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Abstract—Graphics processing units (GPUs) have the potential
to greatly accelerate many applications, yet programming models
remain too low level. Many language-based solutions to date have
addressed this problem by creating embedded domain-specific
languages that compile to CUDA or OpenCL. These targets are
meant for human programmers and thus are less than ideal
compilation targets. LLVM recently gained a compilation target
for PTX, NVIDIA’s low-level virtual instruction set for GPUs.
This lower-level representation is more expressive than CUDA
and OpenCL, making it easier to support advanced language
features such as abstract data types or even certain closures. We
demonstrate the effectiveness of this approach by extending the
Rust programming language with support for GPU kernels. At
the most basic level, our extensions provide functionality that
is similar to that of CUDA. However, our approach seamlessly
integrates with many of Rust’s features, making it easy to build
a library of ergonomic abstractions for data parallel computing.
This approach provides the expressiveness of a high level GPU
language like Copperhead or Accelerate, yet also provides the
programmer the power needed to create new abstractions when
those we have provided are insufficient.

Index Terms—GPUs; Mozilla Rust; Harlan; LLVM; PTX

I. INTRODUCTION

The architecture of graphics processing units (GPUs) is well
suited for data-parallel problems. They support extremely high
throughput through many parallel processing units and very
high memory bandwidth. For problems that match the GPU
architecture well, it is not uncommon for a naive algorithm
to achieve a 2× speedup over a CPU implementation of the
same problem, and tuned implementations can outperform the
CPU by a factor of 10 to 100. Programming these processors,
however, remains a challenge because the architecture differs
so significantly from the CPU. Current GPU programming
methods tend to fall into one of two categories: systems
level, in which the programmer manages architectural details
such as memory placement and the number and arrangement
of threads; and high level, which typically provide a set of
operators over arrays such as map or reduce from which
kernels are composed.

Both approaches have strengths and weaknesses. High-level

approaches are typically more productive for the programmer
because they do not have to be as concerned with architectural
details. Not all problems are naturally expressed in terms of
high-level data parallel operators, however, and these operators
may miss out on specific features of the available hardware.
Systems-level approaches give the programmer more control
over the execution of their program, and thus the code can
be tuned to maximize the features of the hardware. This extra
control leads to better performance in the hands of an expert
programmer, but at a significant cost to the maintainability of
the code.

Ideally, both approaches could exist in the same language.
The language would provide access to the low-level architec-
tural features of the GPU hardware, but also provide higher
level features to capture common programming patterns. These
patterns could be provided in a library that would meet the
needs for many programs and yet the programmer could still
produce highly tuned application-specific code using the lower
level features when necessary.

We explore this very idea in this work using the Rust
programming language [1]. Rust provides an ideal mix of
systems-level features, while also including efficient imple-
mentations of many features from functional languages, such
as, higher order functions and type classes. Furthermore,
Rust compiles using LLVM [2], which means we can easily
generate GPU kernels from Rust using the recently released
LLVM PTX target. We have implemented support for writing
GPU kernels in Rust, and built several higher level abstractions
that make writing GPU kernels feel very similar to writing
normal Rust code.

We make the following contributions.
• We show that by translating from LLVM to PTX we

can quickly support advanced languages features in GPU
kernels, including algebraic data types and some types of
closures and higher order functions.

• We show how supporting these advanced features enables
us to provide both systems-level abstractions and more
convenient high level operators in the same language



(Section III).
• We show that this approach still yields performance that is

comparable to hand-written OpenCL kernels (Section V).
• We comment on our experience working with LLVM’s

PTX backend and OpenCL, and discuss how this process
can be simplified in the future (Section IV).

II. BACKGROUND

A. General-Purpose GPU Computing

Graphics Processing Units (GPUs) are specialized proces-
sors whose development has primarily been driven for the
demand for stunning visuals in video games. As GPUs have
become more powerful, they have evolved into fairly general-
purpose data-parallel processors and are seeing increased use
in scientific computing and other disciplines. Writing efficient
GPU programs requires a working knowledge of GPU ar-
chitecture, and so we provide a brief introduction here. We
focus on NVIDIA GPU architectures, although other GPUs
are similar [3].

