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Abstract

Telescoping MATLAB for DSP Applications

by

Arun Chauhan

This dissertation designs and implements a prototype matlab compiler for Dig-

ital Signal Processing (DSP) libraries, based on a novel approach called telescoping

languages for compiling high-level languages. The thesis of this work is that it is

possible to effectively and efficiently compile DSP libraries written in matlab us-

ing the telescoping languages approach that aims to automatically develop domain-

specific application development environments based on component libraries for high

performance computing. Initial studies on DSP applications demonstrated that the

approach was promising. During this study two new techniques, procedure strength

reduction and procedure vectorization, were developed.

In a joint work, a new approach to matlab type inference was developed. The

inferred type information can be used to specialize matlab libraries and generate

code in C or Fortran.

A new technique to engineer the optimizing compiler emerged during the course

of the compiler development. This technique allows the optimizations of interest to

be expressed in an XML-based language and the optimizer in the compiler to be a

light-weight specialization engine.

The type inference engine and type-based specialization were evaluated on a set

of DSP procedures that constitute an informal library used by researchers in the

Electrical and Computer Engineering department at Rice. The evaluation validated

the effectiveness of the library generation strategy driven by specialization.
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Chapter 1

Introduction

Perfection is achieved not when there is nothing more to be added but when

there is nothing left to take away.

–Antoine de Saint-Exupery

High performance computing is at the core of much scientific and technological re-

search. Unfortunately, the community of scientists and engineers has been beset with

the dual problem of a shortage of software skills and the difficulty of programming

increasingly complex computers for high performance. The problem has been exac-

erbated by the increasing number of applications demanding high performance and

rapidly changing computer architecture. The predominant practical solution so far

has been to spend a large amount of time in manually tuning the applications to

specific architecture, and then starting all over again when the hardware is updated.

This has made the activity of programming for high performance a highly specialized

one. As a consequence, either specialized programmers must be hired or the scien-

tists and engineers interested in the applications must divert themselves from their

primary job and spend time in tuning the applications. The former is an increasingly
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difficult proposition and the latter has the undesirable side-effect of slowing down the

progress of science and technology.

One possible solution is to make the end-users effective and efficient program-

mers. In order to achieve this not only must the users be able to write programs

effortlessly but those programs must also be able to deliver high enough performance

that the effort of having to tune the programs becomes redundant. Advanced compiler

technology is crucial to realizing this vision.

1.1 Motivation

Users of high performance computing are scientists and engineers who are analytically

oriented and well familiar with mathematics and the concept of programming. How-

ever, they seek easy to use high-level languages that can capture their algorithms or

simulations at a sufficiently abstract level. This is amply demonstrated by the huge

popularity of systems like matlab—MathWorks Inc.’s web-site states that there

were 500,000 licenses for matlab worldwide at the end of 2003. Other examples of

highly popular high-level languages include Perl, Tcl/Tk, Mathematica, Python, etc.

Some of the characteristic features of these languages are very high-level operations,

high level of expressiveness, and domain specific libraries. For example, matlab

has several “toolboxes” that are libraries for a variety of scientific and engineering

domains and constitute a big reason for matlab’s popularity.

Unfortunately, programming in matlab—in most such high-level languages—

comes at the price of performance, which might be measured in terms of space, time,

matlab is a registered trademark of MathWorks Inc.
Mathematica is a registered trademark of Wolfram Research
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or a combination of the two. Engineers typically use the matlab environment for

early development and debugging of their algorithms and then rewrite their programs

in more traditional languages, such as C or Fortran, in order to carry out realistic sim-

ulations or for production-level releases. Thus, attractive high-level languages exist

today. What is missing is key compiler technology that could bridge the performance

gap and make these high-level languages attractive beyond prototyping.

1.2 The Telescoping Languages Approach

Telescoping languages is a novel compilation strategy to automatically develop domain-

specific application development environments based on component libraries for high

performance computing [40]. In a nutshell, the strategy involves extensively pre-

compiling annotated libraries for a variety of calling contexts and selecting the best

pre-compiled version at the time of compiling the user programs, which are also re-

ferred to as the user scripts. The process of selecting the best variants for library

procedures is likely to be much faster than compilation of the libraries for the context

of the user scripts. If the speculative pre-compilation of libraries has been carried out

for carefully selected contexts the object program may be able to reap the benefits of

extensive optimizations to a large extent while allowing for rapid compilation of the

user programs.

A premise of the telescoping languages approach is that domain-specific appli-

cations written in high-level languages rely heavily upon libraries. Indeed, most

operations are high-level and directly translate to library calls. This means that any

compilation framework that attempts to generate high performance code must pay

attention to the libraries.
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Past approaches have been based on compiling whole programs, consisting of

the top-level user program along with all the library procedures called directly or

indirectly from the program. This approach suffers from two distinct disadvantages:

• the compilation time depends on the size of code within the complete call graph,

not just the user program; and

• no specialized knowledge about libraries is utilized by the compiler.

Compilation time can become a deterrent when the compiler spends an unexpect-

edly large amount of time compiling a small user script. An acceptable system should

follow the policy of no surprise—the compilation time must be proportional to the

size of the program. This suggests that libraries be compiled offline, ahead of script

compilation time.

Traditional approaches that compile libraries separately ignore any knowledge

about the libraries that the library writers usually have. This knowledge is extremely

difficult, if not impossible, to glean from the source code alone. For example, the

library writers have a very good idea of the context in which the library procedures

are going to be used. This could translate into constraints on input arguments leading

to increased opportunities for optimizations. In telescoping languages such properties

are captured through an annotation language.

The telescoping languages strategy envisions translating the programs written

in the high-level language into an intermediate lower-level language, such as C or

Fortran, and manipulating this intermediate representation for high-level transfor-

mations. Vendor compilers for the target platform can, then, be used to compile

the program into final object code. In this way, highly tuned vendor compilers can

be leveraged without having to redo the low-level compiler optimizations that are
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already handled very well by these compilers. The domain library could be written in

the high-level language or directly in the intermediate language. The language build-

ing compiler extensively analyzes the library based on library annotations. These

annotations could consist of constraints on the arguments or return values of library

procedures as well as relationships between them. In addition, the library writer may

also provide example calling sequences to indicate possible calling contexts.

Armed with this knowledge, the library compiler generates an extensive set of

highly optimized versions of the library. This activity can be time consuming, but

will be needed only once for a given platform. At this stage, other technologies that

optimize for specific platforms could also be employed, for example, ATLAS [58].

The process of deep library analysis can be seen as that of generating an enhanced

language on top of the base scripting language, since it has the effect of augmenting the

primitive operations in the language with the library procedures. Usually, compilers

have very good knowledge of primitive operations and their relative trade-offs, but

know little about libraries. The library compiler attempts to bridge this gap. This

is the reason it is referred to as the language building compiler. One could imagine

carrying out this process in a hierarchical manner, enhancing the language in multiple

steps. Hence, the term “telescoping languages”.

1.3 Hypothesis

This dissertation is based on the hypothesis that it is possible to develop compiler

techniques to generate high performance code for numerical applications written in

library-based high-level languages. The compilation strategy that enables this is:

effective in that it is able to generate high quality code that is capable of delivering
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performance close to what is achievable by an expert programmer in a low-level

language; and

efficient in that the strategy generates this high performance code rapidly, in time

that is proportional only to the size of the high-level user program.

The proposed strategy to achieve this is telescoping languages. The dissertation de-

fends the hypothesis about effectiveness by developing a compiler for libraries written

in matlab.

1.4 Organization

The rest of the dissertation elaborates on the telescoping languages approach and

presents a design of a library compiler. The library compiler is targeted towards

compiling DSP library procedures written in matlab. However, it is expected that

the design and research experience will carry forward to other domains as well.

The first step in compiling matlab is inferring variable types. It turns out that

specializing the emitted code based on variable types is important in obtaining high

performance. Furthermore, extracting accurate type information is crucial in order

to be able to generate “good quality” C or Fortran code that could be optimized by

the back-end compilers. Chapter 3 defines the type inference problem and describes a

new way to solve the problem that is particularly useful in the context of telescoping

languages.

There is a whole gamut of optimizations that is available to the compiler writer

as a result of the decades of research that has gone into compilation methods. It is

natural to ask: which of these program transformation techniques would be useful
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from the point of view of optimizing DSP libraries written in matlab. A study

undertaken to address this issue identified key optimization techniques that result

in high performance payoff when applied at the source-level. Chapter 4 describes

these techniques. Chapter 5 describes two novel inter-procedural techniques that

were developed during the course of this study of DSP applications that also pay off

handsomely in specializing DSP libraries.

Chapter 6 discusses a novel approach to engineering the telescoping compiler that

emerged in the course of implementing the library compiler. Specialization plays a

key role in the telescoping languages approach. It turns out that specialization can

also be used as a driver process to implement the optimizations that are found to

be relevant for compiling DSP libraries. The optimizations are specified in an XML-

based language and the optimizer in the library compiler is simply a light-weight

process that reads the external specifications and applies them to a given piece of

code. This approach results in substantial software engineering benefits.

Finally, Chapter 8 presents experimental results and Chapter 11 concludes that for

the DSP procedures that were studied, given the right forms of specialization trans-

formations and guiding annotations by the library writers, it is possible to achieve

substantially higher performance by using the telescoping strategy for library gen-

eration than the original code running under the matlab environment or näıvely

translated into C or Fortran.
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Chapter 2

Telescoping Languages

It was our belief that if Fortran, during its first months, were to translate

any reasonable ‘scientific’ source program into an object program only half

as fast as its hand-coded counterpart, then acceptance of our system would

be in serious danger. . . I believe that had we failed to produce efficient

programs, the widespread use of languages like Fortran would have been

seriously delayed.

–John Backus

There are two highly desirable features of a compiler that can play a critical role in

determining its acceptance—its efficiency and its effectiveness. An efficient compiler

performs its task quickly and an effective compiler produces object code that performs

well. These are opposing goals to implement in a practical compiler and the failure

to reach an engineering solution has been a major deterrent against the use of high-

level languages beyond prototyping. From an end-user’s perspective, an inefficient

compiler that takes hours to compile a small program is also ineffective.

Telescoping languages is a novel approach that promises to deliver efficiency and

effectiveness to compiling high-level languages. “High-level languages”, in this con-
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text, refers to domain-specific scripting languages (such as, matlab, R, Mathemat-

ica, etc.) that are particularly relevant to scientific computation. Such high-level

languages will be referred to as scripting languages henceforth.

2.1 Key Observation

A scripting language usually makes high-level operations available as primitive oper-

ations in the language. For example, in matlab, a user can write a * b to represent

multiplication of two matrices a and b. Such operations cannot be directly mapped

to any operations supported by the underlying hardware, except in the rare cases of

compiling a vector operation for vector machines. In most cases, these operations

are mapped to calls to procedures within the runtime library that supports the lan-

guage. If the script is interpreted, the operation triggers a call to the relevant library

procedure. If the script is compiled, the compiler generates a call to the appropriate

library procedure. From this perspective, it is the language runtime library that really

defines the language. Indeed, the library is the language! The operators are simply

syntactic sugar for ease of programming.

Additionally, a big attraction of the scripting languages is the availability of do-

main specific libraries. matlab has a number of available “toolboxes” for various

domains, such as, digital signal processing, fluid dynamics, communications, etc.

These toolboxes, or domain-specific libraries, can be viewed as enhancing the basic

runtime library that supports the primitive operations in matlab.

Libraries, therefore, are at the heart of any computation performed in a program

encoded in a scripting language. If a compiler has to optimize such a program it must

do a good job of optimizing libraries.
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The next question then, is: why are compilers not able to do a good job of compil-

ing libraries? The concept of libraries is an old one and there are numerous compilers

and software that support compilation, maintenance, and linking of libraries. Two

approaches have been used for handling libraries.

Libraries as Black Boxes

library compiler
library
binaries

user
program compiler object code

Figure 2.1: Libraries as black-boxes

An overwhelmingly large number of compilers and language systems follow the ap-

proach of treating libraries as black boxes. Figure 2.1 depicts this approach. A

library is independently compiled and converted into a binary form. The compiler

that compiles the end-user program determines which library procedures are used by

the user-program, directly or indirectly, and passes the object codes to the linker to

link all of those into the final executable code. In this process the end-user compiler

has no knowledge of the library beyond the interface it exports, and it does not care

about it. The library compiler and the end-user compiler do not cooperate in any

way except for adhering to the same interface conventions.
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This process is highly efficient. However, it discards all opportunities to optimize

libraries that arise when the calling context for a library procedure is known. For

example, if the compiler knew that a procedure was called with a certain argument

bound to a constant value, it could propagate that constant inter-procedurally. This

could expose new optimizing opportunities not only within that procedure but also

in the procedures called inside it through a cascading effect.

Whole-Program Compilation

Whole-program compilation is the idea that motivates the other end of the spectrum

of compilation approaches that some systems adopt. Figure 2.2 shows this approach.

The end-user compiler analyzes the input program to determine all the library pro-

cedures that are called by it. It then computes a transitive closure of the call graph

by repeatedly adding procedures that are called, directly or indirectly, within those

procedures. Once the set of all the procedures has been identified the compiler has

precise information of the calling contexts for each procedure and can perform an

extensive inter-procedural analysis. This approach is highly effective. However, it is

also highly inefficient.

The biggest problem with this approach is the time it takes to compile the user

program. It violates a central principle of good software design, which is the principle

of least surprise. The compilation time should be proportional to the length of the user

program—the user may be greatly surprised if the compiler churns away compiling a

hundred-line program for hours simply because the transitive closure of its call graph

is huge. There have been compilation systems that attempted to get around this

problem by maintaining program repositories, such as the Rn system at Rice [19].
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Figure 2.2: Whole-program compilation

Some of the ideas in the Rn system have motivated the telescoping languages strategy.

A second problem with the approach is that libraries have to be recompiled every

time a user program is compiled. This is an enormous duplication of effort. While

some of the effort may be mitigated using local caches, it is not entirely eliminated.

Finally, whole-program compilation requires the library sources to be available.

This is not always possible, especially when the libraries are carefully guarded intel-

lectual properties. Some efforts in the recent past have tried to address the issue of

optimizing whole programs that use libraries in the binary form through link-time

optimization [53, 8]. However, these solutions are likely to miss out high-level opti-

mization opportunities that are possible at the source-level.
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2.2 The Telescoping Solution

The telescoping languages approach builds on the past work in the compilers commu-

nity by utilizing several well-known concepts. The approach combines these concepts

in a unique way in order to compile high-level scripts for high-performance.

To support the telescoping languages approach, the libraries are analyzed ahead

of compiling the user scripts to ensure the efficiency of the script compilation process.

In order to retain the benefits of context dependent optimizations, the telescoping

languages strategy depends on two primary techniques:

1. hints from the library writers to inform the library compiler about likely con-

texts; and

2. extensive analysis of the library by the library compiler to generate specialized

variants that are highly optimized for likely contexts.

Invariably, library writers have an excellent idea of how the library procedures

are going to be used. This knowledge is unknown to the compiler at the time of

compiling the library since no calling context is available. One way for the library

writer to provide this information is through annotations. These annotations would

provide the compiler with the possible contexts.

The library compiler uses these annotations to speculate about the possible con-

texts and generates multiple variants, each optimized under the assumption of a

speculated context. The script compiler simply chooses the most optimized variant

for the actual context in the end-user script.

The annotations do not have to be static and library compilation does not need

to be a one-time affair, although it would likely be done in the background and much
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subroutine VMP (C, Z, ... , s)

library writer

“expect s to be mostly 1”

library compiler VMP step1 (C, Z, ... )

end user call VMP (C, Z, ... , 1)

script compiler call VMP step1 (C, Z, ... )

write libraries

write annotations

specialize code

write script

choose optimized variant

Figure 2.3: Entities involved in telescoping languages

less frequently than script compilation. Library writers may discover new knowledge

about the libraries with time. The compiler itself may discover new relevant calling

contexts or find some of the existing variants to be not very useful. As a result, the

library compiler will need to be run in a maintenance mode from time to time.

Figure 2.3 shows the four entities involved in the telescoping languages approach.

In the figure the library writer annotates a hypothetical procedure, VMP, to say that

a likely calling context for this procedure is one in which the last argument, s, is

bound to the constant 1. Based on this knowledge the library compiler generates

a specialized variant, VMP step1, that is valid for this specific context and may be

better optimized. Other annotations would trigger other specializations. Notice that

the library compiler would still need to generate a generic version to be used in case

none of the contexts corresponding to the specialized variants match. The script

compiler recognizes that there is a specialized variant for the call to VMP in the user

script and selects the (presumably) more optimized variant.

Notice that the end user writes the script exactly as she or he normally would.
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Figure 2.4: Library compilation as language generation

Only the library writer provides the annotations. In addition to, or in lieu of, pro-

viding explicit annotations the library writer could also provide example calling pro-

grams. In this case the library compiler can perform inter-procedural analysis to

characterize the calling contexts automatically and generate optimized variants of

the library procedure for those contexts.

While the scripting compiler needs to be efficient and perform in time proportional

to the size of the script, the same is not the case for library compiler—the subject

of this dissertation. In fact, the library compiler is expected to take a long time in

exploring various possible calling contexts for each library procedure and churning

out specialized variants based on its analysis and library-writers’ annotations. Since

library compilation is carried out out only rarely, long compilation time may be

acceptable. The process is akin to offline indexing by Internet search engines to

support rapid user queries—the telescoping languages approach involves extensive

offline library processing to support efficient and effective compilation of end-user

scripts.

Recall that for a scripting language the libraries practically define a language.
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Therefore, a somewhat more abstract view of telescoping languages is Figure 2.4.

Here the library compiler is shown as a “language builder”. Extensive analysis of

libraries can be seen as enhancing the knowledge of the scripting compiler. Typical

compilers have a very good knowledge of the relative trade-offs of primitive operations

in a language. Enhancing the knowledge of a script compiler about a library enables

the compiler to optimize the calls to procedures in that library the same way as it

optimizes primitive operations. Thus, it effectively compiles an enhanced language

and can be viewed as an “enhanced language compiler”.

Moreover, one can imagine writing more libraries in such an enhanced language

and passing them again through a similar process of extensive analysis. This can result

in a hierarchy of language levels, while affording the efficiency of the base language.

The hierarchical extensibility of languages, without sacrificing performance, is the

origin of the term “telescoping”.

2.3 Telescoping Languages in Practice

There are two main components of a telescoping languages system: the library

compiler and the script compiler. The library compiler interacts with the library

writer through a mechanism to direct the library specialization process and creates a

database of library variants. The script compiler consults this database in order to

optimize the end-user scripts. Several challenges arise.

