
Just-in-time Acceleration of JavaScript

Uday Pitambare Arun Chauhan Saurabh Malviya

School of Informatics and Computing, Indiana University, Bloomington, IN 47405
{upitamba,achauhan,malviyas}@cs.indiana.edu

Technical Report TR706, February 2013

Abstract

JavaScript has seen tremendous growth in popularity
driven by increasingly interactive web sites and sophis-
ticated web interfaces. However, the performance of
JavaScript continues to be a hurdle in using it for tasks
that are computationally intensive, such as gaming, sim-
ulations, and visualization. JavaScript has also been slow
to exploit the available parallelism on modern comput-
ers. Specifically, it is not currently easy to exploit GPG-
PUs within JavaScript. A part of the reason is that the
low-level interface demanded for GPGPU programming
is often not approachable by JavaScript programmers.

In this paper, we present a novel approach that provides
a mechanism to accelerate portions of JavaScript pro-
grams without requiring the programmers to learn new
syntax or low-level APIs. We achieve that through an
embedded DSL used to specify GPGPU computations.
We have designed a JavaScript library, and an accompa-
nying Firefox extension, that work together to compile
the embedded DSL just-in-time using the LLVM backend
for generating PTX. The compiled code is cached to min-
imize the compilation overhead. Our evaluation of the
system using a micro-benchmark, two applications ker-
nels, and an application benchmark demonstrates that
our approach imposes minimal performance overhead,
while providing an easy GPGPU programming interface
to JavaScript programmers.

1 Introduction

Web sites are increasingly dynamic today, with high lev-
els of interactivity and real-time content. A large fraction
of content is also consumed by a growing number of mo-
bile devices on wireless networks, where bandwidth con-
servation is a high priority. As a result, web pages rely
on client-side scripting to improve the user experience.
Standardization of JavaScript has made it the language
of choice for platform-independent and portable client-
side scripting [3].

Building on the large body of work on just-in-time op-
timization of dynamic languages [1, 6], a considerable
effort is being spent on optimizing the performance of
JavaScript [23, 31, 28, 11]. The popularity of mobile
platforms has also triggered optimization efforts directed
specifically at saving energy [18]. More recently, there
have been efforts at leveraging multiple CPU cores, such
as Intel Labs RiverTrail [24] and some attempt at pro-
viding access to GPUs within JavaScript, such as We-
bCL [29]. While the former provides higher level abstrac-
tions to the programmers, it is not available on GPUs,
and the latter provides a relatively low-level application
programming interface (API) to OpenCL [8].

In this paper we describe an embedded domain-specific
language (DSL) that we have designed and implemented
for providing a high-level abstraction within JavaScript
for writing snippets of code that could run on GPUs. The
embedded DSL, called Harlan-J, is inspired by Harlan,
which is a more general GPU programming language [10].
Harlan-J allows users to specify the computations to be
accelerated on GPGPUs, within their JavaScript pro-
grams, using the familiar JavaScript syntax and without
having to write boilerplate code for device initialization
and data transfer. The use of embedded DSL also makes
the approach portable—an important consideration for
JavaScript programs—by hiding the platform-specific de-
tails within the library. The code could potentially also
be compiled and optimized for multi-core CPUs if the
execution environment does not provide a GPGPU.

We have implemented a prototype of the DSL through
a JavaScript library and a Firefox extension that compiles
the user code just-in-time (JIT) by using the PTX back-
end of LLVM [16, 22]. The translation is performed only
the first time the code is encountered. Subsequent invo-
cations make use of a cached copy, thus eliminating the
compilation overheads. We present performance results
on a micro-benchmark. two application kernel bench-
marks, and an application benchmark to characterize our
system. The empirical measurements demonstrate that
the embedded DSL adds negligible overheads, resulting
in potentially substantial gains in programmer’s produc-

1

mailto:upitamba@cs.indiana.edu
mailto:achauhan@cs.indiana.edu
mailto:malviyas@cs.indiana.edu

tivity without any significant performance penalty.
The main contributions of the paper include:

• Design of an embedded DSL for specifying GPU com-
putations within JavaScript, using the standard lan-
guage syntax with which programmers are already
familiar.

• A prototype implementation of the DSL.

• Empirical evaluation of the implementation on
two application benchmarks and a set of micro-
benchmarks.

To the best of our knowledge, this is the first high-level
JIT-compiled system to make GPU programming avail-
able within JavaScript as an embedded DSL, without en-
cumbering the programmers with boilerplate code that
relatively lower level programming environments require.

2 Related Work

JavaScript performance has attracted wide attention with
its rise as the preferred language for cross-platform client-
side scripting in browsers. The growing adoption of
HTML5 may only increase the importance of JavaScript
performance.

There are many compilation techniques, several of
them just-in-time, that are geared toward dynamically
typed languages [1, 6]. These techniques are also largely
applicable to JavaScript. Leading implementations of
JavaScript interpreters have started a race to achieve the
best JavaScript performance in browsers [31, 28, 11]. Mo-
tivated by their extensive use on mobile platforms, there
has also been interest in improving the energy perfor-
mance of JavaScript [18, 26].

Recently, Richards et al., have analyzed JavaScript
code in great detail [23]. They studied the dynamic be-
havior of JavaScript programs by identifying and cate-
gorizing a variety of characteristics. Based on scripts
gleaned from 17 representative web-sites, one conclusion
of the study was that the “execution time is dominated
by hot loops”, although less so than in Java. This obser-
vation is significant since the programs that were studied
were drawn from a variety of sources, not just those re-
stricted to specific domains, such as engineering or gam-
ing, in which loops traditionally constitute the bulk of
computations. The presence of hot sections in code pro-
vides a strong motivation to our approach that is based
on accelerating some of those hot sections on GPUs. Fur-
ther, the fact that hot sections are often loops makes that
code more amenable to accelerating on GPUs.

An additional motivation behind our approach is the
likelihood of JavaScript getting used for applications that
would currently be impractically slow, if its execution

could be dramatically improved. This likelihood stems
from a wider adoption of JavaScript in application do-
mains such as, gaming and image processing, driven by
the attraction of portable applications that are always
up to date and require no installation steps by the users,
many of whom might be hesitant in installing third-party
software on their machines.

