
The Case for Collective Pattern Specification
Torsten Hoefler

University of Illinois at Urbana-Champaign
htor@illinois.edu

Jeremiah Willcock Arun Chauhan
Andrew Lumsdaine

Indiana University
{jewillco,achauhan,lums}@cs.indiana.edu

Abstract
Many scientific applications are written in a Bulk Synchronous
Parallel style, in which regions of pure computation are separated
by communication operations. Unless an existing MPI collective
operation can be used, these communication operations are usu-
ally written as separate message sends and receives, making anal-
ysis and optimization difficult. This style of communication also
reduces readability and maintainability by hiding the overall col-
lective pattern in a maze of individual messages. Instead we ad-
vocate directly specifying (collective) communication operations
in a domain-specific language. We further classify applications by
their communication patterns, in particular with respect to different
nodes’ knowledge of the applications’ patterns and the frequency
of pattern changes, showing how a language would benefit each of
these classes of applications and the requirements for such a lan-
guage.

Categories and Subject Descriptors D.1.3 [Programming tech-
niques]: Concurrent programming—Parallel programming; D.3.3
[Programming languages]: Language constructs and features—
Concurrent programming structures

General Terms Languages, performance

Keywords Message passing, collective communication

1. Introduction
We argue that current semantics of message passing applications
are too limited to express many application communication patterns
directly, and consequently performance can suffer in HPC applica-
tions. Many applications have structured communication patterns
that cannot be expressed at a high level, forcing users to imple-
ment their communications using low-level point-to-point primi-
tives. The Message Passing Interface (MPI) [12], often regarded
as “the assembly language of parallel computing,” is the de facto
standard interface for parallel high-performance computing. How-
ever, we argue that MPI is more than an assembly language be-
cause, while it offers numerous low-level routines such as send and
receive, it also supports high-level communication constructs and
patterns through collective operations. These collective operations
do not express single messages, but rather model group operations
that can employ very complex communication patterns in their op-
timized execution [2, 9, 11]. MPI’s abstractions and its capabil-
ity for defining complex process topologies (Cartesian or general
graphs) represent features of a high-level language.

Copyright is held by the author/owner(s).
AMP ’10 June 6, 2010, Toronto, Ontario, Canada
ACM .

The seventeen collective operations in MPI 2.2 support many
communication patterns found in scientific applications today.
However, this set is limited to collectives in which all processes
have the same view of the operation. Typical point-to-point com-
munication patterns, such as nearest-neighbor exchanges, do not fit
this scheme because the local views of the processes might not be
uniform. Such operations are typically implemented with explicit
point-to-point communications, that is, at the “assembly level.” We
note that the most general collective call, MPI Alltoallv, is able to
express most patterns, but this operation is neither scalable [1] nor
easy to optimize. It also does not support reduction operations.

In this paper, we adopt the abstract perspective that many com-
mon communication patterns—even those that cannot be modeled
by MPI collective operations—are, conceptually, collective com-
munications. If these patterns are implemented by means of point-
to-point operations, one loses abstract information about the con-
current communication and restricts optimization possibilities [6].
Also, point-to-point techniques force the user to descend into the
lowest level of the MPI interface and to specify the pattern manu-
ally, which might lead to less maintainable source code [8].

We assume that most applications are written in a Bulk Syn-
chronous Parallel (BSP) model [14] in that they execute in phases
or supersteps. From this perspective, it seems beneficial to enable
the supersteps’ communication to be defined as collective opera-
tions. We argue that this technique could benefit a large class of
applications and lead to higher performance and simpler imple-
mentations. In addition, several optimizations, such as automatic
communication/computation overlap and relaxed synchronization,
could be achieved with simple code transformations.

We discuss and characterize the communication patterns of typ-
ical scalable parallel applications that are implemented in the mes-
sage passing model. We classify the patterns into five categories
and provide guidelines for how each category should be supported
by the middleware and handled by the programmer. We show that
the current MPI interface does not support the specification of many
of those patterns as collective operations.

2. Communication Patterns
Multiple parallel design patterns exist for the parallel implemen-
tation of common algorithms, for example, [3, 13]. In contrast to
those, our work focuses on the algorithms’ communication patterns
and their efficient and easy specification and implementation; we
thus classify applications based on their communication patterns.
This classification serves as a set of parallel communication pat-
terns, and a parallel language or environment should strive to sup-
port those patterns at the highest possible level. We describe five
different patterns, evaluating MPI’s expressiveness for each.