NVIDIA GPUs are made up of several Streaming Multi-
processors (SMs). Each SM supports many execution contexts
that are scheduled in terms of warps. A warp can be thought
of as 32 threads, but these threads all execute in lock step.
GPUs emphasize throughput over latency, so there is little to
no use of speculation and out of order execution. Instead, these
features manifest through the way warps are scheduled. It is
very inexpensive for an SM to start executing a different warp,
so when the current warp stalls for some reason (for example,
waiting on memory), the SM can simply execute a different
warp that is ready for execution. This is a form of simultaneous
multithreading.

The most popular framework for programming NVIDIA
GPUs is CUDA [4], which presents the programmer with the
illusion of a virtually unlimited set of threads. These threads
are grouped into warps that execute in lock step, and the warps
are grouped into blocks. All warps assigned to a single block
execute on the same SM. High performance GPU kernels are
structured to take advantage of these divisions.

Memory management on GPUs is more complicated than
CPUs. Most of the memory falls into the global memory
category, which resides in off-chip DRAM. GPUs also provide
a small amount of local memory for each SM, which is
akin to L2 cache on CPUs. Changes to global memory are
visible to all CUDA threads, while local memory changes
are only visible to a single thread block. Local memory is
very fast, but also limited in size. Writing efficient GPU codes
requires judicious use of local and global memory. There are
additional memory divisions as well, including constant and
texture memory, but we do not consider them in this work.

B. Rust

Rust is a new, multi-paradigm programming language being
developed at Mozilla Research [1]. Rust targets large systems
applications such as web browsers. The goal of Rust is to offer
performance comparable to C++ while ensuring type safety
and data-race freedom.

Rust’s design intentionally draws inspiration from both
functional and imperative languages. Many of the higher-
level type system features, such as algebraic data types,
pattern matching and bounded polymorphism, were pioneered
in languages like Haskell and ML. However, as in C and
C++, Rust gives users complete control over memory layout
and allocation. Data structures can be embedded within one
another without pointer indirection and stack allocation is
encouraged. A region-based type system ensures that pointers
into the stack never outlive the stack frame.

There are several aspects of Rust’s design that work together
to make it an attractive host for GPU programming. We
focus on three of those aspects here: concurrent programming,
owned versus managed memory, and zero-cost abstractions.

a) Concurrent programming: Rust includes native sup-
port for concurrent programming in the form of an actor
model, similar to Erlang. Programs are structured as in-
dependent, lightweight tasks with no shared memory. All
communication takes place via message passing over statically
typed channels.

Given that a GPU usually works as a coprocessor running
independently from the main thread of control in the CPU,
it is logical to model the GPU as a task in Rust. A proxy
task on the CPU mediates data communication. Computations
are initiated by sending messages to this task and the results
are sent back over the same channel. Rust programmers are
already used to thinking about memory layout and it would
likely be a minor step to make Rust aware of the GPU memory
hierarchy.

b) Owned vs managed memory: Rust divides heap al-
locations into two categories: managed pointers and owned
pointers. Managed pointers are similar to the pointers found
in other safe languages like Java: they are garbage collected
and may be freely aliased. However, unlike Java, managed
pointers in Rust are always confined to a single task, in order
to avoid the possibility of data races.

Owned pointers, in contrast, cannot be freely aliased but
instead are transfered from place to place. The region system is
used to guarantee that any aliases to owned data are temporary
and cannot escape from a given method call. Since, each
owned pointer has exactly one owning reference at any time,
it can be safely sent from one task to another without risking
data races.

The distinction between owned and managed memory also
means that garbage collection is effectively optional. Aliasing
of owned pointers is carefully controlled using the region
system, allowing the compiler to identify points in the program
when owned pointers become dead and freeing the memory
immediately.

Rust programs can therefore avoid garbage collection en-
tirely by using owned pointers and the stack frame for their
storage needs. In the kinds of programs that Rust is targeting,
it is often crucial to be able to guarantee that certain inner
loops of the code will have very low latency (for example,
the compositor loop in a browser must not stall or the user
will experience undesirable glitches and slow performance).