It is possible for browsers and JavaScript interpreters
to make use of the parallelism of multiple cores on a
machine, and even GPUs for certain functions, such
as rendering [14, 15]. However, providing parallelism
within user-level scripts requires additional support. In-
tel’s RiverTrail project lets JavaScript programs directly
leverage the parallelism available on modern chip multi-
processors [24]. RiverTrail provides a high level data-
parallel model for writing parallel code. However, it does
not support GPUs.

WebGL and WebCL are the two leading systems that
allow JavaScript programmers to use GPUs [30, 29]. We-
bGL provides JavaScript programmers the same model of
programming that OpenGL does [19]. This includes ab-
stractions such as canvas and shader. While it provides
the full power of OpenGL to JavaScript programmers,
it is not convenient for programming GPUs for general
purpose computing. WebCL attempts to address that
problem by providing an OpenCL-style interface within
JavaScript. While this makes GPGPU programming
significantly simpler than using WebGL, it is still too
complex—and too low level—for casual JavaScript pro-
grammers who wish to accelerate portions of their code.

In summary, Harlan-J aims at raising the level of ab-
straction at which JavaScript programs leverage GPUs.
We achieve this by involving a JIT compiler framework.
To the best of our knowledge, no other similar system
exists for JavaScript at the time of writing of this paper.

Harlan-J is inspired by Harlan, which is a high-level
language that allows arbitrary expressions to be com-
puted on GPUs [10]. It is designed as a general-purpose
language and is compiled offline, ahead of run time. In
contrast Harlan-J is an embedded DSL, which constrains
it to follow the host language (JavaScript) syntax. More-
over, since it is compiled just-in-time, it may not rely on
extensive analyses for compilation and optimization. Fi-
nally, the unique characteristics of JavaScript, especially
related to security, pose unique challenges in implement-
ing Harlan-J.

Several recent attempts have been made to increase
the level of abstraction for programming GPUs, including
translating OpenMP to GPUs [17], automatic generation
of GPU code from affine loops [2], declarative models for
programming GPUs [7], C++ template libraries of algo-
rithms that can be compiled for GPUs [9], and automat-
ically leveraging GPUs from within high-level languages,
such as matlab [25]. However, none of these efforts has

2

targeted the JavaScript language.

3 Language Design

Our goal is to enable JavaScript programmers to accel-
erate sections of their code at a higher level of abstrac-
tion than afforded by currently available lower level APIs.
At the same time we would like relatively advanced pro-
grammers to be able to tune the performance of their
code for specific GPUs or GPU architectures. The goal
is to design an abstraction that hides platform-specific
details and provides a uniform interface to leverage data
parallelism on a variety of parallel platforms, including
(possibly) chip-multiprocessors.

With this in mind, we have followed three design prin-
ciples:

1. Familiar syntax for common case
We chose to design Harlan-J as an embedded DSL so
that the user is unencumbered by the need to learn
new syntax. This results in, potentially, higher pro-
ductivity and more easily maintained code. In the
common case, no special annotations are required.
Syntactic sugar for commonly used variables and
computations (such as computing the global thread
ID) keeps the syntax for the common cases clean.

2. Optimization features for advanced users
A recurring issue with higher level abstractions is the
abstraction penalty that deters advanced users from
using them. This is unfortunate, since abstractions
make the code more readable, more portable, and
better suited to automatic optimizations that could
be retargeted for a new platform. In order to allow
advanced programmers to tune the performance of
their code we provide a small set of keywords that al-
low platform-specific optimizations, such as concur-
rency across kernels and allocations in specific mem-
ory types.

3. Opportunities for automatic optimizations
An important design goal of Harlan-J has been to
provide clear opportunities for the accompanying JIT
compiler to perform optimizations. Since the op-
timizations must be simple enough to be suitable
for JIT compilation, the opportunities must be dis-
cernible without extensive analysis.

3.1 Syntax

Figure 1 shows two examples written in Harlan-J. CUDA
code for vector addition is shown to demonstrate the ab-
sence of boilerplate code in the Harlan-J version. The
HJ namespace contains all the Harlan-J-related functions
and variables.

Before a GPU code can be executed it must be set
up through the HJ.setupKernel method, which takes a
function representing the kernel. The setting up includes
JIT-compiling the kernel. Once the kernel is compiled
it may be executed with the execute method. The ex-
ecution does not have to follow the set up immediately,
and it may be invoked any number of times with varying
actual parameters. Moreover, the order of setting up ker-
nels need not be the same as executing them. However,
when certain user-specified optimizations are used, the
user must ensure that execution order does not violate
data dependencies, as discussed below in Section 3.3.

All code outside the two methods, HJ.setupKernel

and HJ.execute, is standard JavaScript. Only two types
of arguments may be passed to the kernel, scalars or typed
arrays. JavaScript language has only recently incorpo-
rated typed arrays that are designed specifically for in-
teroperability with native binary data [27]. As a result,
exchanging data with native code, written, say, in C, is
highly efficient through typed arrays.

As the name suggests, typed arrays have specific types
associated with them. As the examples show, first a raw
buffer must be allocated and then a typed view must be
associated with it—the buffer may not be manipulated
directly. It is this view that is passed to the kernel, from
which information about size and type of the array may
be deduced. Typed arrays also support subarrays, which
allows extracting regular sections from arrays.

Internally, Harlan-J supports all the basic types sup-
ported by JavaScript typed arrays. Table 1 lists these
basic types and the typed array corresponding to each.

The kernel code is written in single instruction multi-
ple data (SIMD) form, which could be expressed either
by specifying operations on each data element of arrays
passed as arguments, or by indexing into the arrays ex-
plicitly. The vector addition kernel is an example of the
first and the matrix-multiply kernel illustrates a mixed
strategy.

Inside the kernel several special variables and methods

Harlan-J type JavaScript typed array
float64 Flota64Array

float32 Float32Array

uint32 Uint32Array

int32 Int32Array

uint16 Uint16Array

int16 Int16Array

uint8 Uint8Array

int8 Int8Array

Table 1: Basic types supported by Harlan-J and the
corresponding JavaScript typed arrays.

