
A SOURCE-LEVEL MATLAB TRANSFORMER FOR DSP APPLICATIONS
Arun Chauhan

achauhan@cs.rice.edu
Ken Kennedy

ken@cs.rice.edu

Department of Computer Science, Rice University, Houston,TX 70005, USA.

ABSTRACT
We present an automatic source-level transformer for DSP
applications written inMATLAB . Our transformer is based
on a novel approach to specify the transformations in an
XML-based language resulting in a simple implementation
of the transformer as a rewriting engine. In an earlier study
we have identified transformations that pay off handsomely
for DSP applications. This paper describes the design of
the transformer and demonstrates the practical utility of the
system on real DSP applications.
KEYWORDS
MATLAB , compiler, performance, XML, rewriting, source-
level

1 Introduction

Our survey of several researchers in the Electrical and
Computer Engineering department at Rice University re-
vealed thatMATLAB is a very popular programming lan-
guage to write DSP and image processing applications.
MATLAB affords very high-level operations that enable ap-
plication writers to encode their algorithms easily. In ad-
dition the MATLAB package comes with domain-specific
libraries, or toolboxes, which contribute to its huge popu-
larity. Unfortunately, theperformancedelivered byMAT-
LAB falls short of end users’ requirements. The perfor-
mance metric could be either the running time or the mem-
ory footprint of the application or a combination of the two,
depending on the application requirements. For this paper
we focus on the application running times. All the applica-
tions studied in this work are real simulation applications
that have been, or are being, used by the researchers in the
ECE department.

DSP applications are often coded modularly. In other
words the application is often divided into functions that
are called from the application. These functions themselves
call other lower-level functions, and so on. Our past stud-
ies of DSP applications have shown that many frequently
used functions are abstracted in a general way to be widely
applicable. These general functions then form a user-level
library of DSP functions. However, the functions tend to
be used in certain predictable ways that are amenable to
source-level program transformations resulting in signifi-
cant improvements in running times.

Additionally, our past studies have also shown that
several well-known program transformation techniques in

MATLAB is a registered trademark of MathWorks Inc.

compilers turn out to be high-payoff for DSP applications
written in MATLAB .

The main contribution of this paper is the develop-
ment of an automatic source-level transformer to carry out
the transformations that we have previously discovered (or
identified) as high-payoff for DSP applications written in
MATLAB . The transformer works as aMATLAB rewriting
system that carries out a sequence of source-level rewrit-
ings specified externally as an XML-based language that
we have designed for this purpose.

2 DSP Applications

We studied a set of DSP applications and functions, written
in MATLAB , which were obtained primarily from the Cen-
ter for Multimedia Communications at Rice. A few were
downloaded from the contributed section of the web-page
of MathWorks Inc. In this paper we present results for a
few selected DSP applications and functions. The func-
tions that were studied are briefly described below.

jakes mp1 This function computes fast fading signals using
the Jakes model. It is used in an application calledctss

that simulates a complete system with convolutional coding
and overlapping codes. The function consists of a single
loop that performs trigonometric computations on matrices.

codesdhd This is a Viterbi decoder that uses other lower level
functions. It is the most computationally intensive compo-
nent of thectss application. Most of its computation is
evenly distributed among the lower level functions.

newcodesig Used to simulate the transmitter and the chan-
nel of a system within thectss application, it is the sec-
ond most computationally intensive component. Most of its
computation is performed inside a singlefor loop.

ser test fad This procedure implements a value iteration
algorithm for finite horizon and variable power to mini-
mize outage under delay constraints and average power con-
straints. It is used inside an application that simulates out-
age minimization for a fading channel. It is invoked inside
a doubly-nested loop and itself consists of a five-level deep
loop-nest where it spends most of its time.

sML chan est This is a piece ofMATLAB code that imple-
ments a block in a SimuLink system that consists of sev-
eral interconnected blocks. It primarily consists of a single
loop that is inside a conditional statement. The procedure is
the most time-consuming part of the entire simulation.