1. identifying specialization opportunities

2. identifying, and discovering, useful optimizations

3. designing a mechanism for the library writer to provide hints to the library
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compiler

4. designing the database to maintain library variants

5. developing an algorithm to utilize the database to optimize scripts as well as

higher-level libraries

Each of these challenges pertains to a high-level issue that, in turn, involves solving

several lower-level problems.

Specialization Opportunities

Generating highly optimized variants specialized for specific contexts lies at the heart

of telescoping languages. Defining the opportunities for specializations and the kinds

of specializations to perform is one of the most important issues. The specialization

could be based on the input and output arguments of a procedure as well as on the

procedure’s speculated surrounding context.

Useful Optimizations

The pragmatic approach to implementing a useful telescoping languages system is to

identify well-known optimizations that are relevant to compiling scripting languages.

It would be desirable to focus on these set of optimizations first. Moreover, the object

code emitted by a telescoping compiler is envisioned to be a lower-level language, such

as C or Fortran, instead of binary. This allows the telescoping compiler to leverage

the highly tuned vendor compilers that are already available for these languages. This

also means that a telescoping compiler should focus on those high-level optimizations

that the lower-level compilers fail to perform.
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Hints by the Library Writer

The next challenge is to design a way to succinctly capture the hints by the library

writer while being expressive enough to describe all types of desired optimizations.

One highly desirable characteristic of such a mechanism is for it to be language

independent, or at least be applicable to a wide range of languages. Moreover, the

mechanism has to be simple enough that the library writers will actually use it. Such

a mechanism may be realized by way of an annotation language. The language needs

to be able to not only describe the call sites based on procedure arguments and return

values, but also the surrounding contexts.

There may be more than one way for the library writer to provide hints. For

example, in addition to providing annotations, the library writer may find it easier

to provide some example calling programs from which the compiler should be able to

extract the appropriate context information.

Creating the Variants Database

The task of utilizing the hints by the library writer is a challenge in itself. The process

of identifying the context specified by a library writer’s annotations or examples may

in itself be non-trivial. The database has to be designed in a way that makes lookup,

additions (and, perhaps, deletions) of variants easy. It may also be possible to combine

contexts together to generate variants for contexts that were not directly specified by

the library writer.
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Utilizing the Variants Database

Library procedures often call other lower-level libraries. Therefore, utilization of

variants takes place at the level of library compilation as well as script compilation.

There are likely to be multiple choices for optimizations at every stage. Choosing a

particular variant at one call-site may have a cascading effect on other statements. In

order to decide between these choices there needs to be a cost model that associates

costs with library calls and other operations (such as, array copying) that might

accompany them. However, the library compiler can spend much more time exploring

different options and performing a “global” optimization, while the script compiler has

a limited time in order to be efficient. The process of choosing the right combination

of variants poses a complex problem and is likely to involve different trade-offs for

script and library compilation.

The design of a variants database and a cost model to utilize that database is out

of the scope of this work. The next few chapters discuss solutions to some of the

other issues enumerated here.
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Chapter 3

Type-based Specialization

Not everything that can be counted counts, and not everything that counts

can be counted.

–Albert Einstein

Specialization is a key idea in the telescoping languages strategy. The first question

that arises, therefore, is: what kinds of specializations are important for libraries

written in scripting languages?

It turns out that one way to specialize libraries written in scripting languages

is based on the variable types. Most scripting languages are characterized by being

typeless or, at best, weakly typed. This affords ease of programming and is, in fact,

a major attraction of these languages. However, it also means more work for the

compiler if it has to do a good job of optimizing the scripts.

In matlab, every variable, by default, is an array. The array could consist of one

of the basic types, as shown in Figure 3.1. (A cell type is equivalent to a pointer type

that could contain any arbitrary type object.) matlab is also dynamically typed,
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array

char numeric cell structure java class function handle

user class

int8, uint8
int16, uint16
int32, uint32

single double

sparse

Figure 3.1: Data class hierarchy in matlab

which means that the actual type of a variable depends on the dynamic context at the

time the code involving that variable is executed. The operation that is performed on

a value can vary depending on its dynamic type. For example, in an expression a*b,

* stands for scalar multiplication, if a and b are scalars, and for matrix product, if

both a and b are two-dimensional arrays. This is how the matlab interpreter works.

The MathWorks mcc compiler that can emit C or C++, generates code that behaves

as the interpreted code would—each variable in the generated code has a generic type

and the actual type is inferred at runtime.

In an overwhelming majority of the cases the type of a variable can be completely

determined statically. In such cases, it is possible to eliminate the runtime overhead

of dynamic inference. This is a well known technique that has been used to optimize

high-level languages for years.

Users, who write scientific and engineering—numerical—libraries, utilize the dy-

namic typing properties of scripting languages to write code that works on a variety of

variable types, e.g., real, complex, integer, etc. When used, they are usually called

with arguments that all have a consistent set of basic types. For example, if a library
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procedure expects two matrix arguments, it might expect both arguments to be either

complex or real but never one to be real and the other to be complex [14, 13]. The

term type-correlation is used to describe this behavior of arguments—the arguments

are type-correlated if their types have a strong correlation.

Type-correlated arguments present an excellent opportunity to specialize libraries.

Instead of relying on dynamic disambiguation of types, specialized variants could be

generated for different combinations of argument types, called type configurations.

Not using the exact type can have drastic performance impact—using a complex

matrix product, when the values are real, may cause the computation to be several

times more expensive than it needs to be.

For DSP applications, typically, only one of the variants is what the user desires. It

is critical to be able to determine that variant to obtain the best possible performance.
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Figure 3.2: Importance of type-based specialization
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Figure 3.2 shows the impact of inferring the right types on the performance of a user-

level DSP library procedure, called jakes. The rightmost bars represent the running

time of the procedure with the correct types that were intended by the users for each

variable. The left two bars represent complete dynamic inference that is carried out

by the matlab code. The figure clearly demonstrates that specializing on the right

type configuration is very important.

3.1 The Type Inference Problem

Before specializing on type configurations, the key problem to solve is inferring vari-

able types. The existing type inference solutions, including those based on dataflow

analyses, determine the “best” possible type for each variable and are often used

to prove correctness of the input code. The model used in telescoping languages is

that the user develops and debugs the code in an existing interactive environment.

The telescoping compiler is then invoked on the debugged code. Therefore, the goal

of a telescoping compiler is not to prove correctness, but to determine all possible

configurations of variable types that preserve the validity of the code. Each such

configuration can lead to a specialized variant.

The types to be inferred depend on the original language (matlab) because the

meaning of the expressions is language dependent. The inference process also depends

on the target language because the set of inferred types must be supported in it. For

example, it may not be useful assigning a variable the logical type if that type is

indistinguishable from integers in the target language.

matlab expressions can be of one of the following kinds:

constants -1, 2.34, -434e-100, ’const string’, etc.
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identifiers x, y, some identifier, etc.

arrays [1,2], [1 2; 3 4], [[a b c]’ [2 3 4]’], etc.

array references x(5), y(10,8), z((a+b)*c,4,5), etc.

cells {’on’;’th’}, {4.3,{’on’,’tw’},[1; 3]}, etc.

cell references h{3}, h{4,5}, g{1,2}{3,4}(1), etc.

structure (indirect) x.y, z.a{1,2}{3}.b(4).d, etc.

The notion of type for the purposes of this work is a tuple <τ , δ, σ, ψ> associated

with each variable where the fields are defined as below. This definition is motivated

from that used by de Rose for the FALCON project [26].

τ is the intrinsic type, i.e., complex, real, integer, logical, char, struct, or cell.

δ is the dimensionality of the variable; it is 0 for a scalar, equals the number of

dimensions for a multi-dimensional array, and equals the number of fields for

struct.

σ is relevant only for an array and represents a tuple of size δ whose fields are the

sizes along all the dimensions.

ψ is relevant only for an array and represents the “structure”1 of an array, e.g.,

diagonal, triangular, sparse, etc.

This notion of type is oriented towards matlab-like languages with numerical ap-

plications in mind where arrays play a primary role in computations and with C

1Some researchers prefer the term “pattern” or “layout”.
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or Fortran as the target language. Newer versions of matlab also support object

oriented features that are considered out of the scope of this work—most DSP appli-

cations do not use those features. Handling of struct2 and cell-arrays is described

later.

There are two ways to infer the type of a variable from its use:

1. Infer the type of an expression from the types of its constituents. If this ex-

pression is assigned to a variable, then the assigned variable gets the inferred

type.

2. Infer the type of an expression from its use. For example, if a function or

operator argument has a known type then any variable or expression passed as

the actual argument must have that type (or a type that can be cast to it). The

constituent sub-expressions or variables can be typed if the expression type is

known.

The first mechanism involves forward propagation of properties and the second would

require backward propagation.

While Padua and de Rose did not find backward propagation very useful [25],

inter-procedural context required for processing telescoping languages can change the

situation. In particular, the type of the value(s) returned by a procedure may be

only partially known, especially if the input types are also only partially known,

since matlab procedures and operators are heavily overloaded. This becomes a

common case when compiling a procedure whose argument types are unknown so

that the values defined in terms of the arguments have only partially known types.

As a result, subsequent uses of these values must be examined to narrow down their

2matlab structure types will always be referred to as struct to avoid confusion with ψ.
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function [ ... ] = codesdhd ( ... )

det mf = [];

out mf = [];

[mfout] = match cor ( ... );

m = coh cor ( ... );

dv = mfout .* conj(m);

dvc = m .* conj(m);

out mf = zeros(1, N);

chan c = zeros(1, N);

tot div = Tm * (2*Bd - 1);

for k = 1:tot div

out mf = out mf + dv(k:tot div:N*tot div);

chan c = chan c + dvc(k:tot div:N*tot div);

end

...

Figure 3.3: Value of backward propagation

types. Propagating the types backwards have a cascading effect of narrowing down

the types of other related values. A similar imprecision that must be resolved by

backward propagation of types occurs when some of the procedures being used have

unknown type signatures.

To demonstrate the value of backward flow of information consider the DSP code

in Figure 3.3. The ellipses (. . . ) here are shorthand for code that has been omitted

for clarity, rather than matlab continuation. In this code, suppose that nothing was

known about the procedures match cor and coh cor. Then, the initialization of the

variables out mf and chan c proves that the two variables are vectors of size N. The

variables dv and dvc are found to be vectors from their uses in indexed expressions in

the loop. Moreover, since the operands to a vector addition must match in size, these

two variables must be vectors of size at least N*tot div. From here, this information

can be propagated backward to the statements that initialized dv and dvc to infer that
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m and mfout are also vectors of size at least N*tot div. This follows from the fact that

operands to element-wise operations must be of matching sizes. Knowing the output

types of match cor and coh cor could potentially lead to selecting specialized versions

of these procedures for linking. This example illustrating the utility of backward flow

of information is, by no means, an isolated one.

The rest of this chapter discusses a solution to the type inference problem in

the context of telescoping languages that was developed in joint work with Cheryl

McCosh [13]. The details of the static inference component appear in McCosh’s

Master’s thesis [45].

3.2 Static Inference

Static type inference relies on the observation that a statement involving one or

more variables imposes certain constraints on the types that the variables can have.

Inferring the types of variables can be seen as determining an assignment of types

to variables such that all the constraints imposed by all the statements are satisfied.

The most natural way to express such constraints is using predicates involving type

variables over allowable types and equality to relate their values. This can be done

for all the four components of the type tuple <τ , δ, σ, ψ>. For example, if τ v is the

type variable that denotes the intrinsic type of a variable v, then for a statement,

A = B + C a constraint could be written for the intrinsic types of A, B, and C:

(((τA = integer) ∧ (τB = integer) ∧ (τC = integer)) ∨

((τA = real) ∧ (τB = integer) ∧ (τC = integer)) ∨

((τA = complex) ∧ (τB = integer) ∧ (τC = integer)) ∨ . . . )
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complex
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Figure 3.4: Partial ordering for in-
trinsic type inference

Writing such constraints in terms of

only equality and type constants (i.e.,

integer, real, complex, etc.) is pos-

sible, but quickly gets out of hand for

overloaded operators like “+”. Adding

some more relations to this propositional

language could simplify the expressions

considerably. Suppose that a partial or-

der is defined over the intrinsic types, as

shown in Figure 3.4. A type a is lower

than b (denoted by a ≺ b) if an instance

of b can be replaced by an instance of a

without affecting the correctness of the

computation. For example, a variable of type integer can be replaced by a variable

of type real3. With respect to such a partial ordering min and max operations can

be defined in the obvious manner and the constraints for the “+” operator can be

simplified to τA = min(τB, τC).

In general, such constraints can be written for any arbitrary matlab operator or

function using predicates connected with Boolean operations. To precisely capture

the intrinsic type characteristics of an arbitrary program would require a language

powerful enough to model matlab (first or higher order logic, for example), which

would make type inference extremely difficult. It could be argued, based on struc-

tural induction on matlab programming constructs, that a simple language based

3matlab does not perform integer division with the overloaded divide operator. However, in a
more general context where dynamic dispatch is possible, a more careful definition of “≺” would be
needed.
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on Boolean predicates and operations (i.e., propositional logic) is sufficient to capture

most common cases accurately and provides an acceptable approximation for others.

Then, any algorithm that infers intrinsic types correctly must find an assignment of

values to the type variables such that all the constraints for all the program state-

ments are satisfied. Similar constraints can be written for dimensionality, size, and

structure.

NP-completeness of Type Inference for Straight-line Code

In the presence of arbitrary operators with arbitrary propositional constraints the

problem of determining types that satisfy all the constraints is undecidable, in general

(halting problem can be easily reduced to it). Even in the more restricted case of

straight line code (that has no branches) it is a hard problem. The following theorem

states this for array dimensionality.

Theorem 3.2.1 Inferring feasible (valid) dimensionality combinations for variables

in a program without branches is NP-complete.4

In order to prove the theorem the problem must be in NP as well as NP-hard. The

problem can be solved in polynomial time by a non-deterministic Turing Machine by

simply guessing feasible dimensionalities for the variables and verifying that the con-

straints imposed by all the statements in the program are satisfied. The verification

is easily done in polynomial time for linear code. Thus, the problem is in NP .

In order to complete the proof, 3-CNF SAT is reduced to this problem. 3-CNF

SAT is the problem of determining whether a satisfying truth assignment to variables

4NP-completeness is used here in the sense of algebraic complexity, not bit complexity.
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exists for a Boolean expression in conjunctive normal form where each clause consists

of exactly three literals. The problem statement in 3-CNF is of the form

∧

xi1 ∨ xi2 ∨ xi3

where xi denotes a literal that could be a variable v or its negation v̄.

Given a program statement f(A,B,C) there are some constraints imposed on the

dimensionalities of A, B, and C depending on the function f. For example, the function

f might impose the constraint that if A and B are both two-dimensional then C must

also have two dimensions. If the dimensionality of a variable V is denoted by δV then

this translates to the constraint:

((δA = 2) ∧ (δB = 2)) ⇒ (δC = 2)

Using the identity α ⇒ β ≡ ¬α ∨ β and de Morgan’s law, this reduces to

¬(δA = 2) ∨ ¬(δB = 2) ∨ (δC = 2)

Also, notice that to respect the constraints imposed by a sequence of such program

statements all of these constraints must be satisfied. In other words, the constraints

must be composed by conjunction.

Suppose that each variable in the program can only have a dimensionality of 0

or 2 (a dimensionality of 0 means the variable is scalar). In that case, the expres-

sion ¬(δv = 2) is equivalent to (δv = 0). For every 3-CNF SAT variable v define a

program variable v. The variable v is assigned true iff v has two dimensions. Thus,

v corresponds to (δv = 2) and v̄ corresponds to ¬(δv = 2) or (δv = 0). In order

to reduce an instance of 3-CNF SAT into an instance of the problem of inferring

feasible dimensionality combinations a program is constructed that consists of a se-

quence of statements. Each statement corresponds to a clause in 3-CNF SAT and
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operation rank constraint clause
f1(a,b,c) ((δa = 0) ∧ (δb = 0)) ⇒ (δc = 2) a ∨ b ∨ c
f2(a,b,c) ((δa = 2) ∧ (δb = 0)) ⇒ (δc = 2) ā ∨ b ∨ c
f3(a,b,c) ((δa = 0) ∧ (δb = 2)) ⇒ (δc = 2) a ∨ b̄ ∨ c
f4(a,b,c) ((δa = 2) ∧ (δb = 2)) ⇒ (δc = 2) ā ∨ b̄ ∨ c
f5(a,b,c) ((δa = 0) ∧ (δb = 0)) ⇒ (δc = 0) a ∨ b ∨ c̄
f6(a,b,c) ((δa = 2) ∧ (δb = 0)) ⇒ (δc = 0) ā ∨ b ∨ c̄
f7(a,b,c) ((δa = 0) ∧ (δb = 2)) ⇒ (δc = 0) a ∨ b̄ ∨ c̄
f8(a,b,c) ((δa = 2) ∧ (δb = 2)) ⇒ (δc = 0) ā ∨ b̄ ∨ c̄

Figure 3.5: Operations, rank constraints and the corresponding 3-CNF
clauses

imposes a constraint that corresponds exactly to the clause. Figure 5 defines eight

functions and the constraints imposed by each of the functions that correspond to

the 3-CNF formula shown in the rightmost column. In a real program these functions

could correspond to library procedures that impose the indicated constraints on their

arguments.

For each 3-CNF clause of the form x1∨x2∨x3 the program has a statement of the

form fi(x1,x2,x3) where the function fi is chosen according the table in Figure 5.

This construction is polynomial time and log space and the following lemma, which

is stated without proof, establishes its correctness:

Lemma 3.2.1 A given instance of 3-CNF SAT has a satisfying truth assignment iff

the variables in the corresponding program have a feasible combination of dimension-

alities.

The proof of the lemma follows directly from the definitions and the construction

of the 3-CNF formula. This completes the reduction and hence, the proof of the

theorem. 2

Theorem 3.2.1 has another implication. Proving a program correct is undecidable

in general. However, if the program has no branches then the problem might seem
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“easy”. The theorem indicates that if array dimensions must be inferred in the

absence of any other information then even this can be a hard problem, since for

the program to be correct there must be at least one feasible combination of variable

dimensionalities.

Corollary 3.2.2 Proving correctness of linear code (without branches) in the pres-

ence of arbitrary operators is NP-hard.

A similar result holds for intrinsic types and array structure.