3

CUDA code for adding two vectors

global void add kerne l (int s i z e , f loat ∗X, f loat ∗Y, f loat ∗Z)
{

int i = threadIdx . x ;
i f (i < s i z e) { Z [i] = X[i] + Y[i] ; }

}

void vector add (int s i z e , f loat ∗X, f loat ∗Y, f loat ∗Z)
{

f loat ∗dX, ∗dY, ∗dZ ;
cudaMalloc(&dX, s i z e ∗ s izeof (f loat)) ;
cudaMalloc(&dY, s i z e ∗ s izeof (f loat)) ;
cudaMalloc(&dZ , s i z e ∗ s izeof (f loat)) ;

cudaMemcpy(dX, X, s i z e ∗ s izeof (f loat) , cudaMemcpyHostToDevice) ;
cudaMemcpy(dY, Y, s i z e ∗ s izeof (f loat) , cudaMemcpyHostToDevice) ;

add kerne l<<<1, s i z e >>>(s i z e , dX, dY, dZ) ;

cudaMemcpy(Z , dZ , s i z e ∗ s izeof (f loat) , cudaMemcpyDeviceToHost) ;

cudaFree (dX) ;
cudaFree (dY) ;
cudaFree (dZ) ;

}

Harlan-J code for adding two vectors

// Declare and i n i t i a l i z e typed one−dimensiona l arrays A, B, and C
var A buf = new ArrayBuffer (N∗8) ; // f o r N f l o a t 6 4
var A = new Float64Array (A buf) ; // c rea t e a view
. . .
var vec add = HJ. setupKerne l (

f unc t i on (A, B, C)
{

HJ. e lement ({ a : A, b : B, c : C}) ;
c = a + b ;

}) ;
vec add . execute (A, B, C) ;

Harlan-J code for matrix-matrix multiply

// Declare and i n i t i a l i z e typed matr ices A, B, and C
var A buf = new ArrayBuffer (N∗N∗8) ; // f o r N∗N f l o a t 6 4
var A = new Float64Array (A buf) ; // c rea t e a view
. . .
var matmul = HJ. setupKerne l (

f unc t i on (A, B, C, N)
{

HJ. e lement ({C: c }) ;
for (var i =0; i < N; i++) {

c += A[HJ.myID∗N+i] ∗ B[i ∗N+HJ.myID] ;
}

}
matmul . execute (A, B, C, N) ;

Figure 1: CUDA code for adding two vectors, followed by harlanj codes for vector addition and matrix-matrix
multiply.

4

are made available by Harlan-J.

• HJ.myID is the global thread ID of the current thread.

• HJ.blockDim.x, HJ.blockID.x, and
HJ.threadID.x correspond to the number of
blocks, the block number, and the offset of the
current thread within the block, respectively, along
the x dimension. Similar variables exist for y and z

dimensions.

• HJ.element method takes an object map and uses
it to generate variables that contain elements corre-
sponding to HJ.myID.

• HJ.neighbor method takes an offset to generate an
index relative to the current thread. The offset could
be multidimensional (multiple values, one for each
dimension) for multidimensional thread layouts.

In Figure 1 the vector addition kernel accepts three
arrays, A, B, and C. The HJ.element method is used to
access an element of each array to express the SIMD ad-
dition in the next statement. The programmer does not
explicitly specify input and output data, which the com-
piler determines by doing a def-use analysis. However, the
programmer may explicitly specify what (not) to copy for
optimizing performance, as described in Section 3.3.

In the matrix-multiply kernel only the array C is ac-
cessed element-wise. The kernel makes use of the con-
venience variable, HJ.myID, to access the multiple ele-
ments from the other two arrays. The computation may
be improved by parallelizing the loop inside the kernel as
a reduction. This could be done manually, but a more
compelling alternative would be to abstract that away
in a reduction kernel that is nested inside this kernel.
Our current implementation does not support reduction
or nested kernels, but Section 7 discusses this possibility.

By default, the compiler generates a one-dimensional
sequence of blocks within the grid and a one-dimensional
sequence of threads in each block. However, it may be
overridden by explicitly specifying multi-dimensional al-
location, as discussed in Section 3.3. A default number
of threads is picked, based on the recommended number
for the GPU, and the default number of blocks is com-
puted based on the array size and the number of blocks.
However, these can be overridden by passing additional
arguments to execute.

3.2 Semantic Limits

We have made the design choice of restricting the permis-
sible operations and data structures within kernel code.
This design choice is driven partly by the impracticality
of supporting a large number of operations and arbitrary

JavaScript data structures in our compiler. However, an-
other important motivation is to encourage programmers
to be aware of the limits of the GPU hardware and pay
attention to structuring their programs accordingly. For
instance, arbitrary object creation or advanced control
flow structures, such as closures, are not directly sup-
ported on current GPUs, which makes them highly ineffi-
cient to realize on GPUs. Similarly, operations on sparse
or irregular data structures do not lend themselves easily
to efficient SIMD execution, requiring algorithmic inno-
vations to leverage the GPUs effectively.

A strategy to work around this limitation is to identify
regular patterns in the computations that are amenable to
efficient SIMD execution. Often this is possible to do even
for algorithms that, at first sight, appear highly irregular,
such as, compression [20]. By not hiding the limitations
of the underlying GPUs, Harlan-J provides an incentive
to the programmers to rework their application so that
only the appropriate portions of the code are targeted
for acceleration with GPUs which, we believe, is a more
desirable approach in the long term compared to abstrac-
tions that might mislead programmers into writing highly
inefficient GPU code.

Finally, by restricting the semantics of Harlan-J kernel
operations and providing direct mapping of those oper-
ations to the underlying GPUs, it may be possible to
perform quick optimizations that would be practical in a
JIT compiler. More extensive semantics would require a
deeper analysis, which is likely to be impractical in a JIT
compiler.

3.3 User Optimizations

Harlan-J allows several optimizations to be specified as
compiler directives. Figure 2 illustrates this with a dot-
product kernel that is called repeatedly in a loop.

Preserving data across kernel invocations A se-
quence of kernel calls might operate on a common set of
data or a kernel might produce data needed by an kernel
that follows immediately. If the data items are read-only,
or if they are not needed in code between successive calls
to the kernel, then it is possible to avoid multiple data
transfers. The dotProd kernel in Figure 2 preserves ar-
ray B since it does not change across kernel invocations.
Note that this information is impossible for the compiler
to deduce since it does not analyze any code outside the
kernel.

