
Declarative Parallel Programming

for GPUs

Eric HOLK William BYRD Nilesh MAHAJAN Jeremiah WILLCOCK

Arun CHAUHAN and Andrew LUMSDAINE

School of Informatics and Computing, Indiana University, Bloomington, Indiana, USA

{eholk,webyrd,nnmahaja,jewilco,achauhan,lums}@indiana.edu

Abstract. The recent rise in the popularity of Graphics Processing Units (GPUs)

has been fueled by software frameworks, such as NVIDIA’s Compute Unified De-

vice Architecture (CUDA) and Khronos Group’s OpenCL that make GPUs avail-

able for general purpose computing. However, CUDA and OpenCL are still low-

level approaches that require users to handle details about data layout and move-

ment across levels of memory hierarchy. We propose a declarative approach to

coordinating computation and data movement between CPU and GPU, through a

domain-specific language that we called Harlan. Not only does a declarative lan-

guage obviate the need for the programmer to write low-level error-prone boiler-

plate code, by raising the abstraction of specifying GPU computation it also allows

the compiler to optimize data movement and overlap between CPU and GPU com-

putation. By focusing on the “what”, and not the “how”, of data layout, data move-

ment, and computation scheduling, the language eliminates the sources of many

programming errors related to correctness and performance.

Keywords. GPGPUs, declarative parallel programming, compilers

Introduction

One of the most important developments in computing in the past few years has been the

rise of graphics processing units (GPUs) for general purpose computing (also known as

“GPGPU”). Driven by the demand for high-quality real-time graphics for video games,

GPU performance has been increasing faster than that of conventional CPUs, including

multi-core CPUs. A high-end GPU card can perform over a trillion floating-point oper-

ations per second (1 tera FLOP)—faster than the fastest supercomputer in 1997. More

recently, “hybrid” clusters of CPUs and GPUs have become popular in the realm of high-

performance computing (HPC). According to the November 2010 Top500 results, the

fastest supercomputer in the world is Tianhe-1A, a Chinese hybrid cluster with a mixture

of Intel CPUs and NVIDIA GPUs; the number three supercomputer is also a Chinese

hybrid machine [18]. The popularity of hybrid architectures is likely to increase, since

the primary design consideration for the next generation of supercomputers is energy

efficiency, and since GPUs are much more energy efficient than CPUs (as measured in

FLOPS per watt).

The introduction of NVIDIA’s Compute Unified Device Architecture (CUDA) [14],

and more recently the Khronos Group’s OpenCL framework [13], along with GPU hard-

mailto:eholk@indiana.edu
mailto:webyrd@indiana.edu
mailto:nnmahaja@indiana.edu
mailto:jewillco@indiana.edu
mailto:achauhan@indiana.edu
mailto:lums@indiana.edu

ware advances to better support non-image-based computing, has made GPGPU pro-

gramming much easier than before. However, CUDA and OpenCL are still relatively

low-level approaches to GPGPU programming. Programmers are required to write boil-

erplate code, handle low-level details of data layout and memory movement, determine

how many blocks and threads are required for a computation, and so forth. Programming

hybrid clusters is even harder, since cluster architectures complicate data movement, and

introduce additional levels of memory hierarchy and computational granularity.

We propose a declarative approach to coordinating computation and data movement.

It builds on our earlier declarative language to specify communication [11].

1. Declarative Foundations

GPGPU programming, and especially hybrid cluster programming, is complicated by

many factors. For best performance, programmers must carefully manage low-level de-

tails of memory movement, strided memory access [12], and thread synchronization and

management. When GPGPUs are used in hybrid clusters, programming becomes even

more cumbersome. In order to fully leverage the power of GPUs, and especially hybrid

clusters, a different approach is needed.

We advocate a declarative approach to programming hybrid clusters and GPUs. Our

declarative approach provides the user with a straightforward mechanism for expressing

the semantics the user wants for the data layout, memory movement, and computation

coordination in her programs. The user can express the “what” but can leave the “how”

to the tool developers, avoiding the myriad details described in the previous section.

The two pillars of our approach are the following:

• Development and analysis of a declarative “computational kernel” language as an ap-

proach for coordinating computation, data layout, and memory movement within a

single machine containing GPUs; and

• Integration of the kernel language within Kanor, our declarative language for cluster

programming.