Corollary 3.2.3 Inferring feasible (valid) intrinsic types or array structure for vari-

ables in a program without branches is NP-complete.

Efficient Solution Under Assumptions

Fortunately, certain simplifying assumptions can be made for most practical pro-

grams. In particular, assuming a small number of arguments to functions and assum-

ing that everything is defined in terms of a small number of variables (including the

input arguments) leads to a polynomial time algorithm.

Each constraint is a disjunction of one or more clauses. If p and q are two such

clauses out of constraints Ci and Cj then p is said to be compatible with q iff there

is a value assignment to the constraint variables such that both the clauses can be

satisfied. For example, the clauses δx = 0 and δx = 2 are not compatible, whereas

the clauses δx = 0 and δy = 2 are compatible. If constraints are carefully defined

then clauses in a single constraint are always mutually incompatible, i.e., they are

mutually exclusive.

Consider an undirected graph, G = (E, V ), where E is the set of edges and V is

the set of vertices. For each clause c in each constraint in the program add a vertex
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vc to G. Thus, there are as many vertices in the graph as the disjunctive clauses in

all the constraints in the program. If vi and vj ∈ V , then the edge (vi, vj) ∈ E iff

clause(vi) is compatible with clause(vj). A clique in G exactly defines a configuration

of types that would preserve the meaning of the program. Furthermore, the number

of cliques is exactly the total number of valid type configurations for the program.

It turns out that under the assumptions of program correctness along with the

assumption of a bounded number of arguments to each procedure an algorithm that

constructs cliques incrementally is efficient [45]. Once all the cliques have been found

the set of constraints induced by each clique can be solved to determine the exact

value for each variable type. This approach is used to solve for each of the four

components in the type tuple <τ, δ, σ, ψ> individually.

MATLAB struct Type

matlab supports C-like structures, i.e., struct. A struct can have multiple named

fields where each field may in turn may be of any arbitrary type. A variable can be a

struct or a scalar or an array. Scalars and arrays are handled by the type inference

mechanism described so far. In order to handle struct variables the parser builds an

internal representation of the struct as a tree and makes appropriate entries in the

symbol table. Figure 3.6 shows the tree representation for an example struct. In this

way, all the internal nodes are resolved during parsing. Each leaf node is uniquely

named by the path to it from the root of the struct tree and handled exactly as

any other program variable. With this small change, matlab struct types can be

handled without any further modifications to the existing type inference approach.
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S {
F1

F2 {
F21 {

F211

F212

F213

}
F22

}
F3

}

S

F1 F2 F3

F21 F22

F211 F212 F213

⇒

Figure 3.6: Tree representation of matlab struct

Cell-arrays

Cell-arrays in matlab are arrays whose elements can be of any arbitrary type. These

arrays are dereferenced using braces ({}), thus clearly distinguished from the regular

arrays. However, the type of each element of a cell-array needs to be inferred sepa-

rately as it is unrelated to other elements. Since cell-arrays can be manipulated just

like regular arrays, type-inference needs to deal with the added complexity of infer-

ring the type of each individual element of the array without necessarily knowing the

size of the array at compile time. Fortunately, DSP codes rarely use cell-arrays that

are, therefore, ignored for the purposes of this dissertation. Any inference mechanism

that attempts to infer cell-array types is likely to need a dynamic inference strategy

as a backup.
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3.3 Dynamic Inference

Even without cell-arrays there are frequently occurring cases in DSP code that

are not handled by the static analysis outlined in the previous section. The static

analysis does a good job of computing all possible type configurations and taking care

of forward and backward propagation of types. However, it has certain limitations.

1. Constraints-based static analysis does not handle array sizes that are defined

by indexed array expressions, e.g., by changing the size of an array by indexing

past its current extent along any dimension.

2. The strategy in the static-analysis phase to handle control join-points (the φ-

functions) for intrinsic types and structures is to specialize. For example, in

x3 = φ(x1, x2), if x1 had the intrinsic type real and x2 had the intrinsic type

complex then the analysis would double the number of type configurations; x3

would be real in one half and complex in the other half. This has the potential

of creating a combinatorial explosion of variants.

3. The control join-points are ignored for determining array dimensionality and

size. This can lead to a failure in determining an array size statically.

4. Some constraints may contain symbolic expressions involving program variables

whose values are not known at compile time.

Dynamic inference of types can complement the static analysis to ameliorate these

limitations. It should be emphasized that this is different from disambiguating types

dynamically the way matlab interpreter does. The dynamic strategy described here

carries out the inference at a much coarser level—sometimes only once every time
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the procedure is called, or even once per call-site. Therefore, it has a much smaller

overhead.

Slice-hoisting for Size Inference

Slice-hoisting is a novel technique that enables size inference for the three cases that

are not handled by the static analysis:

• array sizes changing due to index expressions,

• array sizes determined by control join-points, and

• array sizes involving symbolic values not known at compile time.

for n=1:sin num

vcos = [];

for i = 1:sin num

vcos = [vcos cos(n*w est(i))];

end

mcos = [mcos; vcos];

end

Figure 3.7: Arrays can be resized in

loops

An example that illustrates the situa-

tion that the static analysis fails to han-

dle is shown in Figure 3.7. In this snippet

from DSP code arrays vcos and mcos in-

crease in size around loops. There is no

straightforward way to write constraints

within the constraints-based approach of

Section 3.2 that would accurately cap-

ture the sizes of vcos and mcos. The

problem here is that the static analysis ignores φ-functions, while they are crucial

in this case to determine the sizes. Past studies have shown that array-resizing is

an extremely expensive operation and pre-allocating arrays can lead to substantial

performance gains [11, 46]. Therefore, even if the array size has to be computed at
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runtime, computing it once at the beginning of the scope where the array is live and

allocating the entire array once will be profitable.

Another way to resize an array in matlab is to index past its current maximum

index. The keyword end refers to the last element of an array and indexing past it

automatically increases the array size. A hypothetical code sequence shown below

resizes the array A several times using this method.

A = zeros(1,N);

A(end+1) = x;

for i = 1:2*N

A(i) = sqrt(i);

end

...

A(3, :) = [1:2*N];

...

A(:,:,2) = zeros(3, 2*N);

...

This type of code occurs very often in DSP programs. Notice that the array

dimensionality can also be increased by this method, but it is still easily inferred.

However, the propositional constraint language used for the static analysis does not

allow writing array sizes that change. The only way to handle this within that

framework is to rename the array every time there is an assignment to any of its

elements, and then later perform a merge before emitting code, to minimize array

copying. If an array cannot be merged, then a copy must be inserted. This is the

traditional approach to handling arrays in doing SSA renaming [23]. Array SSA could

be useful in this approach [41].

Finally, if the value of N is not known until run time, such as when it is computed

from other unknown symbolic values, then the final expression for the size of A will
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have symbolic values. Further processing would be needed before this symbolic value

could be used to declare A.

Slice-hoisting handles these cases very simply through code transformations. It

can be easily used in conjunction with the static analysis to handle only those arrays

whose sizes the static analysis fails to infer.

The basic idea behind slice-hoisting is to identify the slice of computation that

participates in computing the size of an array and hoist the slice to before the first

use of the array [12]. It suffices to know the size of an array before its first use even if

the size cannot be completely computed statically. Once the size is known the array

can be allocated either statically, if the size can be computed at compile time, or

dynamically. An array size could be determined in one of the following two ways:

• A direct definition defines a new array in terms of the right hand side. Since

everything about the right hand side must be known at this statement, the size

of the array can be computed in terms of the sizes of the right hand side in

most cases.

• For an indexed expression on the left hand side, that indexes past the current

size, a maximum of the current size and the indices must be computed.

The second case requires more elaboration. The size of a variable v is denoted

by σv. Each σ value is a tuple <t1, t2, . . . tδ>, where δ is the dimensionality of the

variable and ti denotes the extent of v along the dimension i. The goal of the exercise

is to compute σ values for each variable and hoist the computation involved in doing

that to before the first use of the variable. This process involves the following four

steps:

1. transform the given code into SSA form,
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A =

zeros(1,N);

y = ...

A(y) = ...

x = ...

A(x) = ...

A1 = zeros(1, N);

σ
A1

1
= <N>

y1 = ...

A1(y) = ...

σ
A1

2
= max(σ

A1

1
,<y>)

x1 = ...

A1(x1) = ...

σ
A1

3
= max(σ

A1

2
,<x>)

A1 = zeros(1, N);

. σ
A1

1
= <N>

. y1 = ...

A1(y) = ...

. σ
A1

2
= max(σ

A1

1
,<y>)

. x1 = ...

A1(x1) = ...

. σ
A1

3
= max(σ

A1

2
,<x>)

. σ
A1

1
= <N>

. y1 = ...

. σ
A1

2
= max(σ

A1

1
,<y>)

. x1 = ...

. σ
A1

3
= max(σ

A1

2
,<x>)

allocate(A, σ
A1

3
);

A1 = zeros(1, N);

A1(y) = ...

A1(x1) = ...

(a) Simple case.

y = ...

A(y) = ...

c = ...

if (c)

...

B = [ ... ];

x = sum(B);

else

...

x = 10;

end

A(x) = ...

y1 = ...

A1(y1) = ...

σ
A1

1
= <y1>

c1 = ...

if (c1)

...

B1 = [ ... ];

x1 = sum(B1);

else

...

x2 = 10;

end

x3 = φ(x1, x2)

A1(x3) = ...

σ
A1

2
= max(σ

A1

1
,<x3>)

. y1 = ...

A1(y1) = ...

. σ
A1

1
= <y1>

. c1 = ...

. if (c1)

...

. B1 = [ ... ];

. x1 = sum(B1);

. else

...

. x2 = 10;

. end

. x3 = φ(x1, x2)

A1(x3) = ...

. σ
A1

2
= max(σ

A1

1
,<x3>)

. y1 = ...

. σ
A1

1
= <y1>

. c1 = ...

. if (c1)

. B1 = [ ... ];

. x1 = sum(B1);

. else

. x2 = 10;

. end

. x3 = φ(x1, x2)

. σ
A1

2
= max(σ

A1

1
,<x3>)

allocate(A1, σ
A1

2
);

A1(y1) = ...

if (c1)

...

else

...

end

A1(x3) = ...

(b) Case of a branch.

x = ...

A(x) = ...

for i = 1:N

...

A = [A f(i)];

end

x1 = ...

A1(x1) = ...

σ
A1

1
= <x1>

for i1 = 1:N

...

σ
A1

2
= φ(σ

A1

1
,σ

A1

3
)

A1 = [A1 f(i1)];

σ
A1

3
= σ

A1

2
+<1>

end

. x1 = ...

A1(x1) = ...

. σ
A1

1
= <x1>

. for i1 = 1:N

...

. σ
A1

2
= φ(σ

A1

1
,σ

A1

3
)

A1 = [A1 f(i1)];

. σ
A1

3
= σ

A1

2
+<1>

. end

. x1 = ...

. σ
A1

1
= <x1>

. for i1 = 1:N

. σ
A1

2
= φ(σ

A1

1
,σ

A1

3
)

. σ
A1

3
= σ

A1

2
+<1>

. end

allocate(A1, σ
A1

3
)

A1(x1) = ...

for i1 = 1:N

...

A1 = [A1 f(i1)];

end

Initial code SSA, σ statements Identifying the slice Hoisting the slice

(c) Case of a loop.

Figure 3.8: Slice-hoisting
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2. insert σ statements and transform these into SSA as well,

3. identify the slice involved in computing the σ values, and

4. hoist the slice.

These steps are illustrated with three examples in Figure 3.8. Steps 1 and 2 have been

combined in the figure for clarity. Figure 3.8(a) demonstrates the idea with a simple

straight line code. Figure 3.8(b) shows how a branch can be handled. Notice that

some of the code inside the branch is part of the slice that computes the size of A.

Therefore, the branch must be split into two while making sure that the conditional

c is not recomputed, especially if it can have side-effects. Finally, Figure 3.8(c)

illustrates the use of slice-hoisting for a loop. In this case, again, the loop needs to be

split. The loop that is hoisted is very simple and induction variable analysis should be

able to detect that σA is an auxiliary loop induction variable, thereby eliminating the

loop. If this is not possible in certain cases, then the split loop reduces to inspector-

executor strategy. In this scheme, concatenation to an array, or assignment to an

element of the array, does not create a new SSA name.

This approach has several advantages:

• It is very simple and fast, requiring only basic SSA analysis. Extraneous φ-

functions can result in extra (unused) code but never affect the accuracy of the

result.

• It can leverage more advanced analyses, if available. For example, advanced

dependence analysis can enable slice-hoisting in cases where simple SSA based

analysis might fail. Similarly, symbolic analysis can complement the approach

by simplifying the hoisted slice.
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A(1) = ...

...

x = f(A);

A(x) = ...

...

A1(1) = ...

σ
A1

1
= <1>

...

x1 = f(A1);

A1(x1) = ...

σ
A1

2
= max(σ

A1

1
, <1>)

...

A1(1) = ...

. σ
A1

1
= <1>

...

. x1 = f(A1);

A1(x1) = ...

. σ
A1

2
= max(σ

A1

1
, <1>)

...

A1(1) = ...

. σ
A1

1
= <1>

...

. x1 = f(A1);

A1(x1) = ...

. σ
A1

2
= max(σ

A1

1
, <1>)

...

Initial code SSA, σ statements Identifying the slice Dependence blocks hoisting

Figure 3.9: Dependences can cause slice-hoisting to fail

• Other compiler optimization phases—constant propagation, auxiliary induction

variable analysis, invariant code motion, common subexpression elimination—

all benefit slice-hoisting without having to modify them in any way.

• It subsumes the inspector-executor style.

• The approach works very well with, and benefits from, the telescoping lan-

guages framework. In particular, procedure strength reduction and procedure

vectorization5 can remove certain dependences making it easier to hoist slices.

• Most common cases can be handled without any complicated analysis.

In some cases it may not be possible to hoist the slice before the first use of the

array. Figure 3.9 shows an example where a dependence prevents the identified slice

from being hoisted before the array’s first use. Such cases are likely to occur infre-

quently. Moreover, a more refined dependence analysis, or procedure specialization

(such as procedure strength reduction) can cause such dependences to disappear.

When the slice cannot be hoisted the compiler must emit code to resize the array

dynamically.

5Described in Chapter 5.
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if (c1)

% x is real along this branch

x1 = [1.0 : 0.1 : 100.0];

else

% x is complex

x2 = [1.0 : 0.1 : 100.0] + sqrt(-1);

end

x3 = φ(x1, x2);

...

if (c2)

% y is real along this branch

y1 = 1::0.1:10;

else

% y is complex

y2 = 1:0.1:10 + sqrt(-1);

end

y3 = φ(y1, y2);

...

Figure 3.10: Potential explosion of the number of variants

When slice-hoisting is applied to compute an array size it may be necessary to

insert code to keep track of the actual current size of the array, which would be

used in order to preserve the semantics of any operations on the array in the original

program.

Controlling the Number of Variants

Creating a new variant at each φ-function for intrinsic type and structure can quickly

explode the number of variants in certain cases. Consider the example in Figure 3.10

where SSA renaming has already been carried out. Since conditions c1 and c2 are

independent of each other the number of variants gets multiplied by four due to the

two φ-functions. Similar combinatorial explosion can occur for array structure. What

is more is that the two get multiplied together.
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It may be worth performing a small check for the intrinsic or structure type at

runtime. At the control-flow join point the φ-function is materialized into a copy

operation. In the example of Figure 3.10 two variables will be defined, one assuming

that x3 is real and other assuming that it is complex. The φ-function will be replaced

by a copy operation within each branch. This results in savings on computations

performed on x within the “real” branch. Alternatively, the φ-function could be

materialized into maintaining a shadow variable for the intrinsic or structure type of

x3 so that its uses may be guarded by checking its dynamic type. In both cases the

number of variants is checked at the cost of runtime overheads.

3.4 Comparison with Dataflow Analysis

The strategy presented in this chapter is very different from the dataflow analysis

that has traditionally been used to carry out type inference [2]. In particular, the

FALCON system uses a dataflow analysis technique to infer matlab types [26, 25].

Such dataflow techniques rely on a type lattice over which the dataflow problem is

framed. The solution consists of a unique type for each program variable.

For the purposes of telescoping languages, this is inadequate. Since multiple con-

figurations of types can be valid—indeed, intended—all those configurations need to

be detected. As seen earlier in Figure 3.2, this is critical for achieving good perfor-

mance. Moreover, this needs to be done speculatively without the calling contexts

necessarily being available.

Dataflow frameworks need to be monotonic over lattices with finite chains for

the simple iterative solvers to terminate. Backward propagation, necessary for inter-

procedural analysis, violates monotonicity, thereby rendering the iterative solvers
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unusable in their raw form. In the case of size inference, the lattice also has infinite

chains.

The type inference approach based on annotations and constraints, combined with

slice-hoisting, offers other unique advantages as well over techniques based on dataflow

analysis that are particularly useful in the telescoping languages context.

Enhanced Intrinsic and Structure Types

A consequence of the lattice for intrinsic types (Figure 3.4) is that a real variable can

be lowered to the complex type due to the imprecision of the dataflow analysis. Such

an imprecision can be expected because of the inherent approximation that dataflow

analysis entails with respect to control flow. This can have serious consequences for

the performance of the code.

if (some condition)

% x is real along this branch

x = [1.0:0.1:100.0];

else

% x is complex

x = [1.0:0.1:100.0] + sqrt(-1);

end

...

y = f(x);

⇒

if (some condition)

% x is real along this branch

x = [1.0:0.1:100.0];

y = f real arg(x);

else

% x is complex

x = [1.0:0.1:100.0] + sqrt(-1);

y = f complex arg(x);

end

...

Figure 3.11: Case for enhanced intrinsic types

The left side of Figure 3.11 shows an example where the variable x is real along

one branch of the conditional and complex along the other. In addition to the im-

precision mentioned above this example illustrates another situation that can arise

in such cases. In the context of telescoping languages, function calls are likely to

have specialized variants. Suppose that the function f was specialized for real and
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complex types of its argument. Then, it might be desirable to transform the code to

that shown on the right.

In order to detect such an opportunity the intrinsic type of x will need to be

assigned out of an enhanced set of types—one in which variables can have union

types. Therefore, the SSA renamed variable for x will have the type corresponding to

real ∪ complex at the end of the conditional statement. Such union types are very

easy to implement in the intrinsic type inference framework of Section 3.2. This would

require an additional constraint for each φ function such that the intrinsic type of the

left hand side is the union of its arguments. In addition, the rules of compatibility

change slightly, but everything else remains exactly as before. Whenever a variable

has a type that is a union of multiple intrinsic types there is a choice between either

generating multiple variants for each of those types or emitting code to do dynamic

inference. An enhanced lattice of intrinsic types also exposes the optimizations such

as those shown in Figure 3.11. A similar argument can be made for an enhanced

lattice for array structure.