Always-copy or never-copy The compiler can also be
overly conservative in determining the output variables,
since it does not have an accurate set of live variables at
the end of the kernel. In such cases, it may be useful
for the programmer to explicitly forbid the compiler from

5

Repeated dot-product with one operand preserved across
kernel invocations

// A l l o c a t i o n and i n i t i a l i z a t i o n
// o f v a r i a b l e s e l i d e d

var dotProd = HJ. setupKerne l (
func t i on (A, B, D)
{

HJ. p r e s e rve (B) ;
HJ. e lement ({ a : A, b : B, d : D})
d = a ∗ b ;

}) ;
var dot = 0 . 0 ;
for (var i =0; i < N; i++) {

dotProd . execute (A, B, D) ;
for (var j =0; j < block ; j++)

dot += D[j] ;
some computation (dot) ;
update va lue (A) ;

}

Explicitly copying required data, but not other

. . .
var dotProd = HJ. setupKerne l (

func t i on (A, B, D)
{

HJ. p r e s e rve (B) ;
HJ. alwaysCopyOut (D) ;
HJ. neverCopyOut (A, B) ;
HJ. e lement ({ a : A, b : B. d : D})
d = a ∗ b ;

}) ;
. . .

Making the kernel call asynchronous

. . .
for (var i =0; i < N; i++) {

var k = dotProd . spawn (A, B, D) ;
update va lue (A) ;
HJ. wait (k) ;
for (var j =0; j < block ; j++)

dot += D[j] ;
some computation (dot) ;

}

. . .

Figure 2: An example of repeated dot-product illustrat-
ing some of the user optimizations supported in Harlan-J.

generating copy-out code for some variables, by using the
HJ.neverCopyOut method.

On the other hand, the user might also want to force
copying out of certain data, perhaps, for debugging. The
method HJ.alwaysCopyOut directs the compiler to in-
sert copy out code for specified variables irrespective of
whether the variables are written in the kernel.

Asynchronous kernels While GPUs commonly sup-
port asynchronous kernel calls we have chosen to not
make that the default behavior in order to keep the ker-
nel semantics simple. However, a kernel may be called
asynchronously by using the spawn method, instead of
execute. In that case a handle returned by spawn may
then be used to wait for the kernel when its output is
needed. The running example in Figure 2 shows this in
the third code segment, overlapping the kernel execution
with computing the array A for the next iteration.

Further overlapping is possible by unrolling the loop,
which is not shown. Unrolling would make it possible
to overlap the kernel for the next iteration with comput-
ing dot and some computation with dot in the current
iteration.

Synchronizing threads A primitive to synchronizing
threads is not strictly necessary, since there is an im-
plicit barrier at the and of each kernel. Therefore, any
thread synchronization within the kernel may be realized
by splitting the kernel into multiple kernels. Therefore,
we treat the synchronization primitive as an optimization.
HJ.sync block is equivalent to CUDA sync threads.

Controlling memory allocation Harlan-J lets users
specify if certain variables should be allocated in global,
shared, constant, or texture memory—the default is
global. This is done with four data placement directives
HJ.placeGlobal, HJ.placeShared, HJ.placeConstant,
and HJ.placeTexture, respectively. The compiler auto-
matically generates code to transfer data back-and-forth
from global memory, as needed. However, the user is
responsible for using the memory regions correctly, for
example not attempting to write into constant memory.

Multi-dimensional blocks and threads Multi-
dimensional blocks or threads may be specified with
HJ.threadDims and HJ.blockDims primitives. The de-
fault is one dimensional blocks and one dimensional dis-
tribution of threads.

4 Language Implementation

We have implemented a prototype of Harlan-J for Mozilla
Firefox. This section describes the challenges faced in

6

implementing the JIT-compiler and our solutions. We
use LLVM’s [16] PTX back-end [22] to translate Harlan-J
kernels into PTX and Mozilla’s js-ctypes library [13] to
interface with a C library that can communicate directly
with the GPU.

It is important to note that our approach assumes that
the JavaScript program runs in the privileged mode. This
makes Harlan-J in its current form suitable for writing
extensions, but unsuitable for untrusted content scripts
loaded through the browser. There are mechanisms that
make it possible to communicate data back and forth
between privileged and untrusted scripts, for example,
through DOM events [12]. The content script as well
as the privileged code (say, an extension) register DOM
event listeners that are triggered when new data ar-
rive within a div. Two-way communication can happen
by adding the data to the appropriate DOM elements
to which event listeners are attached. Another possi-
ble mechanism in Firefox is through XPConnect wrap-
pers [32]. However, we have not explored those options
to interface untrusted JavaScript code to access the GPU.
Both these options seem likely to have high overheads due
to the enforcement of security policies related to interac-
tions between untrusted and privileged JavaScript code.

Figure 3 illustrates the overall system components. The
Harlan-J framework implements four main steps:

1. A JavaScript library, called esprima [5], is used to
generate a JavaScript abstract syntax tree (AST)
from arbitrary JavaScript code passed in as a string.
The built-in JavaScript unparsing method, called
toString, is used to convert the function passed to
HJ.setupKernel into a string.

2. The AST is of the Harlan-J kernel is translated di-
rectly to LLVM intermediate representation. This
makes use of the escodegen library [4] to modify the
AST and LLVM APIs to generate code.

3. The js-ctype library is used to invoke the LLVM
backend to convert the intermediate representation
to PTX using the LLVM’s PTX backend.

4. Finally, a wrapper object is returned to the user pro-
gram that can be subsequently used to invoke the
PTX kernel.

4.1 Firefox Extension

The JavaScript code using Harlan needs to to run in priv-
ileged mode to invoke system services that would other-
wise not be accessible to untrusted JavaScript. We use
the Mozilla js-ctypes library to load and invoke system
shared libraries [13]. This mechanism is used to call the
LLVM backend and to access the GPU services.

While this limits Harlan-J to code within extensions,
there are mechanisms that can be used to establish com-
munication between untrusted content scripts and privi-
leged code, as discussed earlier in this section. However,
we have not measured their overheads and effectiveness
to serve as a conduit to offload computations on to the
GPUs.

4.2 JIT Translator

The just-in-time translator is a major component of the
Harlan-J framework. It walks through the kernel AST,
and generates the LLVM IR. Algorithm 1 shows the core
code generation algorithm. The algorithm outlines a sim-
plified version of our implementation, omitting several
details regarding generating GPU boilerplate code, data
copying primitives, variable declarations, and argument
passing.

The compiler analyzes the code for use of any special
variables, as described in Section 3, and generates addi-
tional code to initialize those variables within the kernel.