The ability to avoid garbage collection is also helpful for the
GPU, which is not well-suited to running a garbage collector.

c) Zero-cost abstraction: Like C++, Rust uses aggressive
optimization to permit building higher-level abstractions that
compile down to lower-level code. As a simple example, the
standard idiom for iteration in Rust is to use a higher-order
function with a closure argument, as shown here:

vec.iter(|e| io::println(e.to_str()));

If this code were to be executed naively, it would require
constructing a closure and then repeatedly invoking this clo-
sure on each element in the vector. Although closure creation
in Rust is very cheap—when possible, closures are allocated
directly on the stack—this would still be a relatively expensive
way to iterate over a loop. In practice, however, aggressive
inlining and type specialization means that code like this is
compiled into a tight loop comparable to what one would
expect from a C for loop.

Rust also features an expressive trait system that can be used
to construct abstractions. Rust’s traits are comparable to C++
concepts [5] or Haskell’s type classes [6]. Traits permit users to
write generic functions that operate over many different types
of data. Whenever a generic function is invoked with a specific
set of types for its arguments, the compiler will generate
a specialized variant (much like C++ templates). Generating
specialized variants ensures that the generated machine code
is fully statically linked, enabling the application of inlining
and other optimizations.

C. LLVM

LLVM, or Low-Level Virtual Machine, is a “collection
of modular and reusable compiler and toolchain technolo-
gies.” [2], [7]. The goal of LLVM is to provide a modern
compilation strategy capable of supporting both static and
dynamic compilation of multiple languages. LLVM has gained
remarkable popularity in recent years, and is being used in
several mainstream compilers, including gcc. Several other
related projects have evolved around LLVM [7]. Rust also
uses LLVM as its backend.

D. PTX

Parallel Thread Execution, or PTX, is an Instruction-Set
Architecture (ISA) and a virtual machine that enables general
purpose computing on NVIDIA GPUs [8]. PTX can also be
considered as an intermediate language from the perspective
of the compiler. The PTX code generated by compiler is
translated into the target device instruction set just-in-time,
during execution. PTX enables portability across different
generations of GPUs and acts as a device-independent ISA
that can be used as a code generation target by compilers.

We make use of the PTX back-end of LLVM to generate
PTX code directly from our embedded language within Rust.

III. APPROACH

There are two main parts to our approach. The first is to add
support for low-level GPU programming to Rust. The second

#[kernel]
fn add_float(x: &float,

y: &float,
z: &mut float)

{

*z = *x + *y
}

Fig. 1. A first kernel in Rust.

#[kernel]
fn add_vectors(++x: ˜[float],

++y: ˜[float],
++z: ˜[mut float])

{
let i = ptx_ctaid_x() * ptx_ntid_x()

+ ptx_tid_x();
z[i] = x[i] + y[i];

}

Fig. 2. Vector addition on GPU.

is to build a set of abstractions on top of these features to
simplify the programmer’s experience.

A. Low-level GPU Programming

Rust’s already low-level nature makes the first step rel-
atively straightforward. The Rust front-end compiles to the
LLVM intermediate representation. By adding a mode that
uses LLVM’s PTX backend we can build basic support for
GPU. Fig. 1 shows a simple kernel that adds two floating
point numbers and returns the result through the parameter
z. Rust has built-in support for adding arbitrary annotations.
GPU kernels are marked by the #[kernel] annotation. In
the code, the variables x, y, and z are declared as pointers to
float. The mut keyword specifies that z is mutable.

In order to write more powerful kernels, we add a set
of intrinsics—functions that expand directly into LLVM
instructions—to access low-level GPU-specific values, such
as the current thread ID. Using the intrinsic ptx_tid_x,
we can have each thread operate on a different element of a
vector, leading to the vector addition kernel in Fig. 2. Here,
the syntax ++x indicates that pointer x is passed by value,
but its ownership is not transferred to the callee. The syntax
˜[float] indicates that x is a unique pointer to an array of
floats, which precludes aliasing of the array.

We currently do not restrict the language allowed inside
kernel functions, although all but a very specific set of forms
are likely to be unsupported on current generation of GPU
hardware. For example, there is no efficient way to report out
of bounds errors from kernels, so the compiler disables array
bounds checks when generating PTX code. It is unlikely that



#[kernel]
fn add_vectors( N: uint,

++A: ˜[float],
++B: ˜[float],
++C: ˜[mut float])

{
do gpu::range(0, N) |i| {

C[i] = A[i] + B[i]
};

}

Fig. 3. Using a range abstraction.

we will ever be able to run arbitrary Rust code on the GPU,
so the compiler should include a pass to ensure that kernels
do not include code that cannot be executed on the GPU.