SimuLink is a registered trademark of MathWorks Inc.

acf This procedure to compute auto-correlation of a signal is a
part of a collection for time-frequency analysis. The com-
putation is performed inside a simplefor loop.

artificial queue Almost all the computation in this
small function is inside a loop that contains a vector state-
ment that resizes an array. The characteristic feature of this
procedure is that it typically operates on huge arrays.

ffth This function computes an FFT on areal vector in half
the space and time needed for a general FFT. Essentially,
this is a version of FFT specialized forreal input.

fourier by jump This function implements Fourier analy-
sis by the method of jumps. The implementation has been
motivated by the lack of accurate results by the intrinsic
MATLAB fft function in certain cases. It consists of two
loops, only one of which is invoked depending on the value
of an input argument.

huffcode This function computes Huffman codewords based
on their lengths. The primary computation inside the pro-
cedure occurs in a doubly nested loop. The outerfor loop
encloses awhile loop that is guarded by anif condition.

3 Source-level Transformations

Several source-level transformations have a high-impact on
the performance of DSP applications. We described these
transformations in an earlier paper, but summarize them be-
low for easier reference.

3.1 Beating and Dragging Along

MATLAB code for DSP makes liberal use of thereshape
primitive to facilitate ease of indexing into arrays. Unfor-
tunately, this can often result in copying of the array at
runtime. Beating and dragging along is a compiler tech-
nique to “beat” the reshaped array into the original shape
by rewriting the index expressions of the reshaped array so
that they refer to the original shape of the array. Further,
this shape is “dragged along” as long as possible.

3.2 Loop Vectorization

Users often find it easier to think in terms of loops. How-
ever, even when running on a scalar machine, we have dis-
covered that vectorizing loops is a big win. In a DSP func-
tion that simulates fast fading signals with the Jakes model,
replacing a doubly nested loop by equivalent vector state-
ments resulted in a speedup by a factor of 33! The reason
behind this remarkable improvement is the large overheads
of library calls inMATLAB that get amortized in the vector-
ized equivalent form.

3.3 Type-based Specialization

It is often possible to disambiguate the variable types in
a MATLAB program using a process calledtype inference.

Type inference is necessary becauseMATLAB variables are
not typed. This opens up the possibility of replacing calls
to generic library functions by variants that are specialized
for specific argument types. We call thistype-based spe-
cialization.

3.4 Procedure Strength Reduction

Inspired by the well-known loop optimization technique
called operator strength reduction, procedure strength re-
duction attempts to split a function call inside the loop into
two components—the slice of the function that performs
loop-invariant computation (fµ) is moved outside the loop
and the remaining loop-varying slice (f∆) remains inside
the loop. The transformation is applicable when several of
the arguments to a function call inside the loop are loop-
invariant, which is a situation that occurs frequently in the
DSP code that we studied. It is particularly useful when the
function has been sliced in advance, speculatively. In that
case a simple rewriting at the source level can replace the
call inside the loop as shown below.

for i = 1:N
....
x = f (c1, c2, i, c3);
....

end

⇒

fµ(c1, c2, c3);
for i = 1:N

....
x = f∆(i);
....

end

3.5 Procedure Vectorization

Procedure vectorization is applicable in a context that re-
sembles that of procedure strength reduction in that there
is a function call inside a loop. However, in this case the
loop-varying arguments to the function may be more com-
plicated, including an array section defined using the loop
index. the following simple example illustrates the trans-
formation.

for i = 1:N
....
y = f (c1, c2, i, x(i));
....

end

⇒

for i = 1:N
....

end
y(1:N) =

fν (c1, c2, [1:N], x(1:N));
for i = 1:N

....
end

3.6 Constant Propagation

Constant propagation is the process of propagating stati-
cally known constant values as far as possible in the code,
replacing variable references by their constant values wher-
ever possible. Combined with constant expression folding,
this can lead to significant runtime savings.