2.1 Compile-time static

In applications with compile-time static communication patterns,
the communication structure is defined by the application’s source
code and is constant across all inputs for a given number of pro-
cesses. These codes tend to use simple, for example, Cartesian,
n-dimensional domain decomposition strategies. Codes that solely



use non-vector collective communication, such as parallel fast
Fourier transforms, also fit in this category. These applications are
typically BSP-style, with communication occurring collectively at
given points throughout execution.

Implementation in MPI. Applications in this class often use
either dense collective operations or point-to-point communica-
tion along Cartesian grids. Dense collective operations are part of
MPI, and often optimized by the MPI implementation, sometimes
with acceleration in network hardware. Cartesian topologies, repre-
sented through appropriate MPI communicators, can be mapped to
the topology of a system’s interconnection network but still enforce
explicit point-to-point messaging along the edges.

Evaluation. The expressiveness of MPI for these applications
depends on the exact communication pattern. Global, dense col-
lectives are currently supported by MPI, with non-blocking collec-
tives (used to overlap communication and computation) projected
to arrive in MPI 3.0 [7]. Nearest-neighbor communications, on the
other hand, cannot be expressed collectively. They must be writ-
ten using point-to-point communication operations, which forces
programmers to fall back to the “assembler” level, in MPI 2.2;
the MPI Sendrecv function can aid in avoiding deadlocks, but that
function still creates independent send and receive operations. The
MPI Forum is currently working on adding explicit support for this
use case (“sparse collectives” [6]).

2.2 Run-time static

Applications in the run-time static class have communication pat-
terns that are input-dependent, but the pattern is fixed during a sin-
gle application run but cannot be compiled statically. These appli-
cations typically use unstructured meshes, with techniques such as
graph partitioning to find good parallel distributions of the input
problem. As in the compile-time static class of applications, typical
communication operations are collective (BSP-style) in computa-
tions such as sparse matrix-vector multiplication and elementwise
vector operations (often including reductions).

Implementation in MPI. This type of communication can be
mapped to MPI constructs, but not as directly as for compile-time
static patterns. A mesh in a file can be decomposed into load-
balanced subproblems using a graph partitioning algorithm. The
edges cut by the partition can be used to create a communication
schedule, which can be mapped onto the system topology by an
MPI graph communicator. Although the interface for constructing
graph communicators in MPI 2.1 is not scalable, MPI 2.2 adds a
scalable interface for use with larger systems [12, § 7.5.4]. Given a
topology mapping to the actual network, data can either be read on
the appropriate processor or redistributed after it has been loaded.

Evaluation. Operations such as vector dot products and norms
can employ dense reductions, and convergence testing can use
global reductions or broadcasts; MPI directly supports all of these.
The unstructured nearest-neighbor communication involved in a
sparse matrix-vector multiplication, on the other hand, cannot be
expressed efficiently in MPI 2.2 without the manual use of point-
to-point operations. The aforementioned sparse collective proposal
for MPI 3.0 would enable high-level handling of this use case.

2.3 Run-time flexible

In this class of application, the communication pattern changes dur-
ing the computation but the changes are relatively rare. Typical ex-
amples are applications using adaptive mesh refinement that reuse
the same mesh multiple times before the re-meshing step. As in the
previous two types of applications, run-time flexible applications
are typically BSP-style and communications occur collectively.

Implementation in MPI. A similar approach can be used to
implement rarely changing patterns as is used for static patterns.
For changing graph structures, such as adaptive mesh refinement
(AMR), less expensive partitioning algorithms may be used for the
periodic repartitioning steps. MPI graph topologies may still be
useful if the same communication schedule is reused often enough.

Evaluation. Run-time flexible applications map to MPI in basi-
cally the same ways as run-time static applications. However, one
must consider the tradeoff between the costs and the benefits of op-
timizations. Operations involving all processes symmetrically can
usually be done with MPI collectives, but the main body of each
algorithm cannot be, as in the run-time static case.

2.4 Dynamic
Dynamic applications have communication patterns that have lit-
tle structure, depend on the input, and change very frequently.
Typical examples are parallel graph computations, high-impact
adaptive mesh refinement applications that re-mesh every iteration,
and many n-body methods. Some of these applications are BSP-
style, such as partial differential equation solvers on fast changing
meshes, breadth-first search, and parallel single-source shortest
path algorithms. Those applications benefit from less synchroniza-
tion: internal synchronization would slow down graph exploration
(finding all vertices within a certain number of links of a given ver-
tex), and sparse LU factorization uses mostly local synchronization
operations. Because of the very loose synchronization necessary
to hide communication latency in these applications, BSP-style
approaches are not typically used.