B. Building Abstractions

The second part of our approach is to use the low level
features added to the Rust language itself and build higher
level abstractions. As a trivial example, we can combine the
ptx_ctaid_x() * ptx_ntid_x() + ptx_tid_x()
code from our previous snippet into a function called
thread_id_x. We can go further, however, and start cap-
turing common patterns in a way that feels more like pro-
gramming in Rust. One such pattern is seen above, where the
kernel receives several vectors as input, determines the current
thread ID, and computes one result. We have captured this
pattern in the gpu::range function, which mimics Rust’s
int::range iterator, as illustrated in Fig. 3.

Another common pattern is reduction, which combines
many values into one using a user defined operator. High-
performance GPU reduction algorithms typically have three
phases to best exploit parallelism as the problem size shrinks
closer to its final value. This is often hand-coded, but we
simply provide a reduction function in the library that can be
specialized for a particular operation. Fig. 4 shows the function
signature. Such a reduction abstraction can then be used to add
all the elements in a vector as shown in the lower part of the
figure. The angular brackets syntax is similar to C++ template
syntax and serves an analogous purpose.

Note that reduce_into is polymorphic, so it can work on
data of any type, provided an appropriate reduction operator
is provided.

As another example, Fig. 5 shows an abstraction for five-
point stencil, such as the one that could be used in 2D Jacobi
iterations. The figure also shows the use of the abstraction.
The shape argument gives the dimensions of the matrix.
Note that the kernel that uses the abstraction does not need
to index into the 2D arrays using thread IDs, but instead
can use mnemonics for up, down, left, and right neighbors.
Clever ordering and formatting of the arguments makes the
mnemonics self-explanatory.

fn reduce_into<T>(target: &mut T,
init: T,
source: &[const T],
op: fn&(T, T) -> T);

#[kernel]
fn vector_sum(++src: ˜[float],

dst: &mut float)
{

gpu::reduce_into(dst, 0f, src,
|a, b| a + b);

}

Fig. 4. Defining and using the reduction abstraction.

fn stencil_into_5pt<T>(
shape: (uint, uint),
target: &[mut T],
source: &[const T],
op: fn&(T, T, T, T, T) -> T);

#[kernel]
fn jacobi(++src: ˜[float],

dst: &mut float)
{

do gpu::stencil_into_5pt((N, N),
src,
dst)

| u,
l, c, r

d | {

(u + l + r + d) / 4f
}

}

Fig. 5. Defining and using five-point stencil abstraction.

Following the principle of making common cases easy and
uncommon cases possible, we envision supplying a library of
common patterns. Since our approach enables programmer to
write low-level GPU code, they can build their own library of
patterns to supplement this library. Note that it is not necessary
to first construct an abstraction in order to write a kernel that
does not make use of a standard pattern.
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Fig. 6. Overall workflow of our compiler. The pre-processor separates the kernels from the host code. The kernels are compiled with a special flag to generate
PTX code and the host code updated with their invocation. Our current implementation is complete except for the preprocessor.

IV. IMPLEMENTATION

We have implemented a prototype of our approach within
the Mozilla Rust compiler infrastructure. The open source
infrastructure is available for download from the Rust web-
site [1].

Fig. 6 denotes the overall workflow of compiling a Rust pro-
gram embellished with GPU code. A preprocessor separates
the kernels, to be compiled separately, using the -Zptx flag.
This produces a kernels.ptx file containing the PTX code
for the Rust kernels. The host program (input_host.rs
in the figure) contains code to allocate GPU buffers, transfer
data, invoke kernels, etc. This is compiled using the standard
Rust compiler. Upon execution, the resulting binary will load
kernels.ptx and execute that code.

A. Rust Compiler Architecture

Rust uses a self-hosted compiler that generates native bi-
naries using the LLVM infrastructure. The compiler consists
of a front end and a middle. The front end performs standard
tasks like parsing, type checking and other context-sensitive
analysis. The middle is mainly responsible for translating a
Rust abstract syntax tree (AST) to LLVM assembly.