Our approach leverages our current work on Kanor, a declarative language for spec-

ifying communication on distributed-memory clusters. Kanor is unusual in that the pro-

grammer declaratively, but explicitly, specifies the essence of the communication pat-

tern. The programmer lets the implementation handle the details when appropriate, but

retains the option to hand-encode communications when necessary, providing a balance

between declarativeness and performance predictability and tunability.

Similarly, our computational kernel language (named “Harlan”) allows the user to

declaratively, but explicitly, describe (potentially asynchronous) computational kernels

and to coordinate computation, data layout, and memory movement. As with Kanor, this

approach gives the programmer enough control to write efficient code, while abstract-

ing over the low-level details that make GPU programming so difficult. Integrating Har-

lan into Kanor results in a unified, high-level, flexible language suitable for efficiently

programming hybrid clusters, traditional (CPU-based) clusters, and GPUs on a single

machine.

Declaratively specifying data layout, memory movement, and computation coordi-

nation requirements results in a system with well-defined semantics. Thus, for instance,

interactions between data movement and computation can be automatically verified.

Common GPU programming mistakes (e.g., deadlock through incorrect use of synchro-

nization constructs [3,17]) can thereby be avoided.

Moreover, a declarative approach with well-defined semantics provides opportuni-

ties for sophisticated optimizations, analyses, and tools. For example, the implementation

could use a combination of heuristics and autotuning to determine how many stages of a

reduction (if any) should be performed on the CPU rather than on the GPU, depending

on the specific machine’s hardware. An example of another optimization would be dou-

ble or triple buffering to hide direct memory access (DMA) latency when moving data

from the GPU to main memory—this optimization could be performed automatically by

the compiler, perhaps using guidance from programmer declarations.

It is important to emphasize at this point that we are not proposing a “silver bullet” or

“magic compiler” that will somehow make GPGPU or hybrid cluster programming easy.

Rather, we are seeking to abstract away many of the low-level details that make GPU/-

cluster programming difficult, while still giving the programmer enough control over

data arrangement and computation coordination to write high-performance programs.

2. A Declarative Language

As described in Section 1, a CUDA or OpenCL programmer must handle a variety of

low-level details that have nothing to do with the problem domain. For example, consider

the CUDA code in Figure 1, which sums two vectors; this code is verbose, containing

boiler-plate code for moving data to and from the GPU, calculating thread indices, and

so forth. Ideally, the programmer could ignore these details and write something like the

code in the top part of Figure 2, which expresses the desired kernel computation and

data movement much more succinctly. This code snippet indicates that the expression

z = x + y runs on the GPU for each x, y and z in the vectors X, Y and Z. The end

result is that Z contains the sum of vectors X and Y. This level of expression allows the

compiler to automatically perform transformations, such as pipelining, depending on the

size of the vectors.

The compiler translates the specification in Figure 2 into low-level code in CUDA or

OpenCL. In this section we describe our approach to Harlan’s design, implementation,

and optimization.

2.1. Design

Harlan enables the programmer to specify sections of code to run on the GPU or other

accelerator over certain ranges of data. This level of expression gives the programmer

control of where the computation takes place, and implicitly defines what data must move

and when such movement must occur. However, the compiler and runtime maintain a

great deal of flexibility to perform data layout transformations or optimizations such as

pipelining.

One key issue in programming GPUs is managing whether data is resident on the de-

vice or host memory. This is especially difficult in CUDA, as the language does not make

any distinction at a language level between data on the GPU and data on the CPU—both

are represented as pointers. Our kernel blocks, on the other hand, indicate syntactically

which portions of code should run on the GPU if possible, and thus imply what data

must be on the GPU. In the most naïve sense, all the data needed by a kernel is moved

to the GPU upon entering a kernel expression and the data is moved back afterwards. In

practice, however, the compiler may use dataflow analysis to eliminate unnecessary data

movement. Freeing the programmer from worrying about these details also lowers the

potential for errors that arise from, for example, dereferencing a device pointer from the

host or vice-versa.

We have designed kernels so that they are expressions that return values. This deci-

sion improves expressiveness and compositionality. Using kernels as expressions allows

rewriting the first example in Figure 2 as: Z = kernel(x : X, y : Y) { x + y }. Kernel ex-

pressions are similar to the map operator in functional programming languages. We also

provide support for reductions, enabling programming styles such as MapReduce [8].

For instance: Z = +/kernel(x : X, y : Y) { x ∗ y }. Here, the values returned by the ker-

nel are to be summed and stored in z. This approach gives the programmer more control

and is more natural when nesting reductions. Making this reduction information explicit

provides more information for the compiler to use in optimizations.

