Loop Fusion
and Tiling

B629
11/17/2010

Temporal & Spatial Locality Recap I

Loop Fusion

o Consider following F?0 example:
A(1:N) = C(1:N) + D(1:N)
B(1:N) = C(1:N)

- D(1:N)

Loop Fusion

o Consider following F?0 example:
A(1:N) = C(1:N) + D(1:N)
B(1:N) = C(1:N) - D(1:N)

o Each statement uses identical sections of C
and D

Loop Fusion

o Consider following F?0 example:
A(1:N) = C(1:N) + D(1:N)
B(1:N) = C(1:N) - D(1:N)

o Each statement uses identical sections of C
and D

o What happens after scalarizatione

Loop Fusion

o What happens after scalarizatione

DO I

=1,

A(I)

ENDDO
DO I

ENDDO

=1,
B(I)

N

N

C(I) + D(I)

C(I) - D(I)

Loop Fusion

o What happens after scalarizatione

DOI =1, N
A(I) = C(I) + D(I)
ENDDO
DOI =1, N
B(I) = C(I) - D(I)
ENDDO

o No temporal locality if N is large!

Loop Fusion

o Fusing loops together will bring references
together, enabling reuse:

DOI =1, N
A(I)

C(I) + D(I)

B(I) = C(I) - D(I)
ENDDO

Loop Fusion)

o When is Loop Fusion legal?

Loop Fusion

o When is Loop Fusion legal?
o Definition:

o An loop-independent dependence between
statements in two different loops (i.e., from S1 to S2) is
fusion-preventing if fusing the two loops causes the
dependence to be carried by the combined loop in
the reverse direction (from S2 to S1).

Loop Fusion

o When is Loop Fusion legal?

o Definition:

o An loop-independent dependence between
statements in two different loops (i.e., from S1 to S2) is
fusion-preventing if fusing the two loops causes the
dependence to be carried by the combined loop in
the reverse direction (from S2 to S1).

o Can fuse two loops when no fusion-
preventing dependencies between them

Loop Fusion

o When is Loop Fusion legal?

o Definition:

o An loop-independent dependence between
statements in two different loops (i.e., from S1 to S2) is
fusion-preventing if fusing the two loops causes the
dependence to be carried by the combined loop in
the reverse direction (from S2 to S1).

o Can fuse two loops when no fusion-
preventing dependencies between them

o Also desirable to have same bounds

Loop Fusion

o A more complicated example:

DO J =1, N
DOI =1, M
A(I,J) = C(I,J) + D(I,J)
ENDDO
DOI =1, M
B(I,J) = A(I,J-1) - E(I,])
ENDDO

ENDDO

Loop Fusion :

o First, fuse loops:
DO J =1, N
DOI =1, M
A(I,J) = C(I,3) + D(I,J)
B(I,J) = A(I,J-1) - E(I,J)
ENDDO
ENDDO

Loop Fusion :

o First, fuse loops:
DO J =1, N
DOI =1, M
A(I,J) = C(I,3) + D(I,J)
B(I,J) = A(I,J-1) - E(I,J)
ENDDO
ENDDO

o Still no reuse if Mis large!

Loop Fusion

o First, fuse loops:
DO J =1, N
DOI =1, M

A(I,J) = C(I,]) + D(I,J)

B(I,J)
ENDDO
ENDDO

A(I,J-1) - E(I,3])

o Still no reuse if Mis large!
o Can we do bettere

Loop Fusion :

o Yes, by performing loop interchange:
DOI =1, M
DO J =1, N
A(I,J) = C(I,3) + D(I,J)
B(I,J) = A(I,J-1) - E(I,3J)
ENDDO
ENDDO

Loop Fusion

o Yes, by performing loop interchange:

DOI =1, M
DO J =1, N

A(I,3) = C(I,3) + D(I,3)
B(I,J) = A(I,J-1) - E(I,J)

ENDDO
ENDDO

o Still not optimal
o A(I,J]) used after A(I,J+1) defined
o Requires additional register

Loop Fusion

o No loop independent dependencies
o Can re-order statements in loop body:

DOI =1, M
DO J =1, N
B(I,J)
A(I,])
ENDDO
ENDDO

A(I,J-1) - E(I,3)
C(I,J) + D(I,J)

o Now A(I,3J) can be saved in register for use in
next iteration without additional register

Loop Fusion

o Fusion-preventing dependencies cause
problems, however:

DOI =1, M
DO J =1, N
S1 A(3,I) = B(J,I) + 1.0
ENDDO
DO J =1, N
S2 C(3,I) = A(I+1,I) + 2.0
ENDDO

ENDDO

Loop Fusion

o Fusion-preventing dependencies cause

problems, however:

DOI =1, M
DO J =1, N
s1 A(J,I) = B(J,I) + 1.0
ENDDO
DO J =1, N
S2 C(3,I) = A(J+1,I) + 2.0
ENDDO
ENDDO

o Cannot fuse inner loops directly, due to
backward carried anti-dependence

Loop Fusion)

o Solution@

Loop Fusion

o Solution?
o Loop alignment:
DO I =1, M
DO J = @, N-1
s1 A(J+1,I) = B(J+1,I) + 1.0
ENDDO
DO J =1, N
S2 C(3,I) = A(J+1,I) + 2.0
ENDDO