4.3 Handling Harlan-J Primitives

Harlan-J primitives are processed before traversing the
AST to generate LLVM intermediate representation by
Algorithm 1. We discuss each primitive below, most of
which concern optimizations. The primitives are pro-
cessed in a flow-insensitive manner, meaning that their
impact is global, throughout the kernel. The compiler
first makes a pass through the kernel AST to collect all
the primitives and record their impact, which guides the
rest of code generation.

HJ.element The HJ.element primitive triggers cre-
ation of new variables, based on input array arguments, as
specified by the hash-map passed to the primitive. The
compiler uses the global thread ID to generate assign-
ments from the appropriate array indexes into the corre-
sponding scalar element variable. The type of the element
can be deduced from the type of the array.

HJ.preserve By default, global memory on the device
is preserved across kernel calls. Therefore, if a variable
that needs to be preserved is allocated in the global mem-
ory all that the compiler needs to ensure is to not gen-
erate code to free that variable when the kernel ends.
If the variable to be preserved is in another region of
memory, say shared memory, then the compiler generates
code to copy it to a global location. Note that the subse-
quent calls to the kernel must know the variable location
and if the subsequent kernel is unrelated (say, in another
stream) it will need to be passed a pointer to the variable.

7

Harlan-J kernel
definition

Kernel invocation

Parser
(esprima) AST

Codegen
(LLVM APIs + escodegen)

LLVM IR
LLVM PTX
backend

PTX
code

JavaScript program Harlan-J framework

Figure 3: Overview of the Harlan-J system components.

1 Algorithm: codegen

2 Input: Harlan-J kernel AST, T
3 Output: LLVM IR, R

4 if T is of the form x = e , where e is an expression then
5 R← generate(ASSIGN, codegen(x), codegen(e))

6 else if T is of the form x binop y then

7 R← generate(BINOP, codegen(x), translate(binop), codegen(b))

8 else if T is of the form unaryop x then

9 R← generate(UNARYOP, translate(unaryop), codegen(x))

10 else if T is of the form a , where a is a variable then
11 R← translate(a)

12 else if T is of the form if (e) S1 else S2 then

13 R← generate(IF, codegen(e), codegen(S1), codegen(S2))

14 else if T is of the form for (C1; C2; C3) S then

15 R← generate(FOR, codegen(C1), codegen(C2), codegen(C3), codegen(S)

16 else if T is a list of statements then
17 R← ∅
18 for each statement s in T do
19 R← R ∪ codegen(s)

20 else
21 error(“Unsupported statement type”)

22 return R

Algorithm 1: The core algorithm to generate code works by a recursively descending down the AST. The
helper function generate generates the LLVM IR and translate converts a variable name or operator to its
LLVM equivalent. Some cases have been elided for the sake of clarity, for example, array subscripts.

8

HJ.alwaysCopyOut and HJ.neverCopyOut As
the names suggest, the compiler ensures that variables
specified by alwaysCopyOut are always copied back to
the CPU memory and those specified by neverCopyOut

are never copied back.

Asynchronous kernel execution This is really an is-
sue of appropriate run time support. The spawn method
does not wait for the kernel to finish, but instead re-
turns immediately without copying the results back to
the CPU. A later wait call synchronizes with the ker-
nels and copies the data back to the CPU. The run time
systems maintains pointer associations between GPU and
CPU locations to enable the data copying.

Synchronizing threads The HJ.sync block maps di-
rectly to the CUDA function syncthreads.

Memory allocation The compiler honors all place-
ment requests for variables by generating appropriate
CUDA allocation blocks for LLVM’s PTX back-end.
However, the user is responsible for ensuring that the ca-
pacity of the memory regions are not exceeded and that
they are used correctly, e.g., constant memory region is
never modified.

Multi-dimensional blocks and threads Unlike
CUDA, the dimensionality is specified within the kernel.
Given that kernels are usually written with the assump-
tion of a certain block and thread distribution, this seems
a reasonable approach. Note that the number of threads
and blocks can be specified with the execute or spawn

methods. In order to implement this with CUDA, the
compiler records the user specified dimensions in the ker-
nel object that is returned to the user, which are used
when the execute or spawn method is called.

4.4 Harlan-J as a Library

While we have described the Harlan-J framework in the
context of a JIT compiler, our embedded DSL design also
enables an implementation of Harlan-J as a pure library.
This could be particularly useful when the underlying sys-
tem has no GPU support.

Note that an absence of a GPU target does not auto-
matically preclude a JIT compiler, since the kernel could
still be compiled to multi-threaded native code to run on
multiple cores of the CPU. Indeed, that is one of the mo-
tivations behind developing a higher level abstraction for
specifying SIMD parallelism. However, if translation to
native code is not desirable, or impossible due to secu-
rity concerns, then a library-based implementation can
be used to still leverage the data parallelism implied in a
Harlan-J kernel.

In a library-based implementation, the kernel set up
does not compile the kernel, but instead simply records
the kernel code, which becomes a closure, in a wrapper
object and returns the wrapper. The kernel execute

method simply invokes the saved closure with the appro-
priate formal parameters. In such a case, the kernel is no
different than standard JavaScript code.

However, the implementation can improve the perfor-
mance of the kernel if it is allowed to create multiple
threads. Since the kernel specifies a SIMD execution, each
SIMD operation can be thought of as a virtual thread,
which is mapped to a system thread. Note that a virtual
thread does not need to be executed as a separate unit.
It can be emulated simply by using an appropriate range
of virtual block and thread IDs and a loop over the range
within each system thread.

The dynamic features of JavaScript can be used to de-
fine element-wise variables declared through HJ.element

primitive. Similarly, the primitives referring to the block
and thread IDs and numbers map simply to the equivalent
underlying CUDA variables. The HJ.neighbor primitive
is easily implemented by computing the equivalent value
based on the current thread ID.

If the “kernel” is going to be executed on the CPU then
the GPU-specific user optimizations become null opera-
tions.

5 Experimental Evaluation

We implemented a prototype Harlan-J system on Fire-
fox, using the PTX back-end of LLVM. We evaluated
our prototype implementation using a microbenchmark,
two applications kernels, and one application benchmark.
The experiment was performed with Firefox version 17,
LLVM 3.1 on a Tesla C1060 card. Since we needed a desk-
top environment to run the test within a browser, it pre-
cluded us from using newer generations of GPGPU cards
that were only available to us in server environments.