Rust features a powerful macro system that is based on
Schemes syntax-rules. Macro expansion happens in the
front end after parsing but before type checking. While
this mechanism gives more opportunities for a flexible GPU
language embedding, it is hampered in some ways by the
fact that macros cannot use type information to control their
expansion. It is not possible for a macro to generate different
code depending on the type of the expressions it is working
with. For this reason, we do not rely on macros other than to
provide a nicer syntax on top of features we have implemented
in a library.

B. Rust to PTX

The fact that Rust uses LLVM simplifies our task of
creating GPU kernels from Rust code. LLVM includes a code
generator for PTX, the virtual instruction set for NVIDIA
GPUs. Although the PTX code generator is still marketed as
experimental, NVIDIA has used an LLVM-based compiler for
CUDA since version 4.1. This means the code generator has

at least enough support for the code generated by the CUDA
compiler.

Compiling Rust to PTX was largely a matter of configuring
the Rust compiler to use a different LLVM target, although
this required many minor changes. By default, Rust does not
enable the PTX code generator, so we had to change the
build scripts and LLVM initialization code to include this.
The PTX code generator also requires a special ptx_kernel
calling convention to indicate which functions may be invoked
from host code. We modified the compiler to use this calling
convention for functions carrying the #[kernel] annotation.

One area of particular difficulty was Rust’s use of LLVM
address spaces. In Rust, different types are assigned to dif-
ferent address spaces in order to track which pointers the
garbage collector must be aware of. On the other hand, the
PTX code generator uses address spaces to indicate whether
pointers point to local memory, global memory, or some other
memory region on the GPU. Unfortunately, these two uses
of address spaces are incompatible. According to the LLVM
Language Reference Manual, the semantics of address spaces
are target-specific, which implies the PTX code generators use
of address spaces is acceptable while Rust’s is not.

We made some modifications to the way Rust assigns
pointers to address spaces to be more compatible with the
PTX back end’s use of address spaces. These modifications
have been rather ad hoc thus far, which means many kernels
may not compile due to incorrectly using address spaces.

Beside the issues of generating correct code from Rust, we
found several LLVM forms that the PTX code generator did
not handle. We suspect this is because these are forms that
are not generated by the C front-end, Clang, which makes
the most extensive use of LLVM, although they are part of
LLVM’s intermediate language. One example is using literal
structs in arguments. We added small patches for these cases to
LLVM, and have also contributed the fix back to the mainline
LLVM repository.

CUDA kernels have access to several automatically defined
variables like threadIdx and blockIdx. GPU kernel
developers using Rust to develop their kernels also need to
have access to these variables to write proper GPU kernels.



Original Simplified

1 clGetPlatformIDs(1, ptr::addr_of(&p_id),
ptr::addr_of(&np));

create_compute_context_types([GPU]);2 clGetDeviceIDs(p_id, CL_DEVICE_TYPE_GPU, 1,
ptr::addr_of(&device), ptr::addr_of(&nd));

3 clCreateContext(ptr::null(), nd,
ptr::addr_of(&device), ptr::null(), ptr::null(),
ptr::addr_of(&r));

4 clCreateCommandQueue(ctx, device, 0,
ptr::addr_of(&r));

5 clCreateBuffer(ctx, CL_MEM_READ_ONLY, (sz
* sys::size_of::<int>()) as libc::size_t,
ptr::null(), ptr::addr_of(&r));

Vector::from_vec(ctx, Ah);

6 clEnqueueWriteBuffer(cque, A, CL_TRUE, 0, (sz
* sys::size_of::<int>()) as libc::size_t,
vec::raw::to_ptr(vec_a) as *libc::c_void, 0,
ptr::null(), ptr::null());

7 clCreateProgramWithSource(ctx, 1,
ptr::addr_of(&(vec::raw::to_ptr(bytes) as
*libc::c_char) ), ptr::addr_of(&(vec::len(bytes)
as libc::size_t)), ptr::addr_of(&r));

let program c̄tx.create_program_from_binary(
include_str!("add-vector-kernel.ptx"));

8 clBuildProgram(prog, nd, ptr::addr_of(&device),
ptr::null(), ptr::null(), ptr::null());

program.build(ctx.device);

9 clCreateKernel(prog, vec::raw::to_ptr(bytes) as
*libc::c_char, ptr::addr_of(&r));

let kernel p̄rogram.create_kernel("add_vector");