These source-level transformations can have signifi-
cant performance impact. For example, figure1 shows the
impact of procedure strength reduction applied to the ap-
plicationctss, reprinted from [3].

jakes_mp1 newcodesig codesdhd whole program
0

0.2

0.4

0.6

0.8

1

1.2
op

tim
iz

ed
 e

xe
cu

tio
n

tim
e

optimized execution times for top−level procedures in ctss relative to unoptimized

0 5 10 15 20 25

original

optimized

total time (in thousands of seconds)

distribution of the total execution time among top−level procedures in ctss

jakes_mp1
newcodesig
codesdhd

Figure 1. Effect of procedure strength reduction (reprinted
from [3])

If an array’s size can be computed before the array
is ever used then azeroes call could be used to pre-
allocate it, eliminating expensive runtime array-resizing.
While array sizes can sometimes be computed using static
techniques, often source-level transformations must sup-
plement the static size computation. We developed a tech-
nique called slice-hoisting to accomplish this in [4]. Fig-
ure2, reprinted from [4], shows how this source-level trans-
formation plays an important role in array-size computa-
tion.

acf art. Q ffth fourier by jump huffcode
0

10

20

30

40

50

60

70

80

90

100

110

120

pe
rc

en
t o

f t
ot

al
 v

ar
ia

bl
es

computing array−sizes using a combination of approaches

static
using slice−hoisting
externally specified args

Figure 2. Importance of source-level slice-hoisting for
array-size computation (reprinted from [4])

4 XML-based Language

Figure3 shows the high-level outline of the schema for the
XML specification language. The entire set of transforma-
tions are written as a sequence ofrewriting rules. Each rule

consists of acontext, amatchand asubstitute. A match or
a substitute consists of a sequence of statements each of
which can be any of the four recursively defined types—
simple statement, loop, two-way branch, and multi-way
branch. The four statements that the schema allows are
sufficient to express anyMATLAB program structure. The
“variable names” allowed under the schema are SSA re-
named so that the names refer to values rather than mem-
ory locations. Theapplicationof a rule involves searching
for the pattern specified by the match of the rule under the
specified context and replacing it with the substitute as long
as no dependencies are violated.

In general, an XML description following the given
schema can exactly describe a control-flow graph. Indeed,
the class hierarchy that is used internally in the front-endof
the compiler exactly mirrors the statement structures per-
missible under the schema. Thus, there is a simple state-
ment class, a loop class, and so on. Effectively, this class
hierarchy defines a grammar that can generate a class of
control-flow graphs and there is an isomorphism between
the grammar and the schema. There are three important
consequences of this mirroring:

1. Since the internal class-hierarchy is capable of repre-
senting the control-flow graph of any arbitraryMAT-
LAB program, it follows that the XML schema has the
same power of expression.

2. Control-flow graph is a widely used intermediate rep-
resentation in compilers. Therefore, describing struc-
tures directly in the form of control-flow graph pro-
vides a language-independent way of specifying spe-
cializing transformations so that it can be easily used
(or extended) for languages other thanMATLAB .

3. The isomorphism between the specification language
and the grammar of the control-flow graph (defined in
terms of the hierarchy of CFG classes) greatly simpli-
fies the process of recognition of the specified struc-
tures in a given program.

Even though the power of the language is illustrated
by arguing in terms of the control-flow graph, the language
is more easily understood in terms of abstract syntax tree.
Since there is a one-to-one correspondence between an ab-
stract syntax tree of aMATLAB program and its control-
flow graph in ourMATLAB compiler, the rewriting engine
has a choice of working on either representations.

In addition to the ability to specify a template to
match it is often useful to be able to refer to all oc-
currences of a variable or expression. In lieu of the
<substitute> element the schema allows writing a
<replaceAllOccurs> element that specifies replacing
all occurrences of a given variable or an array section by
another.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:annotation>
<xs:documentation xml:lang="en">

Optimizations as Specializations.
Rice University, 2004.

</xs:documentation>
</xs:annotation>

<xs:element name="specializations">
<!-- sequence of transformation -->

</xs:element>

<xs:complexType name="transformation">
<xs:complexType>

<xs:choice>
<xs:sequence maxOccurs="unbounded">
<xs:group ref="stmtGroup">
<xs:element name="context" type="preCondition"/>
<xs:element name="match" type="stmtList"/>
<xs:element name="substitute" type="stmtList"/>

</xs:sequence>
<xs:sequence maxOccurs="unbounded">
<xs:group ref="stmtGroup">
<xs:element name="context" type="preCondition"/>
<xs:element name="replaceAllOccurs"

type="replacementSpec"/>
</xs:sequence>

</xs:choice>
</xs:complexType>

</xs:complexType>

<xs:group name="stmtList">
<xs:sequence maxOccurs="unbounded">

<xs:choice>
<xs:element name="simpleStmt" type="simpleSpec"/>
<xs:element name="twowayBranchStmt"
type="twowayBranchSpec"/>