5.1 Microbenchmarking

We wrote a microbenchmark to evaluate the overheads of
compiling and initializing the device using our prototype
Harlan-J implementation. Table 2 summarizes our find-
ings. The first measurement was the time taken by the
JIT compilation framework to compile a trivial kernel.
This allowed us to estimate the overhead of the compiler,
which ranged from 38 to 46 ms. The overhead does not
change significantly for kernel sizes of up to a few hundred
statements, which is the normal range of most kernel code
(and is likely to be smaller for Harlan-J kernels without
any boilerplate code).

A second measurement computed the time taken to
initialize the device, which is about 12 ms. Once again, it

9

Operation Time range (ms)
System initialization 12–13
Set up time 38–46

Table 2: JIT compiler overheads.

is a one-time cost, paid only once per script. As a result,
we consider it a manageable cost.

While the compilation overhead seems high at first, it
needs to be paid only once per kernel. Moreover, simi-
lar to JavaScript caching techniques, the compiled kernels
could also be cached, thus reducing the overheads greatly.
Another potential to reduce the overheads arises out of
an artifact of our current implementation, which gener-
ates LLVM assembly and then invokes the LLVM assem-
bler to convert it into the LLVM “bit-code.” Generating
the LLVM bit-code directly from Harlan-J kernel could
reduce the translation overheads. Finally, it is also possi-
ble to generate PTX directly. However, in that case, we
would lose the benefits of LLVM’s built-in optimizations
and the portability gained by using the LLVM back-end.

5.2 Application Kernels and Benchmarks

Next, we evaluated our system on two application kernels
and one application benchmark. The application kernels
are vector addition and dense matrix-multiply. The appli-
cation benchmark we used was N-Body simulation, which
we tested in two different versions. The first version uses
a single force calculation step and another that performs
1000 steps in rapid succession to stress-test our dispatch
system. Figure 5 plots the results for the four experi-
ments with varying input sizes. For vector addition, the
input size is the number of vector elements, for matrix
multiply it is the dimension of a square matrix, and for
N-Body simulation it is the number of bodies.

In each case, we compared the execution time of the
kernel compiled through Harlan-J framework and called
from within JavaScript with one generated from CUDA
and called from within a C program. Note that we did
not compare with pure JavaScript, because that is orders
of magnitude slower. It is clear that the GPU version of
the code would be much faster than sequential JavaScript.
Our goal was to evaluate if we could match the perfor-
mance of PTX kernel generated from CUDA and called
from C. Note that we include the data transfer time in
the total execution time.

For both vector addition and matrix multiplication
Harlan-J performance closely follows that of CUDA-
generated kernel. In the case of vector addition, it is
sometimes even slightly faster, but we attribute that small
difference to some amount of noise in measurements.

We then evaluated the our prototype on N-Body

// Var iab l e d e c l a r a t i o n s and i n i t i a l i z a t i o n
. . .
var nbody = HJ. setupKerne l (
func t i on (fpx , fpy , fpz ,

fpxnew , fpynew , fpznew ,
fpvx , fpvy , fpvz , fpm) {

// v a r i a b l e d e c l a r a t i o n s
. . .

for (i j =0; i j <k ; i j ++) {
fdx = fpx [i j] − fpx [i g l o b a l I d] ;
fdy = fpy [i j] − fpy [i g l o b a l I d] ;
fdz = fpz [i j] − fpz [i g l o b a l I d] ;
f d i s t S q r t = 1 .0/ s q r t (fdx ∗ fdx +

fdy ∗ fdy +
fdz ∗ fdz +
f e p s) ;

f d i s t S i x t h = f d i s t S q r t ∗
f d i s t S q r t ∗
f d i s t S q r t ;

f f = fpm [i j] ∗ f d i s t S i x t h ;
fax += f f ∗ fdx ;
fay += f f ∗ fdy ;
f a z += f f ∗ fdz ;

}
// w r i t i n g r e s u l t s

. . .
}) ;
. . .

for (var i =0; i < N; i++) {
nbody . execute (f loat32ViewX . bu f f e r ,

f loat32ViewY . bu f f e r ,
f loat32ViewZ . bu f f e r ,
float32ViewXnew . bu f f e r ,
float32ViewYnew . bu f f e r ,
f loat32ViewZnew . bu f f e r ,
float32ViewVX . bu f f e r ,
float32ViewVY . bu f f e r ,
f loat32ViewVZ . bu f f e r ,
float32ViewM . b u f f e r) ;

// update
. . .

}

Figure 4: Outline of the iterative N-Body kernel designed
to stress-test the Harlan-J execution system.

force calculation simulation, adapted1 from its original
OpenCL form, designed to stress test our system. Fig-
ure 4 outlines the code with the kernel called inside a
loop.

1Adapted from: http://www.browndeertechnology.com/docs/

10

http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html

105 106 107

100

101

102

Vector size

T
im

e
(m

s)

Execution times for vector addition

Harlan-J
CUDA

500 1,000 1,500 2,000

0

500

1,000

1,500

Matrix dimension

T
im

e
(m

s)

Execution times for matrix multiply

Harlan-J
CUDA

0 10 20 30 40 50

0

1,000

2,000

3,000

Number of bodies (thousands)

T
im

e
(m

s)

Execution times for N-Body

Harlan-J
CUDA

Figure 5: Comparing the execution time of PTX generated from CUDA and executed from within a C program, to
the PTX generated by the Harlan-J framework and executed from within JavaScript. Note that these times do not
include the code generation time, but do include data transfer times between CPU and GPU.

11

http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html

The way this code stresses our system is by its struc-
ture. It contains a non-trivial amount of computation in
the kernel and outside, several local variable declarations
within the kernel, a long list of arguments, and control
flow constructs within the kernel. It tests the ability of
our system to generate complex code. The bottom left
plot in Figure 5 shows the comparison of the running
time of this kernel with an equivalent CUDA-generated
kernel called from C, for a single step. The running times
are practically identical.

In summary, the Harlan-J system imposes a high over-
head in the initial compilation phase, but there is signif-
icant potential for improvement. However, once a kernel
has been compiled the overhead of actually invoking it
from JavaScript is negligible, compared to C.

6 Security

Security is an important issue in letting untrusted third-
party code execute on local machine. Browsers imple-
ment strict policies to limit resource access by untrusted
JavaScript. Providing such code access to a machine’s
GPU might seem like opening a security hole. Even
though we have not directly addressed the security issue
in this paper, we make several observations here related
to potential threats.