10 clSetKernelArg(kernel, 0, sys::size_of::<cl_mem>()
as libc::size_t, ptr::addr_of(&A) as
*libc::c_void);

execute!(kernel[(size, size), (16,16)], &Ab,
&Bb, &Cb, &size);

11 clEnqueueNDRangeKernel(cque, kernel, 1,
ptr::null(), ptr::addr_of(&global_item_size),
ptr::addr_of(&local_item_size), 0, ptr::null(),
ptr::null());

12 clEnqueueReadBuffer(cque, C, CL_TRUE, 0, (sz *
sys::size_of::<int>()) as libc::size_t, buf, 0,
ptr::null(), ptr::null());

Cb.to_vec();

TABLE I
A SUMMARY OF OUR SIMPLIFIED RUST OPENCL API COMPARED TO THE ORIGINAL.

We make them available to Rust kernel developers through
compiler intrinsics. These compiler intrinsics (ptx_tid_x,
ptx_tid_y, etc.) provide access to most basic CUDA vari-
ables like threadIdx, blockIdx. During code generation
these compiler intrinsics get mapped to respective LLVM
intrinsics and finally the PTX backend generates necessary
PTX instructions.

Rust code typically makes extensive use of higher order
functions, and this is true in GPU kernels written in Rust
as well. Successfully implementing these on the GPU relies
heavily on LLVM’s optimization strength. Often the closure
passed to a function can be entirely eliminated, giving the
programmers to ability to write in a similar style to what they
are used to while still being able to generate code for the GPU.

C. Rust OpenCL Bindings

In addition to the kernel language, the host CPU code needs
a way to execute kernels. We currently do this through Rust
bindings to the OpenCL API. OpenCL provides APIs to load
binary kernels, which happen to be PTX files for NVIDIA
cards. We also use OpenCL for allocating memory on the
GPU and transferring data between the CPU and GPU. We
have worked to make this fairly ergonomic, but in the future
we would like to move more of this into the Rust runtime to
keep these details hidden from the user in common cases.

We started with an existing set of OpenCL bindings for
Rust, but it was a direct mapping of the C API to Rust and
users of that API needed to use C level pointer manipulation
libraries in Rust. To make it easy to program and make it
easy to integrated with any Rust code/library we came up with
a new wrapper layer for the Rust OpenCL binding. Table I
compares the simplified API with the original OpenCL API
supported by the Rust compiler.

Below are brief comparisons about each API method we
listed above.

• The low-level OpenCL API call clGetPlatformIDs
should be called twice. The first call determines the num-
ber of platforms and the second enumerates these plat-
forms. The new API method get_plaforms greatly
simplifies this by handling those low-level details inter-
nally.

• Similar to what we discussed for clGetPlatformIds,
clGetDeviceIds should be called twice to get the list
of devices available in the system. The new API method
get_devices simplify this by doing that internally.

• The create_context, create_commandqueue
and create_buffer API methods handle all the low
level details like null pointers and Rust to C pointer
conversions internally and provide a nice “rustic” API
to the GPU programmer.



• All the other new API methods listed above also hide
some of the low-level details like type casting and C
pointer conversions internally and provide clear and con-
cise API to the programmer.

D. Challenges

There are certain language features that our current imple-
mentation does not yet handle fully. One particular case is
passing vector slices into kernels. Vector slices in Rust are a
way to provide views into various types of vectors, regardless
of which heap the vector resides in. They are represented as
pairs of pointer and length. Unfortunately, OpenCL provides
very few guarantees about addresses of buffers on the GPU,
especially between kernel invocations. This makes pointers to
pointers and structures with pointers practically impossible to
implement. For vector slices, we are unable to construct the
pointer and length tuple on the CPU to pass to the kernel
because we cannot predict the address of the buffer on the GPU
ahead of time. CUDA does not have these same problems, so
for these scenarios it would be useful to rely on the CUDA
API or the NVIDIA driver API to gain more expressiveness.
While OpenCL’s portability is attractive, the use of PTX ties
us to the NVIDIA hardware, in which case using NVIDIA
driver API has no disadvantage. Another way to get around
this restriction in OpenCL is to pass the pointer and length as
separate kernel parameters and use these to reconstruct a slice
in the kernel.