Our goal is to avoid restrictions on what code is allowed within a kernel block. We

allow arbitrary procedure calls within kernels, including recursive calls. This implies the

ability for kernels to be nested, since even if we tried to restrict this, kernels might still

call functions that use kernels. This eliminates the cognitive burden caused by constructs

__glob al__ void a d d _ k e r n e l (i n t s i z e , f l o a t ∗X, f l o a t ∗Y, f l o a t ∗Z)

{

i n t i = t h r e a d I d x . x ;

i f (i < s i z e) { Z [i] = X[i] + Y[i] ; }

}

void v e c t o r _ a d d (i n t s i z e , f l o a t ∗X, f l o a t ∗Y, f l o a t ∗Z)

{

f l o a t ∗dX , ∗dY , ∗dZ ;

cudaMal loc (&dX , s i z e ∗ s i z e o f (f l o a t)) ;

cudaMal loc (&dY , s i z e ∗ s i z e o f (f l o a t)) ;

cudaMal loc (&dZ , s i z e ∗ s i z e o f (f l o a t)) ;

cudaMemcpy (dX , X, s i z e ∗ s i z e o f (f l o a t) , cudaMemcpyHostToDevice) ;

cudaMemcpy (dY , Y, s i z e ∗ s i z e o f (f l o a t) , cudaMemcpyHostToDevice) ;

a d d _ k e r n e l <<<1 , s i z e >>>(s i z e , dX , dY , dZ) ;

cudaMemcpy (Z , dZ , s i z e ∗ s i z e o f (f l o a t) , cudaMemcpyDeviceToHost) ;

cudaF ree (dX) ;

cudaF ree (dY) ;

cudaF ree (dZ) ;

}

Figure 1. CUDA code for adding two vectors.

void v e c t o r _ a d d (v e c t o r < f l o a t > X, v e c t o r < f l o a t > Y, v e c t o r < f l o a t > Z)

{ k ern e l (x : X, y : Y, z : Z) { z = x + y ; } }

t o t a l = + / k ern e l (row : Rows) { + / k ern e l (x : row) ; } ;

h a n d l e = async k ern e l (x : X, y : Y) { x ∗ y } ;

/∗ Other c o n c u r r e n t k e r n e l s or program code go here . ∗ /

z = +/ wait (h a n d l e) ;

k ern e l (x : X, y : Y, z : Z) { z = x ∗ y ; }

@communicate {Y[i]@r <<= Z [i]@((r + 1) % NUM_NODES) ,

where r in world , i in 0 . . . l e n g t h (Y) }

k ern e l (x : X, y : Y, z : Z) { z = x ∗ y ; }

Figure 2. Harlan code for adding two vectors, sum reduction using nested kernels, asynchronous kernels, and

kernels interspersed with communication across a cluster.

such as CUDA’s local and global functions and allows programs such as the second

example in Figure 2.

In the most basic form, a kernel block provides language support for data par-

allelism. Allowing multiple kernels to run concurrently can provide more flexibility in

expressing algorithms and gives more freedom to the compiler for scheduling. Modern

GPUs, such as those using NVIDIA’s Fermi architecture, support running multiple ker-

nels in parallel [15]. Harlan allows an optional async annotation on kernel expressions.

The expression returns a handle that the program could then wait on. Figure 2 shows

an example of using an async kernel. In this example, the kernel may run asyn-

chronously from the rest of the main program. The wait(handle) expression blocks

until the kernel completes and returns the value that would have been returned by the

kernel were it executed synchronously. This added flexibility can simplify the expression

of task parallelism.

2.2. Implementation

Perhaps the biggest language design challenge is determining how to effectively map

our language features onto hardware. One difficulty is that GPUs currently have more

limited control flow options than CPUs. In effect, they support only small branches and

looping constructs; richer concepts like recursion natively supported. Many languages

address this by limiting the expressiveness of GPU kernels. We intend to avoid these

restrictions. Kernels should be allowed to run arbitrary computations, including recur-

sive procedure calls and spawning additional kernels. Launching kernels from within

kernels leads to nested data parallelism, which has been the subject of much existing

research [2,16,6]. NESL [2,1] implements nested parallelism primarily through flatten-

ing. More recent work argues that except in the most unbalanced workloads, leaving the

program in its original nested form provides more opportunities to exploit hierarchies

in modern machines [5]. More evaluation is clearly necessary, especially in the deeper

hierarchies present in hybrid GPU cluster computers.