Size Inference in the Dataflow World

Size inference as a dataflow problem induces the lattice shown in Figure 3.12. It

looks similar to the constant propagation lattice with the important difference that

the elements are also linked horizontally. This gives rise to infinite chains leading to

potential non-termination of a simple iterative dataflow solver. An example where

the lattice is traversed along the horizontal chain by an iterative solver is when the

size of a variable changes in each iteration.

One way to get around this problem is to use the basic dataflow formulation and
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Figure 3.12: Infinite lattice for array size inference

arbitrarily truncate the iterative algorithm in order to ensure termination. When the

dataflow solver fails to arrive at a fixed point the size must be inferred dynamically

at runtime. This approach, however, would never be able to statically handle cases

like those in Figure 3.7 that occur frequently in matlab programs.

A common way for DSP programs to resize arrays is to index past their last

element, which is handled by slice-hoisting. A dataflow formulation of size inference

does not seem to have a simple way to capture this information.

Another approach is to use powerful symbolic analysis to propagate symbolic

values and compute maximum values of indexed expressions. This would directly solve

the size problem when resizing is done through indices. It can also handle resizing

through concatenation inside a loop by propagating statement execution counts and

detecting that the size is incremented around the loop in simple steps, thus making

it an auxiliary loop induction variable [6]. However, for while loops, for which the

iteration counts may not be known a priori, a fall-back strategy akin to inspector-

executor, will need to be used [24]. Even then, symbolic analysis does not directly

solve the problem of an infinite lattice with infinite chains. It only pushes the problem

one level away, since symbolic manipulations must deal with the same issue.

By not using dataflow analysis, the combined static and dynamic inference strat-
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egy avoids the pitfalls of having to deal with infinite lattice chains and still comes

close to symbolic analysis in power.
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Chapter 4

Relevant Optimizations

It is a capital mistake to theorize before one has data. Insensibly one begins

to twist facts to suit theories, instead of theories to suit facts.

–Sir Arthur Conon Doyle in A Scandal in Bohemia

As preliminary research for this dissertation I undertook a study of programs written

in matlab that were being used for DSP research in the Center for Multimedia

Communications (CMC) in the Electrical and Computer Engineering department at

Rice. All of these programs consisted of a main script and a number of procedures

(matlab functions) that were called from the script. For the purposes of this study

these procedures were considered to be the user-level library procedures that could

be pre-compiled. This assumption was borne out of the fact that many of these

procedures were a part of a kind of user-level library and were reused in several

different programs.

The purpose of the study was to evaluate the potential of the telescoping languages

approach in the context of DSP applications and identify optimizations relevant to
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telescoping languages. The study resulted in not only the identification of high-payoff

optimizations but also in the discovery of two novel source-to-source inter-procedural

optimizations that produced excellent speed-ups in the applications studied [10]. The

new optimizations are discussed in the next chapter.

The applications perform various simulations or analyses pertaining to DSP. Dig-

ital Signal Processing algorithms tend to make extensive use of linear algebra opera-

tions on matrices. The remainder of this chapter describes how the utility of library

annotations was confirmed by the study and discusses source-level compiler optimiza-

tions techniques that were found to result in high payoff. Experimental evaluation

was carried out by performing source-to-source transformation of the applications by

hand and are reported in Chapter 8. Performance was measured under the standard

matlab interpreter.

4.1 Value of Library Annotations

The value of library annotations is demonstrated by the example shown in Figure 4.1.

Here, the procedures change form inv and change form are always called in pairs.

Moreover, the value returned from the first is passed on as an argument to the second.

The two functions could be combined into one, thus eliminating the overhead of one

function call as well as a copy operation. The combination might also enable other

optimizations. This is one of the transformations that library annotations aim to

uncover.

Specializing procedures based on the annotations provided by the library writer is

a major component of the library compiler. The procedures, in the applications that

were studied, were found to have great potential to benefit from such annotations. For
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function [s, r, j hist] = min sr1 (xt, h, m, alpha)

...

while ~ok

...

invsr = change form inv (sr0, h, m, low rp);

big f = change form (xt-invsr, h, m);

...

while iter s < 3*m

...

invdr0 = change form inv (sr0, h, m, low rp);

sssdr = change form (invdr0, h, m);

...

end

...

invsr = change form inv (sr0, h, m, low rp);

big f = change form (xt-invsr, h, m);

...

while iter r < n1*n2

...

invdr0 = change form inv (sr0, h, m, low rp);

sssdr = change form (invdr0, h, m);

...

end

...

end

Figure 4.1: Annotations can be useful in real-life applications

example, the arguments to function calls frequently have a small range of values (such

as, 0 and 1) and this knowledge could potentially uncover optimization opportunities.

Many arrays tend to be integers, usually limited to having values -1 and 1. An

annotation to this effect could specialize a procedure to operate on the arrays of

short integers, or even the char type to store small values, resulting in space savings.



51

4.2 High-payoff Optimizations

There are some well known compiler optimizations that turn out to result in high

payoffs for the DSP applications that were studied. Vectorization is one such opti-

mization. Vectorization has traditionally been used to transform loops into vector

statements to be executed on vector hardware [5, 6]. However, in the context of an

interpreted language like matlab, this has another implication. Consider the exam-

ple in Figure 4.2. The loop nest inside the comments is semantically equivalent to the

two vector statements immediately preceding it. Even on a scalar machine, replacing

the loop nest with the vector statements results in a 33 times speedup on a 336MHz

SPARC processor! This is the overhead of calling the library procedures sin and

cos inside a doubly nested loop. The vector statement calls these procedures only

function z = jakes mp1 (blength, speed, bnumber, N Paths)

....

for k = 1:N Paths

....

xc = sqrt(2)*cos(omega*t step*j’) ...

+ 2*sum(cos(pi*np/Num osc).*cos(omega*cos(2*pi*np/N)*t step.*jp));

xs = 2*sum(sin(pi*np/Num osc).*cos(omega*cos(2*pi*np/N)*t step.*jp));

% for j = 1 : Num

% xc(j) = sqrt(2) * cos (omega * t step * j);

% xs(j) = 0;

% for n = 1 : Num osc

% cosine = cos(omega * cos(2 * pi * n / N) * t step * j);

% xc(j) = xc(j) + 2 * cos(pi * n / Num osc) * cosine;

% xs(j) = xs(j) + 2 * sin(pi * n / Num osc) * cosine;

% end

% end

....

end

Figure 4.2: DSP applications abound in opportunities for vectorization
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once with a matrix argument, instead. In general, library calls have high overheads

whenever the library procedures are heavily overloaded. Therefore, loop vectorization

can result in tremendous performance improvements. Notice that the scalar version

of the loop is much easier to understand and, therefore, the preferred way for the

users to write the code.

This example also illustrates the value of common sub-expression elimination.

Notice that the arguments to sin and cos are identical expressions. Thus, these need

be evaluated only once. Moreover, these are vector expressions, making the gains of

common sub-expression elimination even higher. This can be expected to be a typical

situation in high-level languages.

Since the functions sin and cos are invoked on identical arguments, there is an

opportunity for replacing these individual calls by a combined call, say sincos, which

computes both sine and cosine of its argument in less time than the two separate calls.

A similar situation was seen in the example of Figure 4.1. These cases can be general-

ized to replacing a sequence of library calls by another, less expensive, sequence. Such

relationships among sequences of library procedures are referred to as library identi-

ties. The knowledge of library identities is very important for a telescoping compiler

to perform high-level optimizations. Library writers are expected to supply these

identities, reinforcing the importance of library annotations. Even though identities

could also be discovered and recorded by the compiler, library writers’ annotations

need to provide the base upon which a more extensive knowledge-base could be built.

A cost-model of procedure calls would aid the compiler in making a decision about

whether or not to carry out a given transformation in a given context.
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for n=1:sin num

vcos = [];

for i = 1:sin num

vcos = [vcos cos(n*w est(i))];

end

mcos = [mcos; vcos];

end

Figure 4.3: Implicit matrix resizing
is common in matlab programs

Since DSP applications make heavy

use of matrices, they often explore the

limits of matrix manipulations in mat-

lab. Figure 4.3 shows a DSP code snip-

pet that illustrates a typical example of

the way users tend to resize matrices.

Näıve code generation will result in huge

overheads in allocating and copying the

array values. If the array size can be in-

ferred at compile time, either as a constant or symbolically, the entire array can be

allocated ahead of the loop. Past studies by Menon and Pingali have shown that

significant performance improvements can be achieved, even at the source-to-source

level, simply by inserting a zeros call before the loop to pre-allocate the array [46].

Another common way to manipulate array accesses found in the applications that

were studied, was the use of reshape. As the name suggests, this matlab primitive

prepares an array to be indexed in a manner different from the way it had been

accessed before the call. The call allows an array to be reshaped into another one

that may have different rank or extents.1 A classic technique called beating and

dragging along can be used to handle array reshaping [1].

The table in Figure 4.4 summarizes the optimizations that were found to have

high-payoffs in this study.

1A similar effect can be achieved in Fortran by using common blocks.
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vectorization Users prefer writing C or Fortran-like loops, but vec-
torized statements reduce procedure call overheads and
enable other high-level transformations.

common sub-expression
elimination

Since many operations operate on arrays, eliminating
redundant computation is very important.

constant propagation and
constant expression folding

Constant propagation and constant expression folding
are known to be useful for traditional languages. These
are also useful optimizations for matlab and often aid
the type inference process.

library identities Knowledge of the relationships among library proce-
dures is crucial for performing high-level optimizations.
Library writers’ annotations play a very important role
in building this knowledge-base.

array pre-allocation Pre-allocating arrays eliminates the costly array-
copying operations. Array-size inference is critical to
be able to do this.

beating and
dragging-along

Reshaping arrays is a common occurrence in DSP
codes. Appropriate adjustments to the indices of the
reshaped array often eliminate the need to copy the
array.

Figure 4.4: Summary of high-payoff optimizations
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Chapter 5

New Optimizations

If I have seen further it is by standing on the shoulders of giants.

–Isaac Newton in a letter to Robert Hooke

The study of DSP applications led to the discovery of two new inter-procedural op-

timizations, called procedure strength reduction and procedure vectorization.

Procedure Strength Reduction Operator strength reduction is a well known com-

piler optimization technique that replaces an expensive operation inside a loop

by a less expensive operation under certain conditions [4]. Procedure strength

reduction derives its name from operator strength reduction due to its similarity

to the latter in dealing with expensive computations in a loop. Consider a proce-

dure call inside a loop such that some of the actual arguments are loop invariant

while the rest are simple expressions involving the loop index (Figure 5.1). It is

possible to split the call into an initialization call (fµ) that performs all the loop

invariant computations and an incremental call (f∆) that performs the incre-

mental computation. If a substantial amount of computation can be factored



56

away in fµ then this can be a beneficial transformation. Section 5.1 describes

this transformation in more detail.

for i = 1:N
x = f (c1, c2, i, c3);

end
⇒

fµ(c1, c2, c3);
for i = 1:N

x = f∆(i);
end

Figure 5.1: Procedure strength reduction

Procedure Vectorization Procedure strength reduction requires that the loop vary-

ing arguments be simple expressions of the loop index. However, the function

call itself may be part of a dependence cycle in the loop. A reverse situation is

possible. Suppose that the function call can be separated from other statements

in the loop, even though the expressions in the argument may not be simple.

In such a case, after separating the statement into a stand alone loop, it may

be possible to interchange the loop and the procedure call to perform loop-

embedding [34]. This often makes it possible to vectorize the loop body with

respect to the embedded loop, leading to procedure vectorization, illustrated in

Figure 5.2. This transformation is discussed in more detail in Section 5.2.

for i = 1:N
. . .
x = f (c1, c2, i, x(i));
. . .

end

⇒

for i = 1:N
. . .

end
fν(c1, c2, [1:N], x(1:N));
for i = 1:N

. . .
end

Figure 5.2: Procedure vectorization
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It is important to note that both procedure strength reduction and procedure

vectorization fit in the telescoping languages framework. Annotations on the library

procedures can identify arguments that are expected to be loop invariant. The library

compiler can then split or vectorize the procedures that would be subsequently linked

into the user script directly by the script compiler.

5.1 Procedure Strength Reduction

It is often the case that library procedures are called in a loop with a number of

arguments remaining loop invariant. The computations that depend only on these

loop invariant arguments can be abstracted away into an initialization part that can

be moved outside the loop. The part that is called inside the loop depends on the

loop index and performs the incremental computation. Figure 5.3 illustrates this

idea with a concrete example. The upper part of the figure shows the original code

and the lower part shows the code after applying procedure strength reduction. In

this case, procedure strength reduction can be applied to all the three procedures

that are called inside the loops. Only the arguments ii, snr, and y vary across loop

iterations. As a result, computations performed on all the remaining arguments can

be moved out of the procedures.

Notice that in the case of the procedure newcodesig not all the arguments are in-

variant inside the second level of the enclosing loop nest. Therefore, the initialization

part for newcodesig cannot be moved completely out of the loop nest. However, pro-

cedure strength reduction could be applied again on it resulting in two initialization

components—newcodesig init 1 and newcodesig init 2.

In principle, for maximal benefit, a procedure should be split into multiple com-
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% Initialization

....

for ii = 1:200

chan = jakes mp1(16500,160,ii,num paths);

....

for snr = 2:2:4

....

[s,x,ci,h,L,a,y,n0] = newcodesig(NO,l,num paths,M,snr,chan,sig pow paths);

....

[o1,d1,d2,d3,mf,m] = codesdhd(y,a,h,NO,Tm,Bd,M,B,n0);

....

end

end

....

⇓
% Initialization

....

jakes mp1 init(16500,160,num paths);

....

[h, L] = newcodesig init 1(NO,l,num paths,M,sig pow paths);

m = codesdhd init(a,h,NO,Tm,Bd,M);

for ii = 1:200

chan = jakes mp1 iter(ii);

....

a = newcodesig init 2(chan);

....

for snr = 2:2:4

....

[s,x,ci,y,n0] = newcodesig iter(snr);

[o1,d1,d2,d3,mf] = codesdhd iter(y);

....

end

end

....

Figure 5.3: Applying procedure strength reduction

ponents so that all the invariant computation is moved outside of the loops. In

telescoping languages model, newcodesig would be a library procedure that would

have been specialized for a context in which only its fifth argument varies across in-

vocations. Such a specialization of procedures is context dependent. As mentioned

before, example calling sequences and annotations by the library writer would be used
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to guide the specialization. An automatic learning process can also be included in

the library compiler.

for i1 = 1:N1

for i2 = 1:N2

....
for ik = 1:Nk

x = f (α0 α1 α2 ... αk);
end

....
end

end

⇒

fµ0
(α0);

for i1 = 1:N1

fµ1
(α1);

for i2 = 1:N2

....
fµk−1

(αk−1);
for ik = 1:Nk

x = fµk
(αk);

end
....
end

end

Figure 5.4: The general case of procedure strength reduction

Figure 5.4 shows a general case for multi-level splitting of procedures. In this case

α0 ... αk are argument sub-sequences where the sub-sequence αi is invariant at loop

level i but not at i − 1. Indiscriminate specialization can lead to a combinatorial

explosion of clones. The extent of reduction in strength must be weighed against the

extra overheads of calling the initialization (µ) procedures, the extra space needed to

store library clones, and the script compilation time. Appendix A discusses some of

the trade-offs involved.

Depending on the arguments that are invariant, one or more of the return values of

a procedure may also be invariant. This knowledge is needed to be able to propagate

the invariance property. The decision about whether to reduce a procedure in strength

may affect the decision for other procedures whose arguments depend on the first

procedure.
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Procedure and Operator Strength Reduction

In spite of the superficial similarity there are important differences between procedure

strength reduction and operator strength reduction. Operator strength reduction re-

places an expensive operation in a loop by one occurrence of the operation outside the

loop and a less expensive operation inside the loop. Thus, the transformation changes

the computation being performed inside the loop and introduces new computation

outside the loop.

Procedure strength reduction slices the computations being informed inside a

procedure that is called within a loop into those that are loop invariant and those that

are not. It is, in a way, inter-procedural loop-invariant code motion. In the telescoping

languages framework this slicing is done speculatively at library compilation time.

Procedure strength reduction can be combined with operator strength reduction by

treating expensive operations inside the procedure as candidates for operator strength

reduction. For example, applying operator strength reduction to a multiplication

operation inside a procedure f would result in the initializing multiplication operation

in fµ and an incremental addition operation in f∆. Such a transformation would

require a deeper analysis than simple slicing of the computations inside the procedure.

Procedure Strength Reduction and Automatic Differentiation

Automatic differentiation is a compilation technique to automatically generate code

for computing the derivative of a function, given the code that computes the func-

tion [31]. The technique relies on the observation that every computation must finally

be carried out in terms of either primitive operations in the language or library calls.

It uses fundamental principles of differential calculus to transform the given code into
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one that computes the derivative. The derivative computation is accurate to within

the numerical limits of the underlying platform.

Automatic differentiation could be used to implement procedure strength reduc-

tion. Consider a function f that is called with input arguments p1, . . . , pn and returns

m values q1, . . . , qm. Suppose that automatic differentiation was used to compute

∂qi/∂pk, for 1 ≤ i ≤ n and a particular input argument pk. For every i for which

∂qi/∂pk evaluates to zero the output qi is independent of the input value pk. If pk was

a loop index variable then f can be strength reduced using this information. More-

over, under certain conditions, it may be possible to use the derivative to compute the

function for a given value of the loop index from the previously computed function

values. This could provide an alternative mechanism to generate f∆.

5.2 Procedure Vectorization

Vectorization of statements inside loops turns out to be a big win in matlab pro-

grams, as was established in Chapter 4. This idea can be extended to procedure

calls, where a call inside a loop (or a loop nest) can be replaced by a single call to

the vectorized version of the procedure. In the context of telescoping languages this

can be done by generating an appropriate variant of the procedure.

Consider again the DSP program ctss in Figure 5.3. It turns out that the loop

enclosing the call to jakes mp1 can be distributed around it, thus giving rise to an

opportunity to vectorize the procedure. If jakes mp1 were to be vectorized, the call

to it inside the loop could be moved out as shown in Figure 5.5. This involves adding

one more dimension to the return value chan.

