \overrightarrow{0}
$$

Examples for Dependency Polyhedron

$$
\begin{align*}
& \text { For } \quad(i=0 ; i<=N ; i++) \\
& \text { For } \quad(j=0 ; j<=N ; j++) \\
& \quad \text { A }[i][j]=A[i+1][j+1] \tag{S1}
\end{align*}
$$

Array Reference Function:

$$
\begin{aligned}
& F_{A}\left(\overrightarrow{x_{s 1}}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left(\begin{array}{l}
i \\
j \\
n \\
1
\end{array}\right) \\
& F_{A^{\prime}}\left(\overrightarrow{x_{s 1}}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
i \\
j \\
n \\
1
\end{array}\right)
\end{aligned}
$$

Examples for Dependency Polyhedron

$$
\begin{align*}
& \text { For } \quad(i=0 ; i<=N ; i++) \\
& \operatorname{For} \quad(j=0 ; j<=N ; j++) \\
& \quad A[i][j]=A[i+1][j+1] \tag{S1}
\end{align*}
$$

Precedence Order:
For statement $S 1$ in two consecutive loop, $i-i^{\prime}=1, j-j^{\prime}=1$

$$
P_{s 1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left(\begin{array}{c}
i \\
j \\
n \\
1
\end{array}\right)
$$

To satisfy $P_{s} \overrightarrow{x_{s}}-P_{r} \overrightarrow{x_{r}}+\vec{b} \geq \overrightarrow{0}, \vec{b}$ should be $\left[\begin{array}{ll}-1 & -1\end{array}\right]$.

Examples for Dependency Polyhedron

$$
\begin{align*}
& \text { For }(i=0 ; i<=N ; i++) \\
& \text { For } \quad(j=0 ; j<=N ; j++) \\
& \quad \text { A }[i][j]=A[i+1][j+1] \quad(S 1) \tag{S1}\\
& {\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\hline 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
i \\
j \\
i^{\prime} \\
i^{\prime}
\end{array}\right)+\left(\begin{array}{c}
1 \\
1 \\
0 \\
n \\
0 \\
n \\
0 \\
n \\
0 \\
n \\
-1 \\
-1
\end{array}\right)=\overrightarrow{0}}
\end{align*}
$$

Examples for Dependency Polyhedron

$$
\begin{align*}
& \text { For } \quad(i=0 ; i<=N ; i++) \\
& \text { For } \quad(j=0 ; j<=N ; j++) \\
& \quad \text { A }[i][j]=A[i+1][j+1] \tag{S1}
\end{align*}
$$

F: Array Reference Function
$\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]\left(\begin{array}{c}i \\ j \\ i^{\prime} \\ j^{\prime}\end{array}\right)+\left(\begin{array}{c}1 \\ 1 \\ \hline 0 \\ n \\ 0 \\ n \\ 0 \\ n \\ 0 \\ n \\ -1 \\ -1\end{array}\right)=\overrightarrow{0}$

Examples for Dependency Polyhedron

$$
\begin{align*}
& \text { For } \quad(i=0 ; i<=N ; i++) \\
& \text { For } \quad(j=0 ; j<=N ; j++) \\
& \text { A[i][j]=A[i+1][j+1]} \quad(S 1) \tag{S1}\\
& {\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\hline 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
i \\
j \\
i^{\prime} \\
j^{\prime}
\end{array}\right)+\left(\begin{array}{c}
1 \\
1 \\
0 \\
n \\
0 \\
n \\
0 \\
n \\
0 \\
n \\
-1 \\
-1
\end{array}\right)=\overrightarrow{0}}
\end{align*}
$$

Examples for Dependency Polyhedron

$$
\begin{align*}
& \text { For } \quad(i=0 ; i<=N ; i++) \\
& \text { For } \quad(j=0 ; j<=N ; j++) \\
& \quad \text { A }[i][j]=A[i+1][j+1] \tag{S1}
\end{align*}
$$