Existing work has demonstrated that it is possible to support richer control flow on

a GPU [9]. The approach is to write a SIMD interpreter that interprets different pro-

grams as data. Naturally, this incurs a certain amount of overhead, although the results

suggested that this overhead will be acceptable in many cases. We propose a hybrid ap-

proach, generating native GPU code when possible, and using the interpreter approach

for particularly difficult kernels. We expect that future GPUs will continue to relax the

restrictions on program control flow.

Data movement within a hybrid cluster introduces more opportunities. Soon it will

be common for GPUs to be able to interact with network hardware directly, with-

out involvement from the CPU. While a naïve implementation of Harlan with Kanor

@communicate blocks would always copy data from the GPU to the CPU before do-

ing network transfers, this is unnecessary. The dataflow analysis that is used to optimize

data movement between the CPU and GPU memory can also inform communication

code generation to produce direct GPU to GPU transfers even across nodes in a cluster.

The last example in Figure 2 shows communication code between two kernels. The pro-

gram first performs a computation, then all nodes exchange data, and the computation

continues. None of the variables X, Y and Z are accessed off of the GPU between the two

kernels, so there is no reason to move them off of the GPU. Instead, the communication

can directly transfer between the GPU and network.

2.2.1. Optimizations

Data Movement Since data movement between CPU and GPU is implicit, the compiler

must infer when data need to be copied. Data that are not live at the end of a kernel

need not be copied back into the CPU. Similarly, data that would be used only by a

subsequent kernel may be kept on the GPU. However, this must be balanced against the

GPU memory footprint of the application.

A second class of data locality optimizations relate to various memory types on

contemporary GPUs, as mentioned earlier. For instance, the compiler can identify read-

only data that are live and expected to be used soon, to allocate those in the faster constant

memory.

Splitting Kernels Kernels defined in Harlan may often map directly to kernels in CUDA

or OpenCL, but they are not required to. CUDA and OpenCL kernels have restrictions

on control flow and procedure calls, and lack synchronization capabilities. Thus, the

compiler may need to split a kernel in Harlan in order to implement it using CUDA

kernels [4]. Multiple splits may be possible, so the compiler must select the one that is

likely to minimize performance penalty.

Scheduling Concurrent Kernels Carefully scheduling the kernels has the potential to

dramatically improve data locality and avoid unnecessary CPU-GPU data movement. A

data dependence graph between kernels, with edge weights representing the amount of

shared data, can provide the compiler the necessary information to create a schedule.

Generating Code for Reduction Operations Reduction operations may be more effec-

tively done on the CPU, even if the partial results need to be transferred from the GPU,

because low occupancy in the later parts of a reduction operation can result in sub-

optimal GPU utilization. However, the data movement cost might dominate if the results

are to be used back on the GPUs. The compiler will need to consider this tradeoff and

(a) Vector addition (b) Dot product

Figure 3. Performance of code generated by prototype Harlan compiler.

may choose to generate code that employs a hybrid strategy of using both CPU and GPU

for completing a reduction operation.

3. Evaluation

Figure 4.: Mandelbrot on CPU and GPU.

As proof of concept, we studied three

benchmarks in Harlan, vector addition,

vector dot product, and Mandelbrot set

generation. We evaluated their perfor-

mance on 2.8 GHz Quad-Core Intel

Xeon with 8 GB 1066 MHz DDR3

RAM and ATI Radeon HD 5770 graph-

ics processors with 1024 MB memory,

running Mac OS X Lion 10.7.1. Fig-

ure 3 shows the GPU running times of

OpenCL generated by our compiler for

two of the benchmarks, vector addition and dot product, for increasing vector sizes. Fig-

ure 4 shows running times of compiler-generated OpenCL code for Mandelbrot on CPU

and GPU. Unsurprisingly, running OpenCL on GPUs is faster than running the OpenCL

on CPU. The slight discontinuity of Mandelbrot times on the GPU seems to be an artefact

of the ATI Radeon’s memory-hierarchy optimization called fastpath.

4. Conclusion

General-purpose GPU programming is arduous on multiple fronts, requiring program-

mers to manually program data layout, memory accesses, and boiler-plate code, among

other details. Even with state-of-the-art technologies such as CUDA or OpenCL, atten-

tion to such detail is necessary to enable GPUs to achieve their performance potential. At

the same time, data orchestrations necessary for optimal GPU access may not be human-

friendly, or even directly related to the problem being solved. For example, strided mem-

ory accesses may incur an order-of-magnitude performance penalty compared to unit

strides. Similarly, data movement from the GPU to main memory may require double or

triple buffering to hide DMA latency. Ideally, such data access issues should be managed

automatically by the compiler, assisted by programmer declarations.