Denial-of-service attack A malicious or buggy pro-
gram could make the GPU unavailable to any other pro-
gram. In principle, this is not different than a runaway
script. However, security and privacy issues with GPUs
will need further investigation and might require addi-
tional support from the libraries that interface with the
GPU.

Indirect access to other resources Another poten-
tial problem is a script gaining access to resources that
it would normally not be allowed to access. This could
happen by exploiting vulnerabilities in systems unrelated
to the browser or JavaScript, but related to the GPU
subsystem.

Leaking information Since the focus of GPU com-
puting has been performance, several aspects will need
to be looked at afresh if untrusted JavaScript is to be al-
lowed access to them. For instance, values left around in
memory by earlier programs could be read by malicious
scripts and communicated to a third party, in order to
glean any useful information. It could also allow multiple
scripts, with different origins, using the GPU to commu-
nicate with each other—something that is prohibited by

BDT_OpenCL_Tutorial_NBody-rev3.html

the JavaScript security model. Some of the issues here
might be similar to those occurring in cloud-computing
scenarios [21].

Cost of security The overheads caused by enforcing
security and privacy policies will need to be included when
the performance gains from GPUs are estimated. The
traditional models of performance will have to be tweaked
to make decisions regarding when and what to accelerate
with the GPUs.

7 Future Work

The work opens several directions for future work.

Security Security issues need to be more completely
studied and addressed in order to extend this facility to
content scripts. The issues include protecting against
denial-of-service by malicious scripts, privacy violation
through information leak and other covert channels, and
possibility of exploiting vulnerabilities not directly related
to the browser or JavaScript interpreter. These will need
careful considerations before the GPUs could be exposed
to untrusted JavaScript.

Reducing compilation overheads The prototype
generates LLVM assembly and then compiles it, which
introduces an extra layer. It could generate LLVM bit-
code or even be hooked directly with the LLVM back-end
to generate PTX directly. This could reduce overheads,
but further study will need to be undertaken to quantify
the benefits.

Nested kernels Latest generation GPU cards al-
low nesting kernels, which could be directly supported
in Harlan-J. Another related and important capability
would be native support for parallel reduction, which will
could greatly improve the expressiveness of the language
for a wider class of algorithms.

Multidimensional arrays and other syntactic
sugar Since array-based computation is an important
class of SIMD applications, multidimensional array syn-
tax with support for array sections might be an important
syntactic sugar to support. However, a challenge here
would be to find a clean syntax that could be embedded
within the JavaScript language.

Increased concurrency Modern GPUs allow multi-
ple concurrent kernels. They also allow concurrent data
transfers. This could be an important optimization to

12

http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html

exploit, perhaps, through additional annotations. Asyn-
chronous kernels leverage this concurrency to some ex-
tent. But, more precise annotations could help advanced
users write more efficient code.

Extend to OpenCL and other platforms The cur-
rent prototype works with a specific browser and specific
hardware platform. It would be useful to be able to ex-
tend it to other back-ends, potentially including CPUs,
and other browser platforms.

8 Conclusion

We have demonstrated the feasibility of a high-level sys-
tem for programming GPGPUs within JavaScript. We
did this by developing a high-level DSL called Harlan-J,
embedded within JavaScript. Embedding within a highly
dynamic language throws many challenges in defining the
syntax and semantics of the language and implementing
a JIT compiler. Harlan-J has been designed to make the
common case easy, while providing advanced users ade-
quate handles to be able to tune the performance of their
GPU code.

We implemented a prototype of the language for Fire-
fox browser and NVIDIA hardware. We used the esprima
JavaScript library to parse the Harlan-J kernel code.
The resulting AST is translated into LLVM intermediate
representation and LLVM’s PTX back-end is then used
through the LLVM API to generate PTX code. Once the
kernel is translated it may be called multiple times. Our
experiments show that while the initial compilation over-
head could be significant, it could be reduced through
caching and improvements in the compiler’s workflow.
More importantly, our experiments demonstrate that the
execution overhead of these kernels is small and com-
parable to calling an equivalent PTX kernel generated
from CUDA and called from within C. This makes our
approach an attractive way to make GPUs available to
JavaScript programmers.

References

[1] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F.
Sweeney. A survey of adaptive optimization in vir-
tual machines. Proceedings of the IEEE, 93(2):449–
466, Feb. 2005. DOI: 10.1109/JPROC.2004.840305.

[2] M. M. Baskaran, J. Ramanujam, and P. Sadayappan.
Automatic C-to-CUDA code generation for affine
programs. In In Proceedings of the 19th International
Conference on Compiler Construction (CC), pages
244–263, 2010. DOI: 10.1007/978-3-642-11970-5.

[3] S. ECMA-262. ECMAScript language specification,
edition 5.1. Technical Report ISO/IEC 16262:2011,
ECMA International, June 2011.

[4] ECMAScript code generator. https://github.com/
Constellation/escodegen.

[5] ECMAScript parsing infrastructure for multipurpose
analysis. http://esprima.org/.

[6] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Man-
delin, M. R. Haghighat, B. Kaplan, G. Hoare,
B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith,
R. Reitmaier, M. Bebenita, M. Chang, and M. Franz.
Trace-based just-in-time type specialization for dy-
namic languages. In Proceedings o the 2009 ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 465–478,
2009. DOI: 10.1145/1542476.1542528.

[7] M. Grossman, A. S. Sb̂ırlea, Z. Budimlić, and
V. Sarkar. CnC-CUDA: Declarative programming
for GPUs. In Proceedings of the 23rd International
Conference on Languages and Compilers for Par-
allel Computing, pages 230–245, 2010. DOI: cita-
tion.cfm?id=1964536.1964552.

[8] K. Group. OpenCL: The open standard for parallel
programming of heterogeneous systems. On the web.
http://www.khronos.org/opencl/.

[9] J. Hoberock and N. Bell. Thrust – parallel algorithms
library. http://thrust.github.com.

[10] E. Holk, W. Byrd, N. Mahajan, J. Willcock,
A. Chauhan, and A. Lumsdaine. Declarative par-
allel programming for GPUs. In K. D. Bosschere,
E. H. D’hollander, G. R. Joubert, D. Padua, F. Pe-
ters, and M. Sawyer, editors, Applications, Tools and
Techniques on the Road to Exascale Computing, vol-
ume 22 of Advances in Parallel Computing, pages
297–304. IOS Press, Amsterdam, Netherlands, 2012.
Proceedings of the 14th biennial ParCo Conference,
2011. DOI: 10.3233/978-1-61499-041-3-297.