ENDDO

Loop Fusion

DOI =1, M
DO J = @, N-1

S1 A(J+1,I) = B(J+1,I) + 1.0
ENDDO
DO J =1, N
S2 C(3,I) = A(I+1,I) + 2.0
ENDDO
ENDDO

o But now iteration ranges are no longer
aligned

Loop Fusion

o However, can peel single iteration from start
of first loop and end of second:

DOI =1, M

So A(1,I) = B(1,I) + 1.0
DO J = 1, N-1

S1 A(J+1,I) = B(J+1,I) + 1.0
ENDDO
DO J = 1, N-1

S2 C(3,I) = A(J+1,I) + 2.0
ENDDO

S3 C(N,I) = A(N+1,I) + 2.0

ENDDO

Loop Fusion

o Now resulting loops can be fused:

DOI =1, M
so A(1,I) = B(1,I) + 1.0
DO J = 1, N-1
S1 A(J+1,I) = B(J+1,I) + 1.0
S2 C(J,I) = A(J+1,I) + 2.0
ENDDO
S3 C(N,I) = A(N+1,I) + 2.0

ENDDO

Loop Fusion

o Formalizing loop alignment

o Definition Given a dependence ¢ that has a source
in one loop and a sink in another loop, the alignment I
threshold of the dependence is defined as follows:

a. If the dependence would be loop independent after
the two loops were fused, the alignment threshold is 0.

b. If the dependence would be forward loop carried after
fusion of the loops, the alignment threshold is the
negative of the threshold of the resulting carried
dependence.

c. If the dependence is fusion-preventing—that is, the
dependence would be backward carried after fusion—
the alignment threshold is defined as the threshold of
the backward carried dependence.

Loop Fusion

o Alignment threshold example
DOI=1, N

S1 A(I) = B(I) + 1.0
ENDDO

1, N
= A(I+1) + A(I-1)

o 2 Forward dependencies from S1 1o S2

o If fused without concern for dependencies, they would
become:

o A forward carried dependence with threshold 1 from S1 to S2,
due toref A(I-1) in S2. Thus, corresponding dependence before
fusion has alignment threshold of -1.

o A backward carried anti-dependence from S2 to S1, involving
reference A(I+1) with threshold 1. Thus, corresponding
dependence before fusion has alignment threshold 1.

Loop Fusion

o Once alignment thresholds are known, alignment
is straightforward

o Simply align each loop by largest threshold

o Adjust iteration range of source by:

o Adding amount equal to alignment threshold to each
instance of loop index

o Subfracting amount equal to alignment threshold from
upper and lower bounds of iteration range

DO I =0, N-1
S1 A(I+1) = B(I+1) + 1.0
ENDDO

1, N
= A(I+1) + A(I-1)

Loop Fusion :

o Once loops are aligned, easy to peel
iterations that are not common to all loops

Loop Tiling

o Another technigque to improve temporal
locality

o Basic idea: strip-mine-and-inferchange
o First, strip-mine a loop into two loops:
o Inner loop that iterates within contiguous strips
o Quter loop that iterates strip-by-strip

o Then, inferchange by-strip loop to outside of
containing loops

Loop Tiling i

o Matrix multiply example:

DO J =1, N
DO K =1, N
DOI =1, N
C(I,J) = C(I,3) + A(I,K) * B(K,J)
ENDDO
ENDDO
ENDDO

Loop Tiling

o Maftrix multiply example:
o Strip-mine step
DO J =1, N
DO K = 1, N
DOI =1, N, S
DO ii = I, MIN(I+S-1,N)
C(ii,J) = C(ii,3) + A(ii,K) * B

(K,3)

ENDDO
ENDDO
ENDDO
ENDDO

Loop Tiling

o Maftrix multiply example:

o Interchange step
DOI =1, N, S
DO J =1, N
DO K = 1, N
DO ii = I, MIN(I+S-1,N)
C(ii,J) = C(ii,J) + A(ii,K) * B
(K,3)

ENDDO
ENDDO
ENDDO
ENDDO

Loop Tiling

o Sometimes, simple tiling is not enough:

DOI =1, N
DOJ =1, M

A(J+1) = (A(3) + A(J+1))/2

ENDDO
ENDDO

o Dependence pattern:

Loop Tiling

o Dependencies prevent loop interchange
after strip-mining

Loop Tiling

o Dependencies prevent loop interchange

after strip-mining

o Solution@?

Loop Tiling

o Dependencies prevent loop interchange

after strip-mining
o Solutione

o Skew inner loop, making loop interchange

possible:

DOI =1, N
DO j = I, M+I-1
A(j-I+2) = (A(F-I+1) + A(j-I+2))/2
ENDDO
ENDDO

Loop Tiling

o Now, strip-mine inner loop:

DOI =1, N
DO j = I, M+I-1, S
DO jj = j, MIN(j+S-1,M+I-1)
A(33-T+2) = (A(FF-I+1) + A(3j-I+2))/2
ENDDO
ENDDO
ENDDO

Loop Tiling

o Then interchange by-strip loop outwards:

DO j = 1, M+N-1, S
DO I = MAX(1,j-M+1), MIN(j,N)
DO jj = j, MIN(j+S-1,M+I-1)
A(JJ-I+2) = (A(JJ-I+1) + A(J]-I+2))/2
ENDDO
ENDDO
ENDDO

Loop Tiling

o Dependence pattern after skewing and filing:

Loop Tiling)

o A real matrix multiply in C++