<xs:element name="multiwayBranchStmt"
type="multiwayBranchSpec"/>

<xs:element name="loopStmt" type="loopSpec"/>
<xs:element name="wildcardStmt"
type="wildcardSpec"/>

</xs:choice>
</xs:sequence>

</xs:complexType>

<xs:complexType name="context">
<xs:choice>

<xs:element name="type" type="typeAssertion"/>
<xs:element name="value" type="valueAssertion"/>

</xs:choice>
</xs:complexType>

<xs:complexType name="replacementSpec">
<xs:choice>

<xs:element name="occurrence" type="stmtList"/>
<xs:element name="replacement" type="stmtList"/>

</xs:choice>
</xs:complexType>

</xs:schema>

Figure 3. Outline of the XML schema for describing rewrit-
ing rules

As the name suggests the match element specifies a
patternthat is matched by the rewriting engine against the
procedure being compiled. Before describing how the pat-
tern is matched, one more syntactic entity must be added to
the language to make it sufficiently powerful to handle the
relevant transformations—wild card. Often the match of
a rule can tolerate arbitrary intervening statements, which
would normally also appear in the substitute. In fact, this is
the more common and the more powerful form of the match
element. A wild card matches any simple or compound
statement and can can match multiple occurrences accord-

ing to the attributesminCount andmaxCount. The de-
fault value for both is one. Each wild card element must
also be supplied with a unique integer label that can be used
within the substitute element to identify the corresponding
match1.

4.1 Applying the Rewriting Rules

input:
rewriting rule,R =<C, P, S>
abstract syntax tree,T

output:

transformed syntax tree,T
′

uses:
search pattern
replace pattern
replace occurrences

procedurerewrite
return if the contextC not verified
L = list of the top-level statements inT
patternhandle = searchpattern(P , T)
if found

if S is a substitute then
if replacingP by S does not violate any dependencies

T
′

= replace pattern(T , patternhandle,S)
else

T
′

= T ;
endif

else

T
′

= replace occurrences(T , patternhandle,S)
endif

endif
// now repeat the process for each statement recursively
for each compound statement,M , in L

H = abstract syntax tree forM

H
′

= rewrite(R, H)

T
′

= T with H replaced byH
′

T = T
′

endfor

returnT
′

Figure 4. The algorithm for the rewriting engine

In order to apply a rule the specialization engine first
converts the match part of the given specification into a
control-flow graph. However, this is not a regular pro-
gram control-flow graph but apatternthat must be matched
against the control-flow graph of the function being com-
piled.

A rewriting rule,R, can be denoted by a three tuple
<C,P, S> where,

C is the context that must be satisfied for the rule to be
applicable

P is the pattern that must be matched for the rule to be
applicable, and

S is the equivalent code that must be substituted for the
matched part if the rule is applicable, or a replacement
rule that replaces all occurrences of a variable or array
section.

1Those familiar with Perl might recognize this as a generalization of
tagged regular expressions.

Given the abstract syntax tree,T , of the function being
compiled and a sequence of rewriting rules,R1, R2, . . . ,
Rn, the rewriting engine follows the algorithm in figure4
by calling therewrite procedure for each rule.

An important part of this algorithm is the subroutine
search pattern. The ground rules for matching in-
clude:

• A “variable” in the specification can match any ex-
pression tree, including simple variables and con-
stants. Multiple occurrences of a variable must match
exactly identical expression trees. All program vari-
ables are assumed SSA-renamed to avoid spurious
matchings. However, a “variable” may be marked as
“LVAL” in which case it matches only an lvalue.

• A “constant” in the specification matches a program
constant of the same value.

• A “statement wild card” (<anyStmt>) can match
any simple or compound statement.

It is important to recognize that the matching process that
takes place insearch pattern is very similar to match-
ing regular expressions over the entities of the abstract syn-
tax tree.

The next section uses the XML schema described
above to write the relevant transformations as rewriting
rules.