$\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]\left(\begin{array}{c}i \\ j \\ i^{\prime} \\ j^{\prime}\end{array}\right)+\left(\begin{array}{c}1 \\ 1 \\ 0 \\ n \\ 0 \\ n \\ 0 \\ n \\ 0 \\ n \\ -1 \\ -1\end{array}\right)=\overrightarrow{0}$

Examples for Dependency Polyhedron

- Matrix format using in polyhedral compiling library:

Given $\mathcal{D}_{R, S}:\left[\begin{array}{rrrrr}1 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0\end{array}\right] \cdot\left(\begin{array}{l}i_{R} \\ i_{S} \\ j_{S} \\ n \\ 1\end{array}\right) \begin{aligned} & \text { It is written: }\left[\begin{array}{rrrrrr}1 & 1 & -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 & 1 & 0\end{array}\right] \cdot\left(\begin{array}{c}i_{R} \\ i_{S} \\ j_{S} \\ n \\ 1\end{array}\right)\end{aligned}, l$
On the first column, 0 stands for $=0,1$ for ≥ 0

Transformation using Polytopes: Loop Interchange
Before: $\begin{gathered}\text { For }(i=1 ; i<=2 ; i++) \\ \text { For }(j=1 ; j<=3 ; j++)\end{gathered}$

$$
\left[\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
0 & -1
\end{array}\right]\binom{i}{j}+\left(\begin{array}{c}
-1 \\
2 \\
-1 \\
3
\end{array}\right) \geq \overrightarrow{0}
$$

Transformation using Polytopes: Loop Interchange
Before. For ($i=1 ; i<=2 ; i++$)

For $(j=1 ; j<=3 ; j++)$

$$
\left[\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
0 & -1
\end{array}\right]\binom{i}{j}+\left(\begin{array}{c}
-1 \\
2 \\
-1 \\
3
\end{array}\right) \geq \overrightarrow{0}
$$

After: For ($j=1 ; j<=3 ; j++$) For (i=1;i<=2;i++)

$$
\left[\begin{array}{cc}
0 & 1 \\
0 & -1 \\
1 & 0 \\
-1 & 0
\end{array}\right]\binom{i^{\prime}}{j^{\prime}}+\left(\begin{array}{c}
-1 \\
2 \\
-1 \\
3
\end{array}\right) \geq \overrightarrow{0}
$$

Transformation Function

$$
\binom{i^{\prime}}{j^{\prime}}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\binom{i}{j}
$$

Transformation using Polytopes: Loop Reversal

For $(i=1 ; i<=2 ; i++)$
Before: For ($j=1 ; j<=3 ; j++$)

$$
\left[\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
0 & -1
\end{array}\right]\binom{i}{j}+\left(\begin{array}{c}
-1 \\
2 \\
-1 \\
3
\end{array}\right) \geq \overrightarrow{0}
$$

Transformation using Polytopes:

Loop Reversal
For ($i=1 ; i<=2$; $i++$)
Before: For ($j=1 ; j<=3 ; j++$)

$$
\left[\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
0 & -1
\end{array}\right]\binom{i}{j}+\left(\begin{array}{c}
-1 \\
2 \\
-1 \\
3
\end{array}\right) \geq \overrightarrow{0}
$$

After: For $(j=1 ; j<=3 ; j++)$

$$
\left[\begin{array}{cc}
-1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & -1
\end{array}\right]\binom{i}{j}+\left(\begin{array}{c}
-1 \\
2 \\
-1 \\
3
\end{array}\right) \geq \overrightarrow{0}
$$

- Transformation Function:

$$
\binom{i^{\prime}}{j^{\prime}}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\binom{i}{j}
$$

Polyhedral Model: Pros and Cons

- Pros:
- Finer grained representation, analysis, optimization
- Especially appropriate for loop transformation