Implementation in MPI. Fully dynamic applications, such as
most graph computations, generally do not benefit from graph par-
titioning at all, so simple distributions are used. Dynamic applica-
tions tend to use non-blocking point-to-point operations for maxi-
mum concurrency, and purposely minimize synchronization among
processes.

Evaluation. These applications only rarely use collective com-
munication, and so hand-written message passing is necessary. Dy-
namic applications tend to use asynchronous messaging in order to
hide latency (overlap communication and computation); the logic
involved in managing the many outstanding requests is byzantine.
Because MPI requires send and receive buffers to be managed by
the application, it must also monitor each operation’s completion
in order to reclaim its buffers. Dynamic applications generally have
communications sent to processes that do not expect them; there-
fore, MPI ANY SOURCE must be used. When a message’s size
is also unknown, MPI Probe or MPI Iprobe can be used to deter-
mine it, but these functions cannot be used reliably in the presence
of threads [5]. One-sided communication operations or active mes-
sages are more suitable for these applications. MPI 2.0 provides
simple one-sided operations, but they are inadequate for sophisti-
cated applications such as graph algorithms, while active messages
are not currently provided by MPI.

2.5 Massively parallel
This last class is mostly mentioned for completeness. Some paral-
lel applications, such as Monte Carlo simulations, require minimal
or no communication. Massively parallel applications in which all
nodes do roughly the same amount of work, distributed at the be-
ginning of the program’s run, can be viewed as BSP-style with only
a few giant supersteps. Many manager-worker applications, on the
other hand, do not have global synchronization or communication
except at the very end of execution.

Implementation in MPI. Massively parallel applications typi-
cally do little communication, and the communication structures
are often simple (a few global collectives or a manager-worker



model). Many manager-worker applications are straightforward to
implement (e.g., through the use of MPI ANY SOURCE to wait
for work requests).

Evaluation. MPI works well for these applications. When com-
munication patterns are simple, the applications are similar to those
in the compile-time static class but with even less importance
placed on message-passing performance.

In general, MPI’s collective operations are predefined static pat-
terns that can be plugged into many applications. They are a large
step towards higher-level constructs (see Gorlatch [4]), but are only
partially applicable to applications that use sparse communications.
The MPI Forum has been working on various library additions to
support sparse applications. We argue that compiler-aided transfor-
mations could also benefit these applications.

3. Our Position: Collective Pattern Specification
The importance of message-passing is undebatable and almost all
message-passing models are implemented through libraries (MPI)
that are inherently constrained by limited contextual information
and requirements to adhere to standard APIs. Communication opti-
mizations that require information on the larger contexts surround-
ing calls to library functions require error-prone and non-portable
manual transformations.

An declarative specification that lets users express the what, but
not the how, of communication separates the description of com-
munication from its optimization. Note that unlike other parallel
language-based approaches such as PGAS or HPF, this approach
encourages programmers to think carefully about data decomposi-
tion and accesses, but relieves them of the need to write spaghetti
message passing code that mixes computation and communication.

The fundamental communication abstraction in our model is the
collective: A communication pattern that is run simultaneously by
all nodes and that is logically synchronizing between them. The
specification syntax uses a small extension to the host language
(e.g., C++) while leveraging the full power of the underlying lan-
guage (e.g., templates).

A compiler will be used to implement the patterns and opti-
mize surrounding code. Compiler techniques were proved effective
in communication optimization [10]; in our approach, the com-
piler optimizes parallel programs specified with a well-designed
collective language. Optimization techniques include message coa-
lescing, communication placement, scheduling, global pattern opti-
mizations (e.g., turning a linear gather into a tree pattern), and over-
lapping communication and computation by automatically turning
blocking calls into non-blocking calls. This model can be used to
implement four of the five classes of applications given above:

Compile-time static and massively parallel. For this type of
application, communication patterns are expressed as collective
operations with respect to an arbitrary processor i, quantified over
a set of processors. Since the language does not restrict the range
of quantification, sparse collectives are specified just as naturally
as dense collectives. In both cases, a compiler is able to derive the
global pattern and optimize it statically.