5 MATLAB Rewriting System

This section illustrates how source-level transformations
can be written as rewriting rules using the XML schema
of figure 3. It should be noted that the rewriting engine
carries out a transformation only if the transformation will
not violate any dependencies. Thus, the rewriting rules in-
duce more than simple pattern replacement—dependence
information is a critical component in applying these rules.

5.1 Beating and Dragging Along

Beating and dragging along in the context ofMATLAB is
the elimination of thereshape primitive by replacing all
occurrences of an array section in terms of its new indices
induced by thereshape call. For example, if areshape
call changes the indices of a linear arrayA into a two-
dimensional array then all subsequent uses of a section of
A are rewritten in terms of the original linearized indices.
Figure 5 shows the XML specification for this rewriting
rule. It uses the second major construct provided by the
XML schema—the<replaceAllOccurs> element.

The rule will change if the original array is reshaped
into a different number of dimensions. Writing a rule for
each possible number of dimensions is not so bad since in
real code array dimensions rarely exceed a small number.

Another primitive function that is a candidate for
beating and dragging along is array transpose. Once again,

<specialization>
<context>

<type var="x" dims="2" sizes="m n"/>
</context>
<match>

<!-- a = reshape(b, m, n) -->
</match>
<replaceAllOccurs>

<occurrence>
<!-- match section a(i, j) -->

</occurrence>
<replacement>

<!-- replace by
b(scalarADD(scalarMULT(scalarSUB(j,1),m)),i)

-->
</replacement>

</replaceAllOccurs>
<specialization>

Figure 5. Rewriting rule for beating and dragging along

the rules will vary depending on the number of dimensions
involved.

5.2 Loop Vectorization

Loop vectorization involves converting a scalar loop into
a vector statement. Suppose that a functionf has a vec-
torized version calledf vect. If f takes one input and
returns one value, then a rewriting rule for vectorizing a
single-loop could be written as in figure6.

In a more readable format, the specification performs
the following transformation:

for i = L:S:U
S1*
b(i) = f(a(i))
S2*

end

⇒

for i = L:S:U
S1*

end
b(L:S:U) = f vect(a(L:S:U))
for i = L:S:U

S2*
end

Notice that there may be other statements in the loop that
are preserved. The dependence check in the rewriting en-
gine ensures that the transformation is legal in a specific
case, i.e., no dependencies are violated with respect to the
statement groupsS1 andS2.

Even though the XML specification appears compli-
cated, it is, in fact, very simply structured. Moreover, it is
an intermediate representation that the library developeror
the rule writer never sees—a front-end editor presents the
specification in a graphical or easy-to-edit format.

Other relevant transformations, i.e., procedure
strength reduction, procedure vectorization, and constant
propagation, can also be described using the XML-based
language, the details of which have been omitted. Further,
we have found that several other code transformations can
be expressed using the specification language. However,
those are beyond the scope of this paper.

<specialization>
<match>
<forLoopStmt index="i">
<lower>L</lower> <upper>U</upper> <step>S</step>
<body>

<anyStmt label="1" minCount="0" maxCount="unlimited"/>
<simpleStmt>
<function>f</function>
<input><asection var="a"><dim><lower><var>i</var></lower>

<upper><var>i</var></upper></dim></asection></input>
<output><asection var="b"><dim><lower><var>i</var></lower>

<upper><var>i</var></upper></dim></asection></output>
</simpleStmt>
<anyStmt label="2" minCount="0" maxCount="unlimited"/>

</body>
</forLoopStmt>

</match>
<substitute>
<forLoopStmt index="i">
<lower>L</lower> <upper>U</upper> <step>S</step>
<body><putStmt label="1"/></body>

</forLoopStmt>
<simpleStmt>
<function>f vect</function>
<input><asection var="a"><dim>

<lower><var>L</var></lower> <upper><var>U</var></upper>
<step><var>S</var></step></dim>

</asection></input>
<output><asection var="b">

<dim><lower><var>L</var></lower> <upper><var>U</var></upper>
<step><var>S</var></step></dim>

</asection></output>
</simpleStmt>
<forLoopStmt index="i">
<lower>L</lower> <upper>U</upper> <step>S</step>
<body><putStmt label="2"/></body>

</forLoopStmt>
</substitute>
</specialization>

Figure 6. Rewriting rule for Loop-vectorization

6 Related Work

Source-level transformations were pioneered by David
Loveman in his classic paper [6]. Indeed, there are sev-
eral similarities between the approach outlined in this pa-
per and Loveman’s approach of source-to-source transfor-
mation. He envisioned performing most optimizations at
the source level and then having a relatively straightfor-
ward code generator. Our design is particularly targeted at
MATLAB —or MATLAB -like languages—that allow certain
simplifications due to their characteristics, such as absence
of aliasing. Finally, libraries play a key role inMATLAB ,
therefore, most of our transformations are designed to op-
erate at the library-level and make use of the already opti-
mized lower-level libraries.