V. EVALUATION

We wrote several benchmarks both in Rust and OpenCL
to show that the benefits of programming kernels in Rust
do not come at a prohibitive performance penalty. We tested
vector addition, matrix multiplication, Cholesky factorization
and Jacobi iteration. For each benchmark, we wrote a version
purely in Rust, a version that uses the Rust OpenCL bindings
to call a kernel written in OpenCL C, and a version that uses a
C program as the host for calling OpenCL kernels. All of our
experiments were conducted on a PC running Gentoo Linux
with 8GB PC17000 RAM, an Intel Core i7 2600k 3.4GHz
processor and NVidia GTX 460 with 1GB RAM GPU.

Fig. 7 shows the execution time for each of these kernels,
excluding the time to transfer data between the CPU and GPU
memories. In general, the execution times are close between all
three implementations. This demonstrates that our strategy is
able to generate efficient kernels and efficiently interface with
Rust. This is an important consideration since performance is
a major motivation behind leveraging GPUs, and Rust aims at
providing zero-cost abstractions.

The vector addition case shows variability for small vectors.
Since the vertical axis is logarithmic, these times are much
smaller than the rest of the times in the graph (of the order
of a few microseconds). As a result, the confidence intervals
are relatively large. However, for larger sizes, and all other
benchmarks, the times are consistent and confidence intervals
are tight.

In the case of Jacobi iteration, the Rust kernel slightly
outperforms the OpenCL kernel. This seems surprising at
first. However, we reap the benefits of using a backend that
is capable of aggressive optimizations and generating high
performance code. For example, in our observations of the
generated PTX code in both cases, we found that the LLVM
backend was far more likely to generate fused-multiply-add
(FMA) instructions than the standard OpenCL compiler.

Often data transfer costs can dominate when computations
are off-loaded onto GPUs. This is especially true if the transfer
costs cannot be hidden. In order to estimate the relative
overheads imposed by Rust, we also measured data transfer
times for each run of each benchmark. Fig. 8 shows the time
to transfer data to and from the GPU memory. In general,
the pure OpenCL version is the fastest. When the kernel is
invoked from within Rust, there are certain overheads due
the extra layers of API. Some of the additional cost is an
artifact of our current Rust OpenCL library design, that ends
up unnecessarily copying output buffers to the GPU before
running the kernel. However, we emphasize that the main goal
of this paper has been to design an embedded language to
express GPU computations without computational penalties,
in which we have succeeded as Fig. 7 has demonstrated.

These results show that our strategy is capable of generating
high performance GPU code. Combined with Rust’s zero-cost
abstraction philosophy this provides a compelling environment
for programming GPUs.

VI. RELATED WORK

There are many current research and commercial projects
to add support for implementing GPU kernels in high-level
languages while CUDA [9] and OpenCL [10] are becoming
more and more popular among the heterogeneous parallel
programming community. One popular way of providing GPU
kernel support in existing languages is directive based frame-
works like OpenACC [11]. Other methods vary from totally
new languages to language extensions with some form of
modification to its compiler. Lime [12] and Chestnut [13] are
examples for new programming languages which provide GPU
support and C++ AMP [14] is set of C++ extensions and
template libraries which enables data-parallel programming.
Work by Hormati et al. [15] and work by Cunningham et
al. [16] are some examples of new compiler frameworks or
modifications to existing compilers to incorporate first class
GPU programming support in high-level languages.

Our work stands out from these works because we translate
Rust kernels directly from Rust’s native LLVM representation
into PTX code. All of the above-mentioned work either trans-
late kernels into CUDA, OpenCL or some other intermediate
language or API.

Even though we see lot of activity around supporting GPU
kernel development in high-level languages in the present day,
there were earlier projects like Sh [17] and Accelerator [18]
which allowed programmers to write GPU programs using
high-level constructs in C++ opposed to pixel shading lan-
guages. Sh is a C++ library which support implementation
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Fig. 7. Kernel execution times, excluding data transfer times.

of shader programs as well as general purpose stream com-
putations utilizing most of the capabilities in C++ including
classes, templates, and user defined types. Sh compiles to
both GPU and CPU in order to fully utilize the all the
available system resources by proper load balancing. The main
difference between Sh and Accelerator is Accelerator was built
around a data type abstraction called data-parallel arrays and
the framework takes care of automatically generating kernels
in a pixel shader language. Accelerator completely hides the
underlying GPU hardware from the user while allowing the
user to focus more on the algorithm.