To effectively apply this optimization in the telescoping languages setting, it must
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% Initialization

....

chan = jakes mp1 vectorized(16500,160,[1:200],num paths);

for ii = 1:200

....

for snr = 2:2:4

....

[s,x,ci,h,L,a,y,n0] = (NO,l,num paths,M,snr,chan(ii,:,:), sig pow paths);

....

[o1,d1,d2,d3,mf,m] = codesdhd(y,a,h,NO,Tm,Bd,M,B,n0);

....

end

end

....

Figure 5.5: Applying procedure vectorization to jakes mp1

be possible to distribute loops around the call to the candidate for procedure vector-

ization. This requires an accurate representation of the load-store side effects to array

parameters of the procedure, which would be encapsulated in specialized jump func-

tions that produce an approximation to the patterns accessed. An example of such a

representation is a regular section descriptor (RSD) [9, 35]. Methods for computing

these summaries are well-known.

In practice, the benefit of vectorization will need to be balanced against the cost

of a larger memory footprint as well as the costs of specialization as indicated in the

previous section.

Loop-embedding and Procedure Vectorization

Procedure vectorization consists of two steps: loop-embedding and vectorization.

Loop-embedding is the process of moving the loop surrounding a procedure call into

the procedure [34]. It is possible to stop at this stage and still gain significant per-

formance benefits due to reduced procedure call overheads. Procedure vectorization



63

goes one step further and vectorizes the embedded loop surrounding the original pro-

cedure body. This could potentially reduce the applicability of the transformation,

but the availability of vectorized versions of most operations in matlab allows pro-

cedure vectorization to be applicable in many cases. Vectorization further improves

the performance gain.
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Chapter 6

Engineering a Telescoping

Compiler

If you want to make an apple pie from scratch, you must first create the

universe.

–Carl Sagan in Cosmos

Having identified the type inference engine as the core component that enables the

development of the telescoping languages infrastructure the next step is to design and

implement this infrastructure. Along with type inference, the focus of this develop-

ment work is on optimizations that have been identified as being particularly useful

for DSP code.

The two main subsystems of the telescoping languages system are the library com-

piler and the script compiler. The library compiler is responsible for generating and

maintaining the variants database and creating procedure constraints in the form of

jump functions. The script compiler is a fast compiler that quickly identifies rele-
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vant contexts and chooses the most appropriate procedure variants from the variants

database. The library compiler also needs to be able to identify contexts and pick

variants since libraries are often written hierarchically, with higher-level libraries us-

ing lower-level libraries. It is assumed that the lower-level libraries have already been

compiled before they are used.

The work in this dissertation focuses only on the library compiler. Those script

compilation techniques, such as context recognition, which are also useful in library

compilation phase, are addressed. Advanced techniques that ensure fast script com-

pilation, and apply cascading transformations, are left for future work.

6.1 Overall Architecture

Procedure specialization plays a pivotal role in the telescoping languages strategy.

The importance of type-based specialization in generating effective code in C or

Fortran-like intermediate languages has already been established [14]. In the process

of developing a library-generating compiler for matlab in the telescoping languages

context specialization has also emerged as a strategy to implement source-level opti-

mizations. The strategy marks a new way to think about optimizations in a compiler

and offers exciting possibilities for the future.

Figure 6.1 shows the overall architecture of the library generating compiler. The

compiler accepts a program in matlab and emits code in a lower-level language—C

or Fortran. The design follows the well known 3-phase architecture of compilers con-

sisting of a parsing front-end, a middle optimizing component, and a code-generating

back-end. However, unlike the typical compiler design that entails a fat middle com-

ponent, the library generating compiler design envisions a light-weight optimizing
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Figure 6.1: Major components of the DSP library compiler

component. The optimizing component is a driver that transforms the programs

through a series of specializing transformations. The basic tenet of this design is that

most of the source-level optimizations that are relevant to optimizing DSP libraries

can be specified as specializations. These optimizations include those identified in

Chapters 4 and 5 as well as the type-based specialization described in Chapter 3.

The type inference engine is a direct implementation of the type inference approach

presented in Chapter 3.

The front-end immediately translates the matlab code into an intermediate form

in which every primitive operation has been translated into a call to a generic pro-

cedure that can handle any operand types. For example, the + operand may get

translated to a call to a procedure generic ADD that accepts two input arguments

and one output argument. Furthermore, complicated expressions are broken down

into a sequence of calls to appropriate procedures. This is very similar to what the

MathWorks compiler mcc does. The specializer operates on this intermediate form to
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transform the code and replaces the calls to generic procedures by calls to the spe-

cialized variants based on inferred types and the externally specified optimizations.

For example, if the operands are proven to be scalar, the call to generic ADD will be

replaced by a call to scalar ADD that will get translated to a primitive add operation

in the target language by the code generator.

6.2 Optimizations as Specializations

The source-level optimizations that have been identified as high-payoff for matlab

are:

• loop vectorization

• common sub-expression elimination

• constant propagation

• beating and dragging along

• array pre-allocation

In addition, two new optimizations have been discovered that are also highly relevant:

• procedure strength reduction

• procedure vectorization

Of these, array pre-allocation depends on the type information of a variable. The

rest do not require any type information, although they may use it. Array pre-

allocation is subsumed in type-based specialization, described in Chapter 3—in fact,

that is the primary goal of array-size inference and slice-hoisting.
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In order to implement the rest of the optimizations in the library-generating com-

piler, these optimizations are first expressed as specializing transformations. In other

words, the optimization is described in terms of code transformation that can be

carried out by replacing parts of the code with the more optimized version, based

on dependences, context, and code structure. The optimizer, called the specializa-

tion engine, reads these externally specified optimizations and identifies a piece in

the code that satisfies the structural and dependence relations specified in the opti-

mizations. An identified piece is replaced by its equivalent according to the specific

transformation and the process is repeated until no more pieces can be matched.

The specialization-based optimization process operates under two assumptions:

1. It is possible to externally specify transformations as code specializations that

a specialization engine in the compiler can use.

2. It is always profitable to replace an identified piece of code by its equivalent

according to the corresponding specification.

The rest of the chapter proves that the first assumption is reasonable by de-

veloping an XML-based language that is shown to be adequate for specifying the

interesting optimizations. The chapter also describes a “peep-hole” strategy that the

specialization engine can employ to carry out these optimizations.

The second assumption is a simplifying assumption to describe the design of the

optimizer, even though there is nothing in the design that depends on it. In order

to determine profitability of a transformation the specification language will need to

include a cost-metric. However, further investigation will need to be undertaken to

study interaction between optimizations and to develop a model that can be used to

assess relative costs of alternatives that might exist for a given piece of code.
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6.3 An XML Specification Language

The menagerie of optimizations that the telescoping compiler needs to support relies

on context-dependent information. Thus, any mechanism that supports specifying

these transformations must provide a way to describe contexts. Moreover, most of

these optimizations are targeted towards arrays since arrays constitute a very impor-

tant data structure in high-performance numerical libraries. Thus, the mechanism

must provide a way to describe arrays and array sections.

XML, or eXtendible Markup Language, was chosen to describe the transforma-

tions for several reasons.

• An XML description is portable, extendible, and standard-based.

• Widely available XML document parsers and unparsers can be leveraged to ease

implementation.

• There are generic XML editors available that can be used to facilitate the writing

of the specifications. Moreover, the editors need not be restricted to text—they

can be extended to let the user write specifications graphically in terms of a

control-flow graph, for example.

• An XML specification language makes it very easy to capture the structures

of high-level languages without being specific to any language. In other words,

as long as the specification is capable of describing suitable structures it is

language-neutral.



70

<xsd:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsd:annotation>

<xsd:documentation xml:lang="en">

Optimizations as Specializations.

Rice University, 2003.

</xsd:documentation>

</xsd:annotation>

<xsd:element name="specializations">

<!-- unbounded sequence of transformation -->

</xsd:element>

<xsd:complexType name="transformation">

<xsd:complexType>

<xsd:choice>

<xsd:sequence>

<xsd:element name="context" type="preCondition"/>

<xsd:element name="match" type="stmtList"/>

<xsd:element name="substitute" type="stmtList"/>

</xsd:sequence>

<xsd:sequence>

<xsd:element name="context" type="preCondition"/>

<xsd:element name="replaceAllOccurs" type="replacementSpec"/>

</xsd:sequence>

</xsd:choice>

</xsd:complexType>

</xsd:complexType>

<xsd:complexType name="stmtList">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:choice>

<xsd:element name="simpleStmt" type="simple"/>

<xsd:element name="twoWayBranchStmt" type="twoWayBranch"/>

<xsd:element name="multiWayBranchStmt" type="multiWayBranch"/>

<xsd:element name="loopStmt" type="loop"/>

<xsd:element name="anyStmt" type="wildcard"/>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Figure 6.2: Outline of the XML schema for optimizations as specializations
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Syntax

Figure 6.2 shows the high-level outline of the schema for the XML specification lan-

guage. The complete schema appears in appendix B. The complete set of optimiza-

tions are written as a sequence of specialization rules. Each rule consists of a context,

a match and a substitute. A match or a substitute consists of a sequence of statements

each of which can be of any of the four recursively defined types—simple statement,

loop, two-way branch, and multi-way branch. The schema has been designed with

matlab in mind even though it is extendible. The four statements that the schema

allows are sufficient to express any matlab program structure. The “variable names”

allowed under the schema are SSA renamed so that the names refer to values rather

than memory locations. The application of a rule involves searching for the pattern

specified by the match of the rule under the specified context and replacing it with

the substitute as long as no dependences are violated.

Figure 6.3 shows an example of a specialization rule for scalar addition. The rule is

applicable only when the context is satisfied, which happens when the two operands

to the generic ADD procedure are both scalar. Similar rules could be written for

specializing generic ADD to matrix-matrix addition, scalar-matrix addition, and so

on.

The example illustrated here specializes a single simple statement. In general,

an XML description following the given schema can exactly describe a control-flow

graph. Indeed, the class hierarchy that is used internally in the front-end of the com-

piler exactly mirrors the statement structures permissible under the schema. Thus,

there is a simple statement class, a loop class, and so on. Effectively, this class hier-

archy defines a grammar that can generate a class of control-flow graphs and there
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<specialization>

<context>

<type var="x" dims="0"/>

<type var="y" dims="0"/>

</context>

<match>

<simpleStmt>

<function> generic ADD </function>

<input> <var>x</var> <var>y</var> </input>

<output> <var>z</var> </output>

</simpleStmt>

</match>

<substitute>

<simpleStmt>

<function> scalar ADD </function>

<input> <var>x</var> <var>y</var> </input>

<output> <var>z</var> </output>

</simpleStmt>

</substitute>

</specialization>

Figure 6.3: Specialization rule for generic ADD for scalar operands

is an isomorphism between the grammar and the schema. There are three important

consequences of this mirroring:

1. Since the internal class-hierarchy is capable of representing the control-flow

graph of any arbitrary matlab program, it follows that the XML schema has

the same power of expression.

2. The control-flow graph is a widely used intermediate representation in compilers.

Therefore, describing structures directly in the form of a control-flow graph

provides a language-independent way of specifying specializing transformations

so that it can be easily used (or extended) for languages other than matlab.

3. The isomorphism between the specification language and the grammar of the

control-flow graph (defined in terms of the hierarchy of CFG classes) greatly
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simplifies the process of recognizing the specified structures in a given program.

Even though the power of the language is illustrated by arguing in terms of the

control-flow graph, the language is easier understood in terms of the abstract syntax

tree. Since there is a one-to-one correspondence between an abstract syntax tree of

a matlab program and its control-flow graph in the library compiler, the specializer

has a choice of working on either representations.

In addition to the ability to specify a template to match it is often useful to be

able to refer to all occurrences of a variable or expression. In lieu of the <substitute>

element the schema allows writing a <replaceAllOccurs> element that specifies re-

placing all occurrences of a given variable or an array section by another.

As the name suggests the match element specifies a pattern that is matched by the

specialization engine against the procedure being compiled. Before describing how the

pattern is matched, one more syntactic entity must be added to the language to make

it sufficiently powerful to handle the relevant optimizations—wild card. Often the

match of a rule can tolerate arbitrary intervening statements, which would normally

also appear in the substitute. In fact, this is the more common and the more powerful

form of the match element. A wild card matches any simple or compound statement

and can can match multiple occurrences according to the attributes minCount and

maxCount. The default value for both is one. Each wild card element must also be

supplied with a unique integer label that can be used within the substitute element

to identify the corresponding match.1

1Those familiar with Perl might recognize this as a generalization of tagged regular expressions.
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Applying the Specialization Rules

In order to apply a rule the specialization engine first converts the match part of the

given specification into a control-flow graph. However, this is not a regular program

control-flow graph but a pattern that must be matched against the control-flow graph

of the procedure being compiled.

A specialization rule, R, can be denoted by a three tuple <C,P, S> where,

C is the context that must be satisfied for the rule to be applicable

P is the pattern that must be matched for the rule to be applicable, and

S is the equivalent code that must be substituted for the matched part if the rule is

applicable, or a replacement rule that replaces all occurrences of a variable or

array section.

Given the abstract syntax tree, T , of the procedure being compiled and a sequence of

specialization rules, R1, R2, . . . , Rn, the specialization engine follows the algorithm

in Figure 6.4 by calling the specializer procedure for each rule.

An important part of this algorithm is the procedure search pattern. The

ground rules for matching include:

• A “variable” in the specification can match any expression tree, including simple

variables and constants. However, multiple occurrences of a variable must match

exactly the same expression tree. All program variables are assumed SSA-

renamed to avoid spurious matchings.

• A “constant” in the specification matches a program constant of the same value.
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input :
specialization rule, R =<C,P, S>
abstract syntax tree, T

output :
transformed syntax tree, T

′

uses :
search pattern

replace pattern

replace occurrences

procedure specializer

return if the context C not verified
L = list of the top-level statements in T
pattern handle = search pattern(P , T )
if found

if S is a substitute then
if replacing P by S does not violate any dependencies

T
′

= replace pattern(T , pattern handle, S)
else

T
′

= T ;
endif

else
T

′

= replace occurrences(T , pattern handle, S)
endif

endif
// now repeat the process for each statement recursively
for each compound statement, M , in L

H = abstract syntax tree for M
H

′

= specializer(R, H)
T

′

= T with H replaced by H
′

T = T
′

endfor
return T

′

Figure 6.4: The algorithm for the specialization engine
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• A “statement wild card” (<anyStmt>) can match any simple or compound state-

ment.

It is important to recognize that search pattern can use standard regular expression

matching techniques to search for a pattern consisting of entities of the abstract syntax

tree.

The remainder of this chapter uses the XML schema described above to write the

relevant optimizations as specializations. Only common subexpression elimination

cannot be described by the language in its current form as there is no way to write a

pattern that can match an expression’s occurrences across boundaries of compound

statements.

6.4 Specifying the Optimizations

With the XML specification language in hand, the relevant optimizations can now be

written down as specializations in terms of this language. This section describes each

optimization as a specialization using the XML schema of Figure 6.2. Some other

optimizations are also described using the language to illustrate its power.

It should be noted that the specialization engine carries out a transformation only

if the transformation will not violate any dependences. Thus, the specializations are

more than simple pattern replacement—dependence information is a critical compo-

nent in applying these specializations.
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Type-based and Value-based Specializations

The simplest specializations to specify are type-based specializations. One such spe-

cialization was illustrated in the previous section in Figure 6.3. Similar specialization

rules can be written for all library procedures for each type configuration for which

there is a specialized variant.

The specialization rules can also be written, and even combined with type-based

rules, for the contexts that require variables to have certain values. For example,

there may be a specialized variant of a numerical library when a stride argument has

the value one. This is a common scenario in real libraries. A less frequent situation

is when the specialized variant depends on the value of a variable being in a certain

range. This situation cannot be described using the current schema, however the

schema can be easily extended to allow for it. One issue in handling ranges is that

the compiler analysis that needs to be performed to propagate range values is very

complicated and the effort spent in doing that may not be worthwhile, at least in the

first version of a compiler.

Loop Vectorization

Loop vectorization involves converting a scalar loop into a vector statement. Suppose

that a function f has a vectorized version called f vect. If f takes one input and

returns one value, then a specialization rule for vectorizing a single-loop could be

written as in Figure 6.5.

In a more readable format, the specification performs the following transformation:
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<specialization>

<match>

<forLoopStmt index="i">

<lower>L</lower> <upper>U</upper> <step>S</step>

<body>

<anyStmt label="1" minCount="0" maxCount="unlimited"/>

<simpleStmt>

<function>f</function>

<input>

<asection var="a"><dim><lower><var>i</var></lower>

<upper><var>i/</var></upper></dim></asection>

</input>

<output>

<asection var="b"><dim><lower><var>i</var></lower>

<upper><var>i/</var></upper></dim></asection>

</output>

</simpleStmt>

<anyStmt label="2" minCount="0" maxCount="unlimited"/>

</body>

</match>

<substitute>

<simpleStmt>

<function>f vect</function>

<input><asection var="a">

<dim>

<lower><var>L</var></lower>

<upper><var>U/</var></upper>

<step><var>S/</var></step>

</dim>

</asection></input>

<output><asection var="b">

<dim>

<lower><var>L</var></lower>

<upper><var>U/</var></upper>

<step><var>S/</var></step>

</dim>

</asection></output>

</simpleStmt>

<forLoopStmt index="i">

<lower>L</lower> <upper>U</upper> <step>S</step>

<body>

<putStmt label="1"/>

<putStmt label="2"/>

</body>

</substitute>

</specialization>

Figure 6.5: Loop-vectorization as specialization
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for i = L:S:U

S1*

b(i) = f(a(i))

S2*

end

⇒

b(L:S:U) = f vect(a(L:S:U))

for i = L:S:U

S1*

S2*

end

Notice that there may be other statements in the loop that are preserved. The

dependence check in the specialization engine ensures that the transformation is legal

in a specific case, i.e., no dependences are violated with respect to the statement

groups S1 and S2.

Even though the XML specification appears complicated, it is, in fact, very simply

structured. Moreover, it is an intermediate representation that the library developer

or the specialization writer never sees—a front-end editor presents the specification

in a graphical or easy-to-edit format. In describing the rest of the transformations

self-evident details will be omitted for the sake of clarity.