[11] Mozilla IonMonkey. http://blog.

mozilla.org/javascript/2012/09/12/

ionmonkey-in-firefox-18/.

[12] Interaction between privileged and non-privileged
pages. https://developer.mozilla.org/en-US/

docs/Code_snippets/Interaction_between_

privileged_and_non-privileged_pages.

[13] Js-ctypes. https://developer.mozilla.org/

en-US/docs/Mozilla/js-ctypes.

13

http://dx.doi.org/10.1109/JPROC.2004.840305
http://dx.doi.org/10.1007/978-3-642-11970-5
https://github.com/Constellation/escodegen
https://github.com/Constellation/escodegen
 http://esprima.org/
http://doi.acm.org/10.1145/1542476.1542528
http://dl.acm.org/citation.cfm?id=1964536.1964552
http://dl.acm.org/citation.cfm?id=1964536.1964552
http://www.khronos.org/opencl/
http://thrust.github.com
http://dx.doi.org/10.3233/978-1-61499-041-3-297
http://blog.mozilla.org/javascript/2012/09/12/ionmonkey-in-firefox-18/
http://blog.mozilla.org/javascript/2012/09/12/ionmonkey-in-firefox-18/
http://blog.mozilla.org/javascript/2012/09/12/ionmonkey-in-firefox-18/
https://developer.mozilla.org/en-US/docs/Code_snippets/Interaction_between_privileged_and_non-privileged_pages
https://developer.mozilla.org/en-US/docs/Code_snippets/Interaction_between_privileged_and_non-privileged_pages
https://developer.mozilla.org/en-US/docs/Code_snippets/Interaction_between_privileged_and_non-privileged_pages
https://developer.mozilla.org/en-US/docs/Mozilla/js-ctypes
https://developer.mozilla.org/en-US/docs/Mozilla/js-ctypes

[14] K. Kerr. Introducing Direct2D. http://msdn.

microsoft.com/en-us/magazine/dd861344.aspx.

[15] V. Kokkevis. GPU accelerated composit-
ing in Chrome. http://www.chromium.

org/developers/design-documents/

gpu-accelerated-compositing-in-chrome.

[16] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis & Trans-
formation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization
(CGO’04), 2004.

[17] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to
GPGPU: A compiler framework for automatic trans-
lation and optimization. In Proceedings of the 14th
ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (PPoPP), 2009. DOI:
10.1145/1504176.1504194.

[18] S.-W. Lee and S.-M. Moon. Selective just-in-
time compilation of client-side mobile JavaScript
engine. In Proceedings of the 14th International
Conference on Compilers, Architectures and Synthe-
sis for Embedded Systems (CASES), 2011. DOI:
10.1145/2038698.2038703.

[19] OpenGL: The industry’s foundation of high perfor-
mance graphics. http://www.opengl.org.

[20] A. Ozsoy, M. Swany, and A. Chauhan. Pipelined par-
allel LZSS for streaming data compression on GPG-
PUs. In Proceedings of the 18h IEEE International
Conference on Parallel and Distributed Systems (IC-
PADS), 2012. To appear.

[21] S. Pearson and G. Yee, editors. Privacy and Security
for Cloud Computing. Computer Communications
and Networks. Springer, 2013. DOI: 10.1007/978-1-
4471-4189-1.

[22] H. Rhodin. A PTX Code Generator for LLVM.
Bachelors thesis, Saarland University, Oct. 2010.

[23] G. Richards, S. Lebresne, B. Burg, and J. Vitek.
An analysis of the dynamic behavior of JavaScript
programs. In Proceedings of the 2010 ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation (PLDI), 2010. DOI:
10.1145/1806596.1806598.

[24] Intel Labs RiverTrail project. https://github.

com/RiverTrail/RiverTrail.

[25] C.-Y. Shei, P. Ratnalikar, and A. Chauhan. Au-
tomating GPU computing in MATLAB. In Pro-
ceedings of the International Conference on Su-
percomputing (ICS), pages 245–254, 2011. DOI:
10.1145/1995896.1995936.

[26] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh,
and J. P. Singh. Who killed my battery?: An-
alyzing mobile browser energy consumption. In
Proceedings of the 21st International Conference on
World Wide Web (WWW), pages 41–50, 2012. DOI:
10.1145/2187836.2187843.

[27] Typed array specification. http://www.khronos.

org/registry/typedarray/specs/latest/.

[28] V8 JavaScript engine. http://code.google.com/

p/v8/.

[29] WebCL – heterogeneous parallel computing in
HTML5 web browsers. http://www.khronos.org/

webcl/.

[30] WebGL. http://www.khronos.org/webgl/.

[31] The WebKit open source project. http://www.

webkit.org.

[32] XPConnect wrappers. https://developer.

mozilla.org/en-US/docs/XPConnect_wrappers.

14

http://msdn.microsoft.com/en-us/magazine/dd861344.aspx
http://msdn.microsoft.com/en-us/magazine/dd861344.aspx
http://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
http://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
http://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
http://doi.acm.org/10.1145/1504176.1504194
http://doi.acm.org/10.1145/2038698.2038703
http://www.opengl.org
http://dx.doi.org/10.1007/978-1-4471-4189-1
http://dx.doi.org/10.1007/978-1-4471-4189-1
http://doi.acm.org/10.1145/1806596.1806598
https://github.com/RiverTrail/RiverTrail
https://github.com/RiverTrail/RiverTrail
http://dx.doi.org/10.1145/1995896.1995936
http://doi.acm.org/10.1145/2187836.2187843
http://www.khronos.org/registry/typedarray/specs/latest/
http://www.khronos.org/registry/typedarray/specs/latest/
http://code.google.com/p/v8/
http://code.google.com/p/v8/
http://www.khronos.org/webcl/
http://www.khronos.org/webcl/
http://www.khronos.org/webgl/
http://www.webkit.org
http://www.webkit.org
https://developer.mozilla.org/en-US/docs/XPConnect_wrappers
https://developer.mozilla.org/en-US/docs/XPConnect_wrappers

	Introduction
	Related Work
	Language Design
	Syntax
	Semantic Limits
	User Optimizations

	Language Implementation
	Firefox Extension
	JIT Translator
	Handling Harlan-J Primitives
	Harlan-J as a Library

	Experimental Evaluation
	Microbenchmarking
	Application Kernels and Benchmarks

	Security
	Future Work
	Conclusion