Example of Loop Tiling

- (From the C-to-CUDA paper, this tiling intends to improve locality)
for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$) $\{$
P: $x[i]=0$;
for $(\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ; \mathrm{j}++$)
$Q: x[i]+=a[j][i] * y[j]$;
(a) Original code

$$
D_{Q}^{\text {orig }} \cdot\left(\begin{array}{c}
i \\
j \\
N \\
1
\end{array}\right) \geq 0 \quad D_{Q}^{\text {tiled }} \cdot\left(\begin{array}{c}
i t \\
j t \\
i \\
j \\
N \\
1
\end{array}\right) \geq 0
$$

(c) Original and tiled iteration space

```
```

for (it =0; it <=floord(N-1,32);it++) {

```
```

for (it =0; it <=floord(N-1,32);it++) {

```
```

for (it =0; it <=floord(N-1,32);it++) {
for (}\textrm{jt}=0;\textrm{jt}<=\mathrm{ floord(N-1,32);jt++) {
for (}\textrm{jt}=0;\textrm{jt}<=\mathrm{ floord(N-1,32);jt++) {
for (}\textrm{jt}=0;\textrm{jt}<=\mathrm{ floord(N-1,32);jt++) {
if (jt == 0) {
if (jt == 0) {
if (jt == 0) {
for (i=max (32*it,0);
for (i=max (32*it,0);
for (i=max (32*it,0);
i}<==\operatorname{min}(32*it+31,N-1); i++) {
i}<==\operatorname{min}(32*it+31,N-1); i++) {
i}<==\operatorname{min}(32*it+31,N-1); i++) {
P: x[i]=0;
P: x[i]=0;
P: x[i]=0;
Q: x[i]=x[i]+a[0][i]*y [0];
Q: x[i]=x[i]+a[0][i]*y [0];
Q: x[i]=x[i]+a[0][i]*y [0];
}
}
}
}
}
}
for (i=max(32*it,0);
for (i=max(32*it,0);
for (i=max(32*it,0);
i}<==\operatorname{min}(32*it+31,N-1); i++)
i}<==\operatorname{min}(32*it+31,N-1); i++)
i}<==\operatorname{min}(32*it+31,N-1); i++)
for (}\textrm{j}=\textrm{max}(32*\textrm{jt},1)\mathrm{ ;
for (}\textrm{j}=\textrm{max}(32*\textrm{jt},1)\mathrm{ ;
for (}\textrm{j}=\textrm{max}(32*\textrm{jt},1)\mathrm{ ;
j}<==\operatorname{min}(32*\textrm{jt}+31,N-1);j++)
j}<==\operatorname{min}(32*\textrm{jt}+31,N-1);j++)
j}<==\operatorname{min}(32*\textrm{jt}+31,N-1);j++)
Q:x[i]=x[i]+a[j][i]*y[j];
Q:x[i]=x[i]+a[j][i]*y[j];
Q:x[i]=x[i]+a[j][i]*y[j];
}
}
}
}
}
}
}
}
}
}

```
```

}

```
```

}

```
```

(b) Tiled code

Polyhedral Model: Pros and Cons

- Cons:
- Efficiency: Compile-time efficiency, since integer programming is NP-complete
- Building polyhedrons in compile time is also memory consuming

References

- C. Bastoul. Improving Data Locality in Static Control Programs. PhD thesis, University Paris 6, Pierre et Marie Curie, France, Dec. 2004. (Recommended, easier to read)
- C. Bastoul. Code generation in the polyhedral model is easier than you think. In PACT'13 IEEE International Conference on Parallel Architecture and Compilation Techniques, pages 7-16, Sept. 2004.
- http://www.cse.ohio-state.edu/~pouchet/\#lectures (Strongly Recommended!)
- Paul Feautrier, Dataflow Analysis of Scalar Array References, International Journal of Parallel Programming, Vol 20, No.1, 1991
- K Trifunovic, A Cohen, D Edelsohn, L Feng, etc. GRAPHITE Two Years After: First Lessons Learned From Real-World Polyhedral Compilation. 2nd International Workshop on GCC Research Opportunities. 2010
- M Baskaran, J Ramanujam, P Sadayappan. Automatic C-to-CUDA code generation for affine programs. International Conference on Compiler Construction, 2010

Thanks!