Beating and Dragging Along

Beating and dragging along in the context of matlab is the elimination of the

reshape primitive by replacing all occurrences of an array section in terms of its

new indices induced by the reshape call. For example, if a reshape call changes the

indices of a linear array A into a two-dimensional array then all subsequent uses of a

section of A are rewritten in terms of the original linearized indices. Figure 6.6 shows

the XML specification for this specialization rule. It uses the second major construct

provided by the XML schema—the <replaceAllOccurs> element.

The rule will change if the original array is reshaped into a different number of

dimensions. Writing a rule for each possible number of dimensions is not so bad since

in real code the array dimensions rarely exceed a small number.
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<specialization>

<context>

<type var="x" dims="2" sizes="m n"/>

</context>

<match>

<!-- a = reshape(b, m, n) -->

</match>

<replaceAllOccurs>

<occurrence>

<!-- match section a(i, j) -->

</occurrence>

<replacement>

<!-- replace by b(scalarADD(scalarMULT(scalarSUB(j,1),m)),i) -->

</replacement>

</replaceAllOccurs>

<specialization>

Figure 6.6: Beating and dragging along as specialization

Another primitive function that is a candidate for beating and dragging along

is array transpose. Once again, the rules will vary depending on the number of

dimensions involved.

Procedure Strength Reduction

Procedure strength reduction is described easily as a template in which the procedure

call inside a loop is split into two, as shown in Figure 6.7. The figure illustrates the

rule for a function f that takes three arguments, one of which is the loop index

variable. The specialization engine will not perform the transformation if the other

two arguments change within the loop since that would violate the dependence. The

specification for a procedure that can be strength reduced multiple times in a loop

nest can be written as a straightforward extension of the shown rule.

Recall that the front-end generates an intermediate code in which every primi-
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<specialization>

<match>

<forLoopStmt index="i">

<lower>L</lower> <upper>U</upper> <step>S</step>

<body>

<anyStmt label="1" minCount="0" maxCount="unlimited"/>

<!-- simple statement f(a, b, i) -->

<anyStmt label="2" minCount="0" maxCount="unlimited"/>

</body>

</forLoopStmt>

</match>

<substitute>

<!-- simple statement f init(a, b) -->

<forLoopStmt index="i">

<lower>L</lower> <upper>U</upper> <step>S</step>

<body>

<putStmt label="1"/>

<!-- simple statement f iter(i) -->

<putStmt label="2"/>

</body>

</forLoopStmt>

</substitute>

</specialization>

Figure 6.7: Procedure strength reduction as specialization

tive operation translates into a procedure call. This has a significant consequence:

once the primitive operations have been specialized for scalar operations, procedure

strength reduction can be applied to reduce the primitive operations in strength. This

is exactly the process of traditional operator strength reduction. Handling operations

and library procedures uniformly clearly illustrates how operator strength reduction

can be handled as a special case of procedure strength reduction in this context.

Procedure Vectorization

Procedure vectorization follows the pattern of procedure strength reduction. The

simple specification for procedure vectorization is shown in Figure 6.8. It is a speci-
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fication for a function f that has a single argument.

Constant Propagation

Constant propagation can be represented as a specialization with the observation

that the language provides a way to detect constants (with the constant attribute

of the type element). Then, the replace-all-occurrences feature can simply replace a

variable initialized to a constant by the constant value.

Compile-time Evaluation

One of the most important optimizations performed by compilers is to evaluate as

much code as possible at compile time. This has to be done carefully since the com-

<specialization>

<match>

<forLoopStmt index="i">

<lower>L</lower> <upper>U</upper> <step>S</step>

<body>

<anyStmt label="1" minCount="0" maxCount="unlimited"/>

<!-- simple statement f(a(i)) -->

<anyStmt label="2" minCount="0" maxCount="unlimited"/>

</body>

</forLoopStmt>

</match>

<substitute>

<!-- simple statement f vec(a(L:S:U)) -->

<forLoopStmt index="i">

<lower>L</lower> <upper>U</upper> <step>S</step>

<body>

<putStmt label="1"/>

<putStmt label="2"/>

</body>

</forLoopStmt>

</substitute>

</specialization>

Figure 6.8: Procedure vectorization as specialization
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piler must perform the evaluation in the context of the semantics of the language being

compiled. If such an evaluation is feasible then it is possible to specify compile-time

evaluation using the proposed schema. Consider the common example of constant-

expression folding. If two operands to a primitive operation are constant, then it is

invariably a good idea to replace the computation by the evaluated result (assuming

no exceptions are generated due to the evaluation). The XML specifications will need

to be enhanced by defining equivalent compile-time operations for all the targeted op-

erations in the source language. Constant-expression folding for scalar values may be

carried out by the back-end compilers for the object code in C or Fortran. However,

performing the compile-time evaluation for high-level operations is something the

back-end compilers cannot handle; for example, multiplying two constant matrices.

Other Optimizations

There are several other optimizations that are possible within the framework even

though these are not high-payoff for compiling DSP libraries written in matlab.

The table in Figure 6.9 shows some of those optimizations along with the outline of

how they can be described using the XML-based specification language.

Out of these, while-for conversion may be a useful one for compiling matlab

since it is possible to write C-style “for”-loops in matlab that are really while-loops.

Converting those to equivalent for-loops may be critical in being able to apply other

optimizations.
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optimization match element substitute element

while-for
conversion

[context: i, L, U are scalar

S is scalar constant]

i = L

statement group 1

while (i <= U)

statement group 2

i = i + S

statement group 3

endwhile

statement group 1

for i = L:S:U

statement group 2

statement group 3

endfor

empty-loop
elimination

for i = L:S:U

endfor

[empty substitution]

loop-
invariant
code motion

for i = L:S:U

statement group 1

x = f(a, b)

statement group 2

endfor

x = f(a, b)

for i = L:S:U

statement group 1

statement group 2

endfor

copy propa-
gation

x = y [replace all occurrences]

x

[by]

y

Figure 6.9: Other examples of optimizations as specializations

6.5 The Integrated Approach

The unified approach to handling the optimizations that are relevant to the telescop-

ing languages has several advantages:

1. New optimizations can be rapidly added to the compiler as long as these can

be expressed using the XML-based language. This has tremendous software

engineering implications for compiler developers.

2. Optimizations can be applied in different order, and even multiple times, facil-



85

itating a test-bed to explore interactions among the different optimizations.

3. Most program transformations are carried out by the specialization engine. It is

a much smaller piece to debug and verify than separate pieces of code for each

optimization, resulting in a greater confidence in the accuracy of the compiler.

4. The design opens up new avenues for research into cost-based, possibly self-

learning, program transformation techniques for telescoping languages.

While the design results in an intellectually satisfying integrated architecture for

high-level optimizations, not all optimizations may be expressible within the frame-

work of the XML schema presented in this chapter. Moreover, certain properties

of matlab and the overall architecture of the compiler work together to allow this

framework to work.

• The intermediate representation simplifies complicated expressions into individ-

ual procedure calls. Therefore, specifying transformations at the granularity of

statements turns out to be adequate.

• Every primitive operation is treated as a procedure call. This is essential to do

in a weakly-typed high-level language, such as matlab, since the meaning of

the operation is not pinned down until its operands’ types have been inferred.

Thinking of every operation as a procedure call makes a uniform treatment of

statements possible.

• matlab procedures have no side-effects, unless variables are explicitly declared

using the global primitive. These explicitly named global variables can be

handled by treating them as output values. The absence of aliasing eliminates

the need to worry about unknown side-effects.
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• All the relevant optimizations lend themselves to being described as specializing

transformations.

Extending this approach to situations where some of the properties listed above are

relaxed is an open problem that would need further investigation.

6.6 Implementation

The compiler has the front-end, the code generator, the type inference engine, and a

specialization engine that uses the type information coming out of the type inference

engine and specializes the code based on types. The specialization specifications are

written in the XML-based language described earlier in this chapter, which is parsed

using Apache Xerces-C—an XML parsing library for C++ [59]. The entire matlab

parsing, code-generation, type inference, and specialization infrastructure has been

developed from scratch.

While supplying the specialization rules the order of their application can dra-

matically change the results. For example, specialization rules for scalar operations

must be applied after type-based specialization has been applied because without the

latter all operations are assumed to be generic operations and no scalar operations

would be found in the code. In most cases, it is safe to apply type-based specialization

rules before any other kind of rules. Some of the rules may also need to be applied

repeatedly to get their complete benefit.
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Chapter 7

DSP Library

The process of preparing programs for a digital computer is especially attrac-

tive, not only because it can be economically and scientifically rewarding, but

also because it can be an aesthetic experience much like composing poetry or

music.

–Donald E. Knuth

A collection of matlab procedures has been identified to serve as a benchmark to

test the components of the telescoping library compiler that was developed as a part

of this dissertation. Some of these procedures were developed in the DSP group at

the Electrical and Computer Engineering Department at Rice University. Others

were obtained from the contributed section at MathWorks web-site. This collection

of procedures can be seen as a domain-specific library that has been developed by the

end-users for their applications.

The table in Figure 7.1 summarizes some of the properties of these matlab pro-

cedures. The rest of this chapter provides a summary of each procedure.

jakes mp1 This procedure computes fast fading signals using the Jakes model. It
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name description size number of

lines bytes inputs outputs

jakes mp1 Computes fast fading signals
with Jakes model

41 1567 4 1

codesdhd Simulates the diversity receiver
with Viterbi coding

67 1740 9 6

newcodesig Simulates the transmission and
channel of a system with
convolutional coding and
overlapping symbols

92 2666 9 6

ser test fad Computes outage probabilities
in a wireless channel

79 2493 7 1

sML chan est Computes echoes by a group of
cell phones in real-world
scenario

303 8729 10 4

acf Computes the auto-correlation
of a signal

27 511 2 1

artificial queue Simulates a queue 18 586 3 1

ffth Computes half-space FFT 49 747 1 1

fourier by jump Computes Fourier
Transformation

67 1965 3 3

huffcode Computes Huffman codewords 79 2152 2 1

Figure 7.1: Summary of the informal DSP library

is used in an application called ctss that simulates a complete system with

convolutional coding and overlapping codes. The procedure consists of a single

loop that performs trignometric computations on matrices.

codesdhd This is a Viterbi decoder that uses other lower level functions. It is the

most computationally intensive component of the ctss application. Most of its
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computation is evenly distributed among the lower level functions.

newcodesig Used to simulate the transmitter and the channel of a system within the

ctss application, it is the second most computationally intensive component.

Most of its computation is performed inside a single for loop.

ser test fad This procedure implements a value iteration algorithm for finite hori-

zon and variable power to minimize outage under delay constraints and average

power constraints. It is used inside an application that simulates outage min-

imization for a fading channel. It is invoked inside a doubly-nested loop and

itself consists of a five-level deep loop-nest where it spends most of its time.

sML chan est This is a piece of matlab code that implements a block in a SimuLink

system that consists of several interconnected blocks. It primarily consists of a

single loop that is inside a conditional statement. The procedure is the most

time-consuming part of the entire simulation.

acf This procedure to compute auto-correlation of a signal is a part of a collection

for time-frequencey analysis. The computation is performed inside a simple for

loop.

artifical queue Almost all the computation in this small procedure is inside a loop

that contains a vector statement that resizes an array. The charateristic feature

of this procedure is that it typically operates on huge arrays.

ffth This procedure computes an FFT on a real vector in half the space and time

needed for a general FFT. Essentially, this is a version of FFT specialized for

real input.

SimuLink is a registered trademark of MathWorks Inc.
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fourier by jump This procedure implements Fourier analysis by the method of jumps.

The implementation has been motivated by the lack of accurate results by the

intrinsic matlab fft function in certain cases. It consists of two loops, only

one of which is invoked depending on the value of an input argument.

huffcode This procedure computes Huffman codewords based on their lengths. The

primary computation inside the procedure occurs in a doubly nested loop. The

outer for loop encloses a while loop that is guarded by an if condition.
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Chapter 8

Experimental Evaluation

What kind of idea are you?

–Salman Rushdie in The Satanic Verses

The first set of experiments was conducted to evaluate the benefits of the novel

transformations discovered, along with the relevant optimizations. These experiments

were conducted at the source-level to isolate the effects of the transformations. A later

section in the chapter describes the experiments conducted to evaluate the library

compiler.

8.1 Evaluating Procedure Strength Reduction and

Vectorization

Three different DSP applications were studied to evaluate the idea of procedure

strength reduction. Procedure vectorization was applicable in one of the cases. All

these applications are part of real simulation experiments being done by the wireless
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group in the Electrical and Computer Engineering Department at Rice University.

In order to evaluate the idea the applications were transformed by hand care-

fully applying only the transformations that a practical compiler can be expected

to perform and those that are relevant to procedure strength reduction. The trans-

formations included common subexpression elimination, constant propagation, loop

distribution, and procedure strength reduction. The transformations were carried

out at the source-to-source level and both the original as well as the transformed

programs were run under the standard matlab interpreter, unless noted otherwise.

Applications ranged in size from about 200 to 800 lines and all took several hours to

days to complete their runs. Some of the timing results were obtained by curtailing

the number of outermost iterations to keep the run times reasonable.

For this study, procedure strength reduction was carried out only at the statement

level. It is possible to refine it further and carry it out at the expression level. This

would be equivalent to performing an inter-procedural operator strength reduction.

All timing results are from experiments conducted on a 336 MHz SPARC based

machine under matlab 5.3.

ctss

ctss is a program that simulates a digital communication system where the data is

encoded by a convolutional code and is then transmitted over a wireless channel using

a new modulation scheme that exploits the characteristics of the channel to improve

performance. The top level program consists of nested loops and procedure calls

inside those loops. While these procedures are written in matlab and are part of the

program, some of these are actually being used as domain-specific library procedures
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since they are used by multiple programs.

Figure 8.2(a) shows the improvements resulting from the transformations applied

by hand. The first part of the figure shows the performance improvements achieved

in various top-level procedures relative to the original running time. Notice that the

procedure jakes mp1 achieved more than three-fold speedup. These results do not

include the dramatic performance improvement that results from vectorizing the loop

inside the procedure jakes mp1 since that vectorization had already been performed

by the user.
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Figure 8.1: Performance im-
provement in jakes mp1.

The whole program achieved only a little less

than 40% speed improvement since most of the

time in the application was spent in the pro-

cedure codesdhd as shown in the second part

of Figure 8.2(a). After applying reduction in

strength to this procedure its execution time fell

from 23000 seconds to 14640 seconds, and ac-

counted for almost the entire performance gain

for the whole application.

In all cases the initialization parts of the pro-

cedures were called much less frequently than

the iterative parts, effectively making the time spent in the initialization parts com-

paratively insignificant.

Figure 8.1 shows the timing results for jakes mp1 upon applying procedure vector-

ization. This procedure is fully vectorizable with respect to the loop index of the loop

inside which it is called in the main program. The bar graph shows a performance

improvement of 33% over the original code for a 100 iteration loop. This performance
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gain was almost unchanged down to one iteration loop. Vectorization resulted in a

smaller improvement in performance compared to strength reduction because of two

possible reasons. First, vectorization of the procedure necessitated an extra copying

stage inside the procedure. Second, vectorization resulted in a much higher memory

usage giving rise to potential performance bottlenecks due to memory hierarchy. For

very large number of loop iterations the effects of memory hierarchy can cause the

vectorized loop to perform even poorer than the original code. However, these effects

can be mitigated by strip-mining the loop.

sML chan est

This application computes the delay, phase, and amplitude of all the echoes produced

by the transmissions from a group of cell phones in real world scenario. The ap-

plication is written under the SimuLink environment provided with matlab. One

particular procedure was studied in the application, called sML chan est, which is

the one where the application spends most of its time.

Figure 8.2(b) shows the result of applying strength reduction to this procedure.

The graph shows the time taken by the initialization call and the iterative call. The

initialization call has a loop that resizes an array in each iteration. If the entire

array is preallocated (using zeros) then the time spent in initialization drops from

12 seconds (init call) to 6.2 seconds (init with preallocation). This illustrates the

value of the techniques needed to handle array reshaping and resizing.
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Figure 8.2: Applying procedure strength reduction.
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outage lb fad

This application computes a lower bound on the probability of outage for a queue

transmitting in a time varying wireless channel under average power and delay con-

straints. It is a relatively small application that spends almost all of its time in a

single procedure call. However, complex and deeply nested loops make the application

run time very long (several hours).

A straightforward application of procedure strength reduction reduces the run-

time of this application by 13.5% (Figure 8.2(c)). This indicates the power of the

approach in benefiting even relatively tightly written code.

Effect of Compilation

interpreted compiled stand−alone
0

50

100

150

200

250

300

350

400

450

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

effect of compilation on ser_test_fad

original 
optimized

Figure 8.3: Effect of compila-
tion on ser test fad.

The mcc compiler by MathWorks works by

translating matlab functions into C or C++.

The compiler simply translates the program into

an equivalent sequence of library calls that the

interpreter would make in executing the pro-

gram, without attempting to do any advanced

analysis. As a result, the benefit of the compiler

can be expected to be maximum when interpre-

tive overheads are high. This would be the case

when the application spends considerable time

in deeply nested loops.

The application outage lb fad was studied for the effects of compilation on pro-

cedure strength reduction. The procedure ser test fad, which accounts for almost
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the entire running time for the application, has a five-level deep loop nest. Figure 8.1

shows the results. While the performance improvement due to procedure strength

reduction falls a little for the compiled code, it is still significant at more than 11%.

Combining procedure strength reduction and compilation results in a performance

improvement of 23.4%.

It should be observed here that this application has very high interpretive over-

heads due to deep loop nesting and, therefore, represents a best-case scenario for

compilation by mcc. Other applications showed no significant performance gains due

to compilation.

The “stand-alone” column indicates run-times for the code that was compiled to

run as a stand-alone application. It is not clear why the stand-alone version of the

code is slower than the compiled version that runs under the matlab environment.

It could be an artifact of dynamically loadable libraries.

8.2 Evaluating the Compiler

Precision of Constraints-based Type Inference

The first set of experiments evaluates the precision of the static constraints-based

type inference algorithm. Due to the heavy overloading of operators, matlab code is

often valid for more than one combination of variable types. For example, a matlab

function written to perform FFT might be completely valid even if a scalar value

is passed as an argument that is expected to be a one-dimensional vector. The re-

sults might not be mathematically correct, but the matlab operations performed

inside the function may make sense individually. As a result, the static type infer-
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Figure 8.4: Precision of the constraints-based static type inference

ence algorithm can come up with multiple valid type-configurations. Additionally,

the limitations enumerated earlier in Section 3.3 can cause the number of configu-

rations to be greater than what would be valid for the given code. This does not

affect the correctness since only the generated code corresponding to the right con-

figurations will get used—the extra configurations simply represent wasted compiler

effort. In the case of the DSP procedures studied it turns out that if argument types

are pinned down through annotations on the argument variables then exactly one

type-configuration is valid.