C++ AMP has lot of similarities to the Accelerator frame-
work. The C++ AMP programming model is also built around
multidimensional arrays and hides the explicit data transfer
required in GPU languages like OpenCL and CUDA. In
addition, C++ AMP has built-in support for indexing and

tiling which hides the underlying hardware specific indexing
and tiling. As opposed to this model, our work tries to keep
all the capabilities of CUDA available to programmer while
providing integration between the high-level constructs in Rust
and the GPU programming model. For example, the user can
access low-level CUDA features like block synchronization
and accessing the thread and block index variables.

Jacket [19] is one of the closest related work to ours
which provides support for developing data-parallel programs
in MATLAB, and has the capability to translate MATLAB
and C++ code to CUDA PTX. This framework is built around
a matrix class called a garray and its typed subclasses and
provides constructs like gfor which is a parallel for-loop
implementation.

Work by Cunningham et al. [16] shows how X10 program-
mers can run programms written in the APGAS programing
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Fig. 8. Data transfer times between CPU and GPU (including both ways).

model on GPUs. Scheduling of kernels on the GPU is based on
APGAS programming constructs such as places, asynchrony
and order. Allocating memory on GPU should be done in host
code using special API calls and copying memory back also
requires special API calls.

Sponge [15] is a compiler framework for GPUs that gener-
ates optimized CUDA code which is portable across different
GPU generations. Sponge was designed for the sysnchronous
data flow streaming languge StreamIt [20]. Accelerate [21] and
Copperhead [22] are two recent projects which try to bring
GPU programming to Haskell and Python respectively by
providing embedded languages which provide rich constructs
for GPU kernel development. Both these embedded languages
use source-to-source translation where they translate high-
level language constructs to CUDA and has specialied runtime
libraries based on CUDA which provide various runtime

optimizations which matches host language architecture.
One of the main aspects of our work is to come up with

rich set of abstractions using Rust features like macros to
makes it easy to write data parallel computations for GPUs.
We found that Thrust [23], a parallel template library based
on the C++ Standard Template Library (STL), is very similar
to our approach from the aspect of providing standard set of
patterns and templates which makes it easy to implement GPU
computations in C++ while fully utilizing CUDA features.

VII. CONCLUSION AND FUTURE WORK

We have demonstrated that it is possible to use the NVPTX
backend included with LLVM to generate GPU kernels di-
rectly from Rust. These kernels can be loaded using the exist-
ing, although now improved, Rust OpenCL bindings. Because
Rust already compiles through LLVM, we very quickly gained



support for some of Rust’s more advanced features. These
allow us to provide low level GPU programming features
and rely on the expressiveness of Rust to build high level
abstractions. Our performance results show that Rust’s design
preference towards zero cost abstractions benefits GPU code
as well; we achieve performance comparable to hand-written
OpenCL kernels while gaining the benefits of programming in
Rust.

We believe that compiling to PTX via LLVM is an approach
that would benefit other research in GPU programming lan-
guages as well. A lower-level target than CUDA or OpenCL
gives the compiler more control over data representation and
program execution. The fact that many existing languages
target LLVM already means that many projects will be able
to reuse much of the existing compiler infrastructure, as we
have done here.

There are several avenues for extending this work. We
currently do not expose the GPU memory hierarchy to Rust,
which means kernels cannot yet take advantage of shared
memory. Supporting this properly would likely involve ex-
tensions to Rust’s type system, but we believe these changes
should be compatible with the existing design and philosophy
of Rust. Extensions to Rust’s region and type system may
prove to be an elegant way to explicitly and safely manage
to distinction between various levels of the CPU and GPU
memory hierarchy.

We are pleased with the ability to use Rust idioms in
GPU code, and the potential for building high level GPU
abstractions from these. We have demonstrated some already,
but there remains much potential to extend this work. Mixing
low level code with high level abstractions when necessary
promises to improve the productivity of GPU programmers
without paying the performance penalty that often comes with
high productivity programming languages.

The code used for this paper is available at https://github.
com/eholk/RustGPU.
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