Run-time static and flexible. Our language extensions will sup-
port the use of run-time values to specify communications, allow-
ing patterns to be defined for unstructured applications. Compiler
analysis is more difficult for unknown patterns—much of the op-
timization would need to be delayed until the exact patterns are
known. The level of optimization applied would also vary based
on the reuse of the pattern. A potential issue for these applications
is that the full communication schedule is often not available glob-
ally; each node only has the portions relevant to it, and the run-time
matching of sends and receives must be definable.

Dynamic. Applications in this class, requiring arbitrary and po-
tentially unstructured communication patterns, do not lend them-
selves easily to specification in the form of collectives. Our exten-
sions would thus need to provide special mechanisms to specify this
type of communication; active messages with different termination
detection schemes, or similar, would be one possibility.

We accept that scientific computing needs slow transitions in-
stead of revolutionary new languages due to the high number of ex-
isting programs and the large amount of effort that has been spent
on them. We therefore propose extensions that can be incremen-
tally retrofitted into existing applications, with compiler assistance
to use the extensions to improve performance. Such a high-level
specification of communications will be especially important for
high performance on petascale and exascale systems.

Acknowledgments
We would like to thank Marc Snir for helpful discussions, as well
as William Byrd and Laura Hopkins for comments on the paper.
This work was supported by the Lilly Endowment, DOE FASTOS
II (LAB 07-23), and NSF grant CNS-0834722.

References
[1] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk,

R. Thakur, and J. L. Träff. MPI on a million processors. In Eu-
roPVM/MPI, pages 20–30, 2009. ISBN 978-3-642-03769-6.

[2] J. Bruck, C.-T. Ho, S. Kipnis, and D. Weathersby. Efficient algorithms
for all-to-all communications in multi-port message-passing systems.
In SPAA, pages 298–309, 1994. ISBN 0-89791-671-9.

[3] S. Gorlatch. Abstract Machine Models for Parallel and Distributed
Computing, pages 147–161. IOS Press, Amsterdam, 1997. ISBN 90-
5199-267-X.

[4] S. Gorlatch. Send-receive considered harmful: Myths and realities
of message passing. ACM Trans. Program. Lang. Syst., 26(1):47–56,
2004. ISSN 0164-0925.

[5] D. Gregor, T. Hoefler, B. Barrett, and A. Lumsdaine. Fixing probe
for multi-threaded MPI applications. Technical Report 674, Indiana
University, Jan. 2009.

[6] T. Hoefler and J. L. Träff. Sparse collective operations for MPI. In
International Parallel & Distributed Processing Symposium, HIPS’09
Workshop, May 2009. ISBN 978-1-4244-3750-4.

[7] T. Hoefler, A. Lumsdaine, and W. Rehm. Implementation and per-
formance analysis of non-blocking collective operations for MPI. In
Proceedings of the ACM/IEEE Conference on Supercomputing, 2007.

[8] T. Hoefler, F. Lorenzen, and A. Lumsdaine. Sparse non-blocking
collectives in quantum mechanical calculations. In EuroPVM/MPI,
volume LNCS 5205, pages 55–63, 2008. ISBN 078-3-540-87474-4.

[9] R. M. Karp, A. Sahay, E. E. Santos, and K. E. Schauser. Optimal
broadcast and summation in the LogP model. In Symposium on
Parallel Algorithms and Architectures, pages 142–153, New York, NY,
USA, 1993. ACM. ISBN 0-89791-599-2. doi: http://doi.acm.org/10.
1145/165231.165250.

[10] A. Karwande, X. Yuan, and D. K. Lowenthal. CC–MPI: a compiled
communication capable MPI prototype for Ethernet switched clusters.
SIGPLAN Not., 38(10):95–106, 2003. ISSN 0362-1340.

[11] J. M. Mellor-Crummey and M. L. Scott. Synchronization without
contention. SIGARCH Comput. Archit. News, 19(2):269–278, 1991.
ISSN 0163-5964.

[12] MPI Forum. MPI: A Message-Passing Interface Standard. Ver-
sion 2.2, September 4th 2009. http://www.mpi-forum.org/docs/
mpi-2.2/mpi22-report.pdf.

[13] S. Siu, M. De Simone, D. Goswami, and A. Singh. Design patterns
for parallel programming. In Parallel and Distributed Processing
Techniques and Applications, pages 230–240, 1996.

[14] L. G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, 1990. ISSN 0001-0782.