Figure 8.4 shows the number of type-configurations generated for five different

DSP procedures by the constraints-based inference algorithm. The left bars indicate

the number of configurations generated without any annotations on the arguments.

The right bars indicate the number of type-configurations generated when the argu-

ments have been annotated with their precise types that are expected by the library
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writer.

The fact that the left bars are not all one (only the leftmost, for acf, is one) shows

that the static constraints-based algorithm does have limitations that get translated

to more than the necessary number of type-configurations. However, these numbers

are not very large—all, except fourier by jump, are smaller than 10—showing that

the static analysis performs reasonably well in most cases.

Another important observation here is that annotations on the libraries serve as

a very important aid to the compiler. The substantial difference in the precision of

the algorithm with and without annotations indicates that the hints from the library

writer can go a long way in nudging the compiler in the right direction. This conclu-

sion also validates the strategy of making library writers’ annotations an important

part of the library compilation process in the telescoping languages approach.

Effectiveness of Slice-hoisting

Having verified that there is a need to plug the hole left by the limitations in the

constraints-based inference algorithm, another set of experiments was conducted on

the same procedures to evaluate the effectiveness of slice-hoisting. Figure 8.5 shows

the percentages of the total number of variables that are inferred by various mecha-

nisms. In each case, exactly one type-configuration is produced, which is the only valid

configuration once argument types have been determined through library-writer’s an-

notations. In one case, of acf, all the arguments can be inferred without the need

for any annotations. The results clearly show that for the evaluated procedures slice-

hoisting successfully inferred all the array-sizes that were not handled by the static

analysis.
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Figure 8.5: Value of slice-hoisting

Type-based Specialization

Figure 8.6 shows the type-based specialization of Jakes. The left two bars are the

running times under matlab 6.5 and matlab 5.3, respectively. There is no bar for

matlab 5.3 on PowerBook because that version is not available under MacOS X. The

reported running times are those of the code running under the matlab interpretive

environment and not those of the code emitted by mcc. Experience in the past has

shown that compiling and running the mcc-generated code in a stand-alone mode is

usually marginally slower than running the code under the matlab interpreter. The

interpreter translates the matlab source into an intermediate “byte-code”, mitigating

the interpretive overheads. It is not clear why the stand-alone version should run

slower than that under the interpreter.

The performance is slightly better under matlab 6.5 because of the just-in-time

compiler that only exists in version 6.5. The rightmost bars are the running times
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Figure 8.6: Type-based specialization of Jakes

of a Fortran version of the same code that was the result of type-based specializa-

tion. No other optimizations were performed on the Fortran version, except those

performed by the back-end Fortran compilers. The bars clearly indicate a dramatic

performance improvement resulting from this single specialization that far outweighs

the performance gains out of just-in-time compilation. Similar improvements have

also been seen in the linear algebra domain.

The improvements are greater on SGI than on the other platforms. This could be

a result of the more advanced MIPSPro Fortran compiler on SGI that is able to do a

better job of optimizing the Fortran code. These performance differences due to the

back-end compilers validate the telescoping languages strategy of emitting code in

an intermediate language. Since the highly-tuned vendor compilers are often able to

do a very good job of compiling programs in lower-level languages, leveraging those
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compilers is much more profitable than attempting to generate native machine code

directly, which is likely to be of a poorer quality.
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Chapter 9

Contributions

Perhaps here is the reality we have always suspected. Do your best; you

will ultimately slip into history along with the trilobites and other proud

personae in this unfolding pageant. If we must eventually fail, what an

adventure to be players at all.

–Stuart Kauffman in At Home in the Universe

The biggest contribution of this dissertation is the partial validation of the telescop-

ing languages strategy for library generation in the domain of digital signal process-

ing. The experiments have successfully demonstrated that speculative specialization,

driven by library annotations, can result in remarkable improvements in performance

of library procedures written in matlab.

The telescoping languages strategy was studied for matlab libraries for DSP

applications. Related work on a linear algebra library, written in matlab, indicates

that the ideas bear fruit in other domains as well. There are strong indications that

similar results can be expected in compiling other numerical high-level languages,

such as R+. Libraries used by traditional language systems may also benefit from

the specialization techniques described here.



104

The rest of the chapter describes other specific contributions made during the

work on this dissertation.

9.1 Type Inference

A new type inference strategy has been developed in joint work with Cheryl Mc-

Cosh [13]. The resulting strategy allows type-based specialization of libraries. A

study on a linear algebra library has shown that users develop libraries in matlab

with multiple interpretations of types in mind. Further, type-correlation of arguments

is a common occurrence in library procedures. A similar conclusion holds for DSP

libraries even though the DSP libraries tend to be written with only one combination

of valid types in mind.

Detecting and specializing these library procedures on the intended types can

result in significant performance gains over using the most general types for each

variable [14]. A dynamic inference strategy for array sizes—called slice-hoisting—was

developed to infer those sizes that the static approach fails to handle [12].

9.2 Identification of Relevant Optimizations

A number of well-known optimizations have been identified that result in high pay-

off in compiling DSP libraries written in matlab [10, 11]. These optimizations are

expected to yield high performance benefits in other domains as well. The optimiza-

tions include loop vectorization, beating and dragging along, common sub-expression

elimination, and constant propagation. In addition, utilizing library identities was

found to be very valuable for high-level optimizations.
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Identifying the high-payoff optimizations is an important step in implementing

a telescoping compiler. There is a vast set of optimizations that are known in the

compiler community. Since the strategy envisions emitting code in an intermediate

language, such as C or Fortran, it pays to focus only on those optimizations that

can be applied at the source-level to obtain high performance benefits. Identifying

the relevant optimizations guides the process of the development of the telescoping-

languages infrastructure in the right direction.

9.3 Novel Inter-procedural Optimizations

Two novel inter-procedural optimizations were discovered—procedure strength reduc-

tion and procedure vectorization [10, 11]. Both of these optimizations also fall in the

category of high-payoff source-level optimizations.

Procedure strength reduction derives its name from operator strength reduction.

It is a slicing technique to perform speculative inter-procedural invariant code motion

at library compilation time. Procedure strength reduction can also be combined with

operator strength reduction and automatic differentiation, as argued in Chapter 6.

Procedure vectorization is a combination of loop-vectorization and loop-embedding.

9.4 A New Approach to Engineering the Compiler

A new approach to engineering a source-level optimizing compiler for high-level script-

ing languages has emerged in the process of developing a library compiler for matlab.

This approach has the potential to create remarkable software engineering efficiencies

in implementing a compiler.
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Traditionally, the optimizing component has been the bulk of a compiler im-

plementation. For the purposes of implementing a telescoping library compiler for

matlab the relevant optimizations lend themselves to being expressed as special-

ization transformations in an XML-based language. The language semantics require

dependence information. This radically changes the design of the optimizer. The

optimizer becomes a specialization engine that uses the dependence information to

drive optimizations supplied externally as specializations. This novel architecture of

the compiler enables rapid implementation of new optimizations and a much easier

verification of the correctness of optimizations.

9.5 Library Generating Compiler

Infrastructure development is a significant effort in compiler research. The work done

during the course of this dissertation has resulted in a matlab compiler infrastructure

consisting of about 25,000 lines of C++ code that uses the Standard Template Library

(STL) to succinctly express operations that would otherwise take many more lines of

code to implement. The infrastructure includes a matlab front-end, a type inference

engine, a specialization engine, and a code generator. The Apache open-source Xerces

library is used for XML parsing. The infrastructure has been successfully compiled

and tested on Solaris, Linux, and MacOS X.

The process of infrastructure development is a long and continuous one. The

compiler continues to evolve and is expected to be integrated with the Open64 infras-

tructure at Rice in order to be released as open source software. Parallel telescoping

languages effort for the R language is also expected to benefit from the type inference

and the specialization engines.
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Chapter 10

Related Work

‘The time has come,’ the Walrus said,

‘To talk of many things:

Of shoes—and ships—and sealing-wax—

Of cabbages—and kings—

And why the sea is boiling hot—

And whether pigs have wings.’

–Lewis Carroll in Through the Looking-glass

A consensus is building in the high-performance research community to raise the level

of abstraction in programming. As a result, more and more effort is being put into

this direction. This chapter reviews some of the work related to various aspects of

telescoping languages addressed in this dissertation.

10.1 High-level Programming Systems

APL programming language is the original matrix manipulation language. Several

techniques developed for APL can be useful in matlab compilation, for example, the

techniques to handle array re-shaping [1].
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In the context of their MaJIC project, work by Menon and Pingali has explored

source-level transformations for matlab [46, 47]. Their approach is based on using

formal specifications for relationships between various operations and trying to use

an axiom-based approach to determine an optimal evaluation order. They evaluated

their approach for matrix multiplication.

The ROSE project at the Lawrence Livermore National Laboratory aims to de-

velop techniques for high-level transformations of C++ code [50]. Their approach is

based on enhancing C++ grammar to a “higher-level grammar” and transforming the

C++ abstract syntax tree into that of the higher-level grammar. Multiple grammars

can be defined to form a hierarchy. Source-level transformations are carried out by

transforming these abstract syntax trees and optimized C++ code is generated by

unparsing the final tree. While this project has goals that are similar to those of

telescoping languages, the techniques employed and the target language are differ-

ent. In particular, the ROSE project is targeted at numerical applications written in

C++-like object oriented languages.

Automatically Tuned Linear Algebra Software (ATLAS) is a project at the Univer-

sity of Tennessee, Knoxville that is aimed at providing an automatic tuning framework

for the LAPACK and the BLAS libraries [58]. The key idea is to separate architecture

dependent parts of the code and, while installing the library, use test procedures to

find an “optimal” tuning for it. This is similar in spirit to telescoping languages and

demonstrates the power of the approach of offline specialization. Since the BLAS

constitute the backbone of many numerical computations (including matrix manipu-

lations in DSP), ATLAS complements telescoping languages very nicely—the former

focuses on architecture specific low-level optimizations while the latter aims to cap-

ture and exploit high-level properties of the source. Another similar project is FFTW,
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for computing the Fast Fourier Transform [30].

Many projects have attempted to translate matlab into lower-level languages

such as C, C++, or Fortran, with varying successes. Some of these target parallel

machines using standard message passing libraries. These include the Otter system

at the Oregon State University, the CONLAB compiler from the University of Umea

in Sweden, and Menhir from Irisa in France [51, 28, 15]. The MATCH project at the

Northwestern University attempts to compile matlab directly for special purpose

hardware [48].

10.2 Type Inference

The matlab package comes with a compiler, called mcc, by The MathWorks, Inc [44].

The mcc compiler works by translating matlab into C or C++ and then using a user

specified C/C++ compiler to generate object code. The generated code does not

indicate that the compiler performs any advanced inter-procedural analysis that is

proposed for telescoping languages.

Type inference of variables in high-level languages is well studied in the program-

ming languages community [49]. However, the primary goal of type inference in that

community is to prove that a given program behaves “correctly” for all inputs. Nu-

merical quantities are usually treated as one single type. The type inference problem

in the context of telescoping languages, in a way, starts where the language theorists

stop. Beyond proving the program correct it aims to refine the numerical types to

closely match the target language. This adds an engineering dimension to the prob-

lem. Specifically, backward propagation and overloaded operators make the problem

hard, necessitating approximations to keep the solutions tractable.
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Constraint Logic Programming (CLP) has become popular recently [54, 36, 37].

CLP extends the purely syntactic logic programming (typified by linear unification)

by adding semantic constraints over specific domains. Using constraints over type

domains would fall in the category of Constraint Logic Programming. Some of

the well known CLP systems include CHIP [27], CLP(R) [38], Prolog-III [17], and

ECLiPSe [57]. While a general purpose CLP system could be employed in solving

the constraints within the constraints-based type inference system, a more specialized

version is likely to be more efficient under the simplifying assumptions of the type

domain.

Type inference for matlab was carried out in the FALCON project at the Univer-

sity of Illinois, Urbana-Champaign [26, 25]. The FALCON compiler uses a strategy

based on dataflow analysis to infer matlab variable types. A simplified version of

FALCON’s type inference was later used in the MaJIC compiler [7]. Framing the

type inference problem as a dataflow problem is inadequate for the purposes of a

telescoping compiler, as discussed in Chapter 3. However, the biggest drawback of

FALCON’s approach to compilation, from the point of view of telescoping languages,

is that all function calls are handled through inlining. This leads to a potential blowup

in compilation time if library procedures have to be optimized. Separate compilation

is unavoidable in the context of telescoping languages—something that is not possible

in FALCON. Moreover, recursive functions cannot be handled with this approach and

some newer language features of matlab have not been addressed.

Building on the FALCON system based on de Rose’s work, the University of

Illinois and Cornell University have developed a Just In Time (JIT) compiler for

matlab under their joint project called MaJIC [43]. MaJIC uses a simplified ver-

sion of FALCON’s type inference. However, some recent work enhances the type
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inference system with backwardly propagated hints for type speculation [7]. This

necessitates iterating over forward and backward passes until convergence. In a gen-

eral context, such as that encountered in telescoping languages, reasoning about the

time complexity—or even termination—of this approach is difficult. In contrast, us-

ing propositional expressions to capture the bidirectional flow of information leads to

clean graph theoretical algorithms that work for general operators.

Array-size Inference and Slice-hoisting

To perform array-size inference FALCON strategy relies on shadow variables to track

array sizes dynamically. In order to minimize the dynamic reallocation overheads it

uses a complicated symbolic analysis algorithm to propagate symbolic values of array

sizes [56]. Slice-hoisting, on the other hand, can achieve similar goals through a much

simpler use-def analysis. Moreover, if an advanced symbolic or dependence analysis is

available in the compiler then it can be used to make slice-hoisting more effective. Fi-

nally, even very advanced symbolic analysis might not be able to determine sizes that

depend on complicated loops while slice-hoisting can handle such cases by converting

them to the inspector-executor style.

Conceptually, slice-hoisting is closely related to the idea of inspector-executor

style pioneered in the Chaos project at the University of Maryland, College Park by

Saltz [52]. That style was used to replicate loops to perform array index calculations

for irregular applications in order to improve the performance of the computation

loops. In certain cases, hoisted slices can reduce to an inspector-executor style com-

putation of array sizes to avoid the cost of array resizing in loops. However, the idea

of slice-hoisting applies in a very different context and is used to handle a much wider
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set of situations.

An issue related to inferring array sizes is that of storage management. Joisha and

Banerjee have developed a static algorithm, based on the classic register allocation

algorithm, to minimize the footprint of a matlab application by reusing memory [39].

Reducing an application’s footprint can improve performance by making better use

of the cache. If a hoisted slice must be executed at runtime to compute the size of an

array then the array will be allocated on the heap by Joisha and Banerjee’s algorithm.

Their algorithm can work independently of—and even complement—slice-hoisting.

Type inference, in general, is a topic that has been researched well in the pro-

gramming languages community, especially in the context of functional programming

languages. Inferring array sizes in weakly typed or untyped languages is undecidable

in general, and difficult to solve in practice. Some attempts have been made at infer-

ring array sizes by utilizing dependent types in the language theory community. One

such example is eliminating array-bound checking [60].

10.3 Libraries, Specialization, and Partial Evalua-

tion

The Broadway project at the University of Texas, Austin aims at compiling libraries

effectively [32, 33]. Many of the project’s goals are similar to those of telescoping

languages. However, its focus is on libraries without any high-level scripting language,

thus avoiding the issue of type inference. While the telescoping languages approach

emphasizes specialization aided by library annotations, the Broadway approach relies

on a specially designed library annotation language to optimize programs that use
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those annotated libraries. The Broadway compiler also attempts to catch library

usage errors while the telescoping languages approach makes no attempt at error

checking. Instead, it assumes that the script has been debugged under an interpreted

environment before the optimizing script compiler is invoked. A scripting language

front-end also reduces the possibilities of library usage errors. Finally, the telescoping

languages approach has a much greater focus on identifying and discovering high-level

optimizations.

The Rn system developed at Rice in the 1980s contained several elements of man-

aging inter-procedural optimizations that have motivated the telescoping languages

approach [19]. A big contribution of the Rn project was the design of a program com-

piler that performed a recompilation analysis whenever a piece of code was recompiled

in order to incrementally update the inter-procedural information of separately com-

piled components. Thus, the system was able to make use of stored information about

pre-compiled procedures to carry out inter-procedural optimization of the whole pro-

gram and tailer the code of individual procedures to their calling contexts.

Link-time optimization has been proposed to perform inter-procedural optimiza-

tions across boundaries of pre-compiled binary libraries or modules [53, 8]. These

methods make use of the binary information in the pre-compiled object code at link-

time. For compiling scripting languages, higher-level transformations are critical,

which are likely to be missed by relying solely on link-time optimizations to perform

inter-procedural optimizations. Library annotations and variant generation at the

library compilation time enable high-level transformations in telescoping languages.

Cooper, Hall, and Kennedy presented a O((N + E)Nkmax) algorithm to compute

procedure clones in order to make more precise compile time information available to

a compiler and thus enable more code transformations [18]. Here, N is the number
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of procedures in the program, E is the number of call sites, and kmax is a constant

that is expected to have a small value for most programs. The algorithm proceeds

in three phases. The first phase propagates cloning vectors down the call graph.

Cloning vectors represent cloning opportunities. Second phase merges equivalent

cloning vectors using an algorithm that is similar to that of DFA state-minimization.

Finally, a third phase performs the actual cloning until the code grows beyond a

specified threshold. The algorithm is capable of handling any data flow problem,

although, only forward data flow problems, such as constant propagation and alias

analysis that can lead to improved opportunities for optimization, are relevant. Some

of the techniques developed in this work to manage clones can be reused in code

specialization under telescoping languages.

Partial evaluation is a concept that is related to specialization and has been widely

studied in the functional programming world [49]. Recently, Elphick, et al., have pro-

posed a scheme for partial evaluation of matlab through source-to-source transfor-

mation [29]. In order to statically evaluate as much code as possible they make use of

a type-system very similar to the one used in this dissertation, however the informa-

tion is only carried forward, with no backward propagation. Their system performs

no specialization even though they admit that that could result in big improvements.

From the perspective of the telescoping languages approach, their system does not

go far enough. Moreover, the partial-evaluation proposed by Elphick, at al., could be

carried out as a pre-pass within the telescoping languages system, thus complementing

library compilation.