Procedure strength reduction and procedure vector-
ization have been described in detail in [3]. Beating and
dragging along was described in the context of compiling
APL by Abrams [1]. Source-level transformations ofMAT-
LAB have been found to be useful by other studies before
us, including that by Menon and Pingali [8].

MATLAB has been attracting a lot of attention from
the compilers community recently. One of the earliest at-
tempts at compilingMATLAB was made in the FALCON
compiler, and later in the MaJIC just-in-time compiler, both
from the University of Illinois [5, 2].

A complete reference toMATLAB is available at the
MathWorks web-site [7] and to XML is available at the
web-site of the World Wide Web Consortium (W3C) [9]. In

our implementation we have used the Xerces C++ libraries
to parse XML [10].

7 Conclusion

While many end-users vastly prefer programming inMAT-
LAB to lower-level languages such as C or Fortran, the ben-
efits of MATLAB are mitigated by its poor performance.
The performance could be measured in terms of the run-
ning time or memory usage or a combination of the two,
depending on the application requirements. In this paper
we have focused on the application running time.

We have built an automatic source-level transformer
for MATLAB that can carry out the transformations that our
earlier studies have found to be very high-payoff for DSP
applications. These transformations are expressed using
an XML-based language that we developed for this pur-
pose. The purpose of the language is to serve as an inter-
mediate representation for the transformations. Together
with dependence analysis, our transformer is capable of
performing source-level transformations ofMATLAB pro-
grams, resulting in significant performance improvements
of the DSP applications that we studied.

References

[1] Philips S. Abrams.An APL Machine. PhD thesis, Stanford
Linear Accelerator Center, Stanford University, 1970.

[2] George Alḿasi and David Padua. MaJIC: Compiling MAT-
LAB for speed and responsiveness. InProceedings of ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 294–303, June 2002.

[3] Arun Chauhan and Ken Kennedy. Procedure strength re-
duction and procedure vectorization: Optimization strate-
gies for telescoping languages. InProceedings of ACM-
SIGARCH International Conference on Supercomputing,
June 2001.

[4] Arun Chauhan and Ken Kennedy. Slice-hoisting for array-
size inference in MATLAB. In16th International Workshop
on Languages and Compilers for Parallel Computing, Lec-
ture Notes in Computer Science. Springer-Verlag, 2003.

[5] Luiz DeRose and David Padua. Techniques for the transla-
tion of MATLAB programs into Fortran 90.ACM Transac-
tions on Programming Languages and Systems, 21(2):286–
323, March 1999.

[6] David B. Loveman. Program improvement by source-to-
source transformation.Journal of the Association of Com-
puting Machinery, 24(1):121–145, January 1977.

[7] http://www.mathworks.com/. Mathworks, Inc.

[8] Vijay Menon and Keshav Pingali. A case for source level
transformations in MATLAB. InProceedings of the ACM
SIGPLAN / USENIX Workshop on Domain Specific Lan-
guages, 1999.

[9] http://www.w3.org/. The World Wide Web Consor-
tium (W3C).

[10] http://xml.apache.org/xerces-c/index.html.
Xerces-C: The Apache Xerces XML parser for C++.

http://www.mathworks.com/
http://www.w3.org/
http://xml.apache.org/xerces-c/index.html

	Introduction
	DSP Applications
	Source-level Transformations
	Beating and Dragging Along
	Loop Vectorization
	Type-based Specialization
	Procedure Strength Reduction
	Procedure Vectorization
	Constant Propagation

	XML-based Language
	Applying the Rewriting Rules

	MATLAB Rewriting System
	Beating and Dragging Along
	Loop Vectorization

	Related Work
	Conclusion