In this paper we introduced Harlan, which affords a declarative approach to GPGPU

programming, allowing users to specify the “what” not the “how” of data layout, data

movement, and computation scheduling and coordination. Consider the normally diffi-

cult task of setting up blocks of threads on a GPU for optimal efficiency. Using a declar-

ative approach, the programmer can specify what computation needs to be performed,

but let the language and runtime determine “how” the computation should be broken into

thread blocks (perhaps using a combination of autotuning and heuristics).

The declarative approach is especially promising for hybrid CPU/GPU clusters, in

which movement of data between compute nodes adds even more complexity. Our end

goal is a system that removes much of the “accidental” or “artifactual” burden of pro-

gramming large-scale hybrid resources (such as Roadrunner or Tianhe-1A), without sac-

rificing performance.

References

[1] G. E. Blelloch. Nesl: A nested data-parallel language (version 3.1). Technical report, Pittsburgh, PA,

USA, 1995.

[2] G. E. Blelloch. Programming parallel algorithms. Commun. ACM, 39(3):85–97, 1996.

[3] M. Boyer, K. Skadron, and W. Weimer. Automated Dynamic Analysis of CUDA Programs. In Third

Workshop on Software Tools for MultiCore Systems, Apr. 2008.

[4] S. Carrillo, J. Siegel, and X. Li. A control-structure splitting optimization for GPGPU. In Proceedings

of the 6th ACM Symposium on Computing Frontiers, pages 147–150, 2009.

[5] B. C. Catanzaro, M. Garland, and K. Keutzer. Copperhead: compiling an embedded data parallel lan-

guage. In C. Cascaval and P.-C. Yew, editors, PPOPP, pages 47–56. ACM, 2011.

[6] M. M. T. Chakravarty, G. Keller, R. Lechtchinsky, and W. Pfannenstiel. Nepal - nested data paral-

lelism in haskell. In Proceedings of the 7th International Euro-Par Conference Manchester on Parallel

Processing, Euro-Par ’01, pages 524–534, London, UK, 2001. Springer-Verlag.

[7] K. Chandy and C. Kesselman. CC++: A declarative concurrent object oriented programming notation.

Research Directions in Concurrent Object-Oriented Programming, Jan 1993.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In OSDI, pages

137–150, 2004.

[9] H. Dietz and B. Young. Mimd interpretation on a GPU. In G. Gao, L. Pollock, J. Cavazos, and X. Li,

editors, Languages and Compilers for Parallel Computing, volume 5898 of Lecture Notes in Computer

Science, pages 65–79. Springer Berlin / Heidelberg, 2010.

[10] I. Foster. Compositional parallel programming languages. ACM Transactions on Programming Lan-

guages and Systems (TOPLAS, 18(4), Jul 1996.

[11] E. Holk, W. E. Byrd, J. Willcock, T. Hoefler, A. Chauhan, and A. Lumsdaine. Kanor – A Declarative

Language for Explicit Communication. In Thirteenth International Symposium on Practical Aspects of

Declarative Languages (PADL’11), Austin, Texas, Jan. 2011.

[12] B. Jang, D. Schaa, P. Mistry, and D. Kaeli. Exploiting memory access patterns to improve memory

performance in data-parallel architectures. IEEE Transactions on Parallel and Distributed Systems,

22:105–118, 2011.

[13] Khronos OpenCL Working Group. The OpenCL Specification, version 1.1, September 2010.

[14] NVIDIA Corporation. NVIDIA CUDA Reference Manual, version 3.2 Beta, August 2010.

[15] NVIDIA Corporation. NVIDIA CUDA C Programming Guide, version 4.0 edition, Feb. 2011. Included

with CUDA 4.0 SDK release candidate.

[16] S. Peyton Jones. Harnessing the multicores: Nested data parallelism in haskell. In Proceedings of the

6th Asian Symposium on Programming Languages and Systems, APLAS ’08, pages 138–138, Berlin,

Heidelberg, 2008. Springer-Verlag.

[17] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-Purpose GPU Programming.

Addison-Wesley Professional, July 2010.

[18] Top500.org. Top500 list, November 2010. http://www.top500.org/lists/2010/11.

http://www.top500.org/lists/2010/11