Multi-stage programming is a systematic method of partial evaluation that has

been used to improve the performance of functional languages [55]. It is a powerful

technique based on solid theoretical foundations. Unfortunately, it has never been ap-
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plied to imperative numerically oriented languages, such as matlab. Such languages

pose their own challenges that remain unresolved.

10.4 Design of Compilation Systems

Engineering a compiler has been recognized as a difficult problem—sometimes, com-

pared to slaying a dragon [3]. Fortunately, simpler designs can be used for certain

situations, e.g., for compiling matlab, as demonstrated in Chapter 6.

Source-level transformations were pioneered by David Loveman in his classic pa-

per [42]. Indeed, there are several similarities between the approach outlined in

this paper and Loveman’s approach of source-to-source transformation. He envi-

sioned performing most optimizations at the source-level and then having a relatively

straightforward code generator. The telescoping languages approach relies on highly-

tuned vendor compilers for C or Fortran that are the target languages for our matlab

compiler. Since the output of the compiler is expected to be passed through an opti-

mizing compiler it is possible to ignore those lower-level optimizations that are now

standard in most compilers for lower-level languages. The design of the compiler

presented in this dissertation is particularly targeted at matlab—or matlab-like

languages—that allow certain simplifications due to their characteristics, such as ab-

sence of aliasing. Finally, libraries play a key role in high-level scripting languages.

Therefore, most of the optimizations are designed to specialize library procedures and

make use of the already optimized lower-level libraries.

Compilers have traditionally followed a phased architecture divided into three ma-

jor phases: the front-end, the middle optimizer, and the back-end [21]. Most current

compiler research focuses on the optimization phase and there exists a large body of
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work on designing individual optimizations. An equally important issue in a practi-

cal compiler is that of ordering the optimizations. The optimization phase, typically,

consists of a series of optimization steps, one feeding into the next. These phases are

often not independent of each other but interact with each other closely. Determining

the right order of optimizations is a hard problem with a huge space of possibilities,

forcing most practical compiler writers to follow rules of thumb based on past experi-

ence or intuition. Sometimes, detailed studies can determine that certain phases are

best executed together in order to eliminate certain undesirable consequence of their

interactions [16]. There have also been attempts to use artificial intelligence search

techniques, based on genetic algorithms, to automatically generate right sequences

of optimizations [20]. The simplified optimizer for matlab enables experimentation

with “compiling sequencing” by simply feeding the specialization engine with various

permutations of specification sequences. It can also enable combining multiple phases

if a specification can be written for the combined transformation.

10.5 Other Related Work

Currying in functional programming languages is a concept related to the idea of

procedure strength reduction [22]. Currying abstracts away a function with multiple

arguments using a sequence of one-argument functions. The process of currying does

not necessarily split the computation across these functions. Procedure strength

reduction also serves to reduce the number of arguments to a function, but its entire

purpose is to split the computation so that the loop-invariant computation can be

hoisted outside the enclosing loop.

Automatic differentiation (AD) is another powerful technique that is related to



117

procedure strength reduction, as discussed in Section 5.1. It may be possible to apply

automatic differentiation to procedure strength reduction, thus leveraging the well

established AD techniques.
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Chapter 11

Conclusion and Future Work

The known is finite, the unknown infinite; intellectually we stand on an

islet in the midst of an illimitable ocean of inexplicability. Our business in

every generation is to reclaim a little more land.

–Thomas Henry Huxley

This dissertation work has demonstrated the feasibility of automatic generation of

DSP libraries based on the telescoping languages approach, driven by specialization.

Experimental studies on applications from the Digital Signal Processing domain sup-

port the conclusion. Numerical algebra libraries have also been found to be equally

amenable to the approach outlined in this dissertation [14]. This represents a sig-

nificant step towards the adoption of scripting languages for substantial applications

in order to benefit from the immense productivity gains that would inevitably result

from making this move.

The type inference solution enables effective type-based library specialization.

Specializing on types enables emitting code in the target language using primitive

data types of that language, which greatly aids the back-end compiler in generating
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good object code. It also allows array variables to be allocated once in the beginning

of a procedure call—or even statically—eliminating dynamic resizing of arrays that

is a major source of inefficiencies in some library procedures.

Identification of high-payoff optimizations and the discovery of two new optimiza-

tions were very important steps towards optimizing the DSP libraries. The study

that led to these discoveries also confirmed the value of library writers’ annotations

in guiding the library compiler to generate variants.

A conceptual framework has been laid out for automatic generation of libraries and

implemented as a library compiler for matlab based on specialization engine. The

unique design of the optimizer, which is driven by specializations specified externally

in an XML-based language, enables the representation of all relevant optimizations

as specializing transformations. It also facilitates code generation directly in terms

of optimized underlying libraries, such as the BLAS.

The type inference engine of the compiler has been tested on an informal DSP

library and the effectiveness of type-based specialization has been verified on DSP

code. The new optimizations that were discovered have also been experimentally

evaluated for their effectiveness on DSP applications.

The work presented here is only the beginning of what promises to be an exciting

new approach to compiling for high performance. This chapter provides a glimpse into

what is needed in immediate future and conjectures on some of the future directions

that have opened up as a result of the findings described so far.
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11.1 Short Term Future

There are certain aspects of the system developed during this dissertation that need

more work in order for it to be deployable as an open source software. The static type

inference system needs to be refined and made more robust in the face of different

types of expressions. There also needs to be a control mechanism that would prevent

the compiler from getting bogged down by too many cliques. The constraints-based

type annotations on procedures may need to be extended to achieve this. One ex-

tension that can be easily incorporated is the form of type dependence where the

output type of a procedure depends on the value, rather than the type, of its input

arguments. For example, the matlab primitive ones is such a case.

Variant generation needs to provide safeguards against “variant explosion”. For

example, if an array is complex along one conditional branch and real along the

other it may be worthwhile generating two different variants corresponding to the

two different branches. However, this has the potential of leading to a combinatorial

explosion of the number of variants. At some point the alternative of simply inferring

the type at runtime and doing a copy becomes more attractive.

There are pending issues regarding supporting code that has a combination of

variables whose types have been completely inferred (including those handled through

slice-hoisting) and those that must be resolved totally at runtime. matlab already

provides a mechanism to handle this, but the code generation will need to be adapted

to leverage it.
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11.2 Future Directions

Apart from the short term polishing work there are many other research directions

that have opened up. This section discusses a few.

High-Level Reasoning

As high-level languages raise the level of programming abstraction, and the compiler

becomes aware of the high-level operations via the telescoping languages approach,

new optimization opportunities open up. This is an issue that was also briefly alluded

to earlier in the dissertation. A user script compiler has limited time, but a library

compiler could spend a lot of time analyzing various alternatives. A specialization

choice made at one point in the program may have a cascading effect on choices

available at other points. The compiler will need to operate with a cost-metric in

order to evaluate different choices and pick the best possible.

A related issue is that of designing an annotation mechanism that can enable such

high-level reasoning. The mechanism will need to be powerful enough to capture

specialization as well as describe context dependent transformations along with their

cost benefits.

Time-bound Compilation and AI Techniques

User scripts are usually small—the largest of the top-level DSP applications runs no

more than a few hundred lines. However, users are willing to wait for a certain amount

of time for the compilation to end as long as it does not hinder their interactivity

too much. For example, it may be perfectly acceptable for a script compiler to spend

two seconds on compilation, instead of two milliseconds. This means that it may
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be possible to perform deeper analysis even within the user script compiler rather

than settling for a very preliminary peep-hole optimization. However, this analysis

will have to be carefully planned to be time bound. It will need to be conducted

in phases, generating valid code at the end of each phase, so that the compilation

may be terminated whenever a pre-determined time period ends. Such a method

of compilation can be highly adaptive, as it will automatically do a better job on a

better (faster) machine without sacrificing the user interactivity.

Some lessons from just-in-time compilation may be useful here. However, self-

learning AI techniques may be even more useful. The self learning techniques may

determine, over time, which combinations of specializations turn out to be useful and

which ones are not worth exploring.

Another application of AI techniques in the telescoping languages framework is in

learning new contexts for extending the libraries. If an unforeseen context, or a class

of closely related contexts, arises sufficiently often in user scripts, the script compiler

may be able to provide a feedback to the library compiler in order to specialize the

library for that context. The script compiler will need to generalize the context

to a class or, at least, recognize a class of closely related contexts and formulate a

description for the class. In this way, libraries could be finessed over time and even

adapted to specific users.

Dynamic Compilation and the Grid

The idea of computational grid has been attracting a lot of attention recently. One

characteristic feature of the grid is its dynamically evolving nature. If the definition

of a context is extended to include the run-time environment then the process of
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specialization can also account for different run-time scenarios. For example, the

libraries could be specialized to specific network topologies, network load signatures,

and the characteristics of the available computational nodes.

Library compilation then becomes a continuously evolving process. Some of the

ideas outlined in the previous section may also apply here.

Parallelization

One way to write parallel programs is to employ the fork-join model to use parallelized

libraries. In such a case parallelization of libraries can be seen as just another form

of specialization. The parallelization of libraries could in itself be specialized to a

variety of different parallel environments. Further, it may be possible to eliminate

the overheads of the fork-join model by, for example, recognizing the redundancy of

a join immediately followed by a fork, which would be similar to recognizing library

identities.

Several additional, difficult, issues will need to be addressed. Data distribution in

a non-uniform memory access environment adds another dimension to the problem

of determining identities. The cost model will need to include data communication

costs and the compiler will need to be able to estimate communication requirements.

Performing redundant computations locally will need to be weighed against fetching

data remotely and the selection of the appropriate variants of the libraries will be

governed by these tradeoffs.
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Automatic Differentiation

Automatic differentiation has been used has a successful technique in numerical ap-

plications to automatically generate code for computing the derivative of a function

from the given code to compute the function. If this function is invoked inside a loop

that computes the value of the function at regular intervals then this technique could

be used to perform procedure strength reduction on that function. The value of a

function, f , at point x+∆x is approximately f(x)+∆x.f
′

(x) if ∆x is sufficiently small

compared to f
′′

(x), i.e., the rate of change of the derivative. The numerical stability

of such an approach will need further investigation.

Diversifying the Domains

Large parts of modern integrated circuits are automatically synthesized and utilize

pre-built libraries of components. These components are then stitched together by

a synthesizing compiler to build the system. Often the important parts then need

to be tuned by hand to maximize performance or certain library components may

simply not be usable for the specialized needs of a context. Specialization techniques

developed in the telescoping languages approach could automatically optimize the

component libraries for specific situations. One of the challenges here would be to

develop an annotation language that can be used to describe properties of the circuits

and their interfaces.

A very interesting set of possible studies would be to find similar applications

in other domains, determine the applicability of “stock” telescoping languages tech-

niques, and develop specific techniques suitable for those domains.
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11.3 Final Remark

Compiler technology has come a long way since the earliest compilers that pushed

an overwhelming majority of software development from assembly languages to, what

were then considered, high-level languages. Today we are poised to make a similar leap

from the erstwhile high-level languages to modern domain-specific scripting languages.

The prototype compiler built during this dissertation work has established that the

technology has advanced enough to make this possible. On the other side of this

leap are fantastic productivity gains that millions of users already enjoy for small

programs. There is motivation, and there is method; a beginning has been made. It

is only a matter of time when we will look back at programming in C and Fortran

the way we look back at programming in assembly languages.
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Appendix A

Procedure Strength Reduction for

Nested Loops

Suppose that reduction in strength is applied to a procedure that is called inside a

loop nest k levels deep. An execution time is associated with each reduction as shown

in Figure A.1.

for i1 = 1:N1

for i2 = 1:N2

....
for ik = 1:Nk

x = f (α0 α1 α2 ... αk);
end

....
end

end

⇒

fµ0
(α0); // Tµ0

for i1 = 1:N1

fµ1
(α1); // Tµ1

for i2 = 1:N2

....
fµk−1

(αk−1); // Tµk−1

for ik = 1:Nk

x = fµk
(αk); // Tµk

end

....
end

end

Figure A.1: Procedure strength reduction in a general case.
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The original running time, Tθ is given by:

Tθ =

(

k
∏

i=1

Ni

)

× T

where T is the original running time of one call to f. The new execution time, Tν ,

for the translated code is given by

Tν = Tµ0
+ (N1) × Tµ1

+ (N1.N2) × Tµ2
+ ... +

(

k
∏

i=1

Ni

)

× Tµk

Thus, the difference in running time, T∆, is

T∆ = Tθ − Tν

and relative improvement in speed, T∆/Tθ, is given by

T∆

Tθ

= 1 −
Tν

Tθ

or

T∆

Tθ

= 1 −
1

T
×

[

Tµk
+

Tµk−1

Nk

+
Tµk−2

Nk−1.Nk

+ ... +
Tµ0

∏k
i=1 Ni

]

This provides an upper bound on the amount of performance improvement that

can be achieved with this method, which is 1 − Tµk
/T .

In addition, this equation also provides another useful insight. It is usually the

case that the sum of the running times of all fµs is equal to the original running

time T of f , i.e., T =
∑k

i=0 Tµi
. To obtain maximum performance improvement the

summing series in the brackets must be minimized. It is minimized if we can make

all Tµ1
...Tµk−1

values zero while maximizing Tµ0
given the constraint that all Tµi

sum

to T . This corresponds to the intuition that computation should be moved out of the

entire loop nest, if possible. However, notice that except the first term, all other terms
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in the brackets have iteration range in the denominator. Thus, for any reasonably

large loop the contribution from all those terms is insignificant. For example, if Nk is

100 the effect of all terms after the first is of the order of only 1%. This leads to the

conclusion that except for the case when the innermost loop is very short (in which

case the compiler should consider loop unrolling) splitting the procedure f more than

once may not provide significant benefits. From compiler’s perspective, it need not

spend much time attempting to reduce procedures multiple times for a multi-level

loop since the marginal benefits after the first split are minimal.
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Appendix B

XML Schema for Optimization

Specification

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

targetNamespace="http://www.cs.rice.edu/TeleLangs"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:mint="http://www.cs.rice.edu/TeleLangs"

elementFormDefault="qualified">

<xsd:annotation>

<xsd:documentation xml:lang="en">

Optimizations as Specializations.

Rice University, 2003.

</xsd:documentation>

</xsd:annotation>

<xsd:element name="specializations">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="specialization" type="mint:transformation"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>
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</xsd:element>

<xsd:complexType name="transformation">

<xsd:choice>

<xsd:sequence>

<xsd:element name="context" type="mint:preCondition"/>

<xsd:element name="match" type="mint:stmtList"/>

<xsd:element name="substitute" type="mint:stmtList"/>

</xsd:sequence>

<xsd:sequence>

<xsd:element name="context" type="mint:preCondition"/>

<xsd:element name="replaceAllOccurs" type="mint:replacementSpec"/>

</xsd:sequence>

</xsd:choice>

</xsd:complexType>

<xsd:complexType name="preCondition">

<xsd:sequence minOccurs="1" maxOccurs="unbounded">

<xsd:element name="type">

<xsd:complexType>

<xsd:attribute name="var" type="mint:identifier"/>

<xsd:attribute name="dims" type="xsd:nonNegativeInteger"

use="optional"/>

<xsd:attribute name="intr" type="mint:intrinsic"

use="optional"/>

<xsd:attribute name="constant" type="xsd:boolean"

use="optional"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="stmtList">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="simpleStmt" type="mint:simple"/>

<xsd:element name="loopStmt" type="mint:loop"/>

<xsd:element name="twoWayBranchStmt" type="mint:twoWayBranch"/>

<xsd:element name="multiWayBranchStmt" type="mint:multiWayBranch"/>

<xsd:element name="anyStmt" type="mint:wildCard"/>

</xsd:choice>

</xsd:complexType>

<xsd:complexType name="replacementSpec">
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<xsd:sequence>

<xsd:element name="occurence" type="stmtList"/>

<xsd:element name="replacement" type="stmtList"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="simple">

<xsd:sequence>

<xsd:element name="function" type="identifier"/>

<xsd:element name="input" type="mint:valList"

minOccurs="0" maxOccurs="1"/>

<xsd:element name="output" type="mint:valList"

minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="loop">

<xsd:sequence>

<xsd:element name="condition" type="mint:constOrIdentifier"/>

<xsd:element name="increment" type="mint:simple"

minOccurs="0" maxOccurs="1"/>

<xsd:element name="body" type="mint:stmtList"

minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="twoWayBranch">

<xsd:sequence>

<xsd:element name="condition" type="mint:constOrIdentifier"/>

<xsd:element name="truebody" type="mint:stmtList"

minOccurs="0" maxOccurs="1"/>

<xsd:element name="falsebody" type="mint:stmtList"

minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="multiWayBranch">

<xsd:sequence>

<xsd:element name="condition" type="mint:constOrIdentifier"/>

<xsd:element name="case">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="value" type="mint:constOrIdentifier"/>
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<xsd:element name="body" type="mint:stmtList"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="truebody" type="mint:stmtList"

minOccurs="0" maxOccurs="1"/>

<xsd:element name="falsebody" type="mint:stmtList"

minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="wildCard">

<xsd:attribute name="minCount" type="xsd:nonNegativeInteger"/>

<xsd:attribute name="maxCount" type="xsd:nonNegativeInteger"/>

</xsd:complexType>

<xsd:complexType name="valList">

<xsd:choice minOccurs="1" maxOccurs="unbounded">

<xsd:element name="val" type="mint:identifier"/>

<xsd:element name="asection">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="dim" minOccurs="1" maxOccurs="unbounded">

<xsd:complexType>

<xsd:choice>

<xsd:element name="lower" type="mint:constOrIdentifier"/>

<xsd:element name="upper" type="mint:constOrIdentifier"/>

<xsd:element name="step" type="mint:constOrIdentifier"/>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name="var" type="mint:identifier"/>

<xsd:attribute name="dims" type="xsd:nonNegativeInteger"/>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

<xsd:simpleType name="intrinsic">

<xsd:restriction base="xsd:string">

<xsd:pattern value="boolean|integer|real|complex|char"/>

</xsd:restriction>
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</xsd:simpleType>

<xsd:simpleType name="identifier">

<xsd:restriction base="xsd:string">

<xsd:pattern value="[_a-zA-Z]([a-zA-Z_]|\d)*"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="constOrIdentifier">

<xsd:choice>

<xsd:element name="const" type="xsd:nonNegativeInteger"/>

<xsd:element name="symbolic" type="mint:identifier"/>

</xsd:choice>

</xsd:complexType>

</xsd:schema>
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The philosophical lesson learned from this doctorate:

Timeliness is more important than perfection.
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