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Abstract

Cache-coherent non-uniform memory access (ccNUMA) architectures have attracted lots
of academic and industry interests as a promising direction to large scale parallel computing.
Data placement has been used as a major optimization method on such machines. This study
examined the scalability and the effect of data placement on a state-of-the-art ccNUMA
machine, SGI Origin, using 16 processors. Three applications from SPLASH-2 are used,
FFT, Radix and Barnes-Hut. The results showed that FFT and Radix cannot scale to 16
processors with 70% efficiency even for the largest data sizes tested. Barnes-Hut doesn’t
scale for small data size but scales linearly for large input size. The results also showed that
data placement does not make any difference on performance for all three applications. We
attribute these results to the effect of the advanced uni-processor used on the Origin, R10K,
the optimizing compiler, and the aggressive communication architecture.

Some of our results are quite different from the predictions of two recent simulation studies
on directory-based ccNUMA machines ([HSH96] and [PRA97]), especially on FFT. These
differences are partly due to the fact that the machine models used in previous simulation
studies are different from the Origin machine in some important aspects. Our results also
include data sizes that are larger than any of the previous simulation studies. To increase
our confidence on the latency numbers and data placement tools, we also measured memory
latencies using micro-benchmarks.

1 Introduction

In the last few years, there has been increasing interest in ccNUMA architectures, specifically in
its potential for large scale parallel computing. As a result, many commercial machines based
on the ccNUMA architecture have recently been introduced. These include machines such as
the SGI Origin and HP-Convex Exemplar. Such machines utilize the ccNUMA architecture as
∗Available as TR98-305, Dept of Computer Science, Rice University
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an approach to scalable parallel architecture. One approach to ccNUMA architecture, directory
based ccNUMA, is typified by the SGI Origin.

The basic ccNUMA architecture is composed of a collection of nodes connected via an inter-
connection network. Each node consists of a small number of high speed processors, a memory
module, and a cache. Each node’s memory is a portion of the machine’s global shared memory.
The global shared memory is therefor distributed among the nodes. Cache coherence is main-
tained using a directory based update or invalidation scheme. Each node maintains a directory
memory corresponding to its portion of the shared memory.

Cache misses are handled either locally or remotely. A cache miss is considered local if the cache
is located at the same node as the memory module from which the physical address is allocated.
In such a case, the memory at the node services the miss. A remote miss, however, implies that
the cache and memory module where the data is allocated are in different nodes. Then the node
which owns the cache line must service the request through the interconnection network.

Remote miss latency on ccNUMA machines is always greater than local miss latency due to
the delay incurred by the interconnection network. It is therefore desirable that as many cache
misses as possible be serviced by a node’s local memory. Consequently, data placement influences
the performance of many applications. Placing data in the memory of the node that accesses the
data most frequently reduces the overall latency incurred by cache misses. Likewise, poor data
placement can increase cache miss latency, increase communication, and lead to poor application
performance.

1.1 Project Goals

The goal of this paper is to explore the scalability of several SPLASH-2 benchmark programs
on a state of the art CC-NUMA machine. These experiments attempt to verify and compare
performance characteristics of the selected SPLASH-2 applications with previous results. In
addition, it investigates the performance benefits of data placement on applications running on
the SGI Origin.

1.2 Previous Work

Several studies have been done on scaling applications on cache-coherent shared memory systems.
Among the recent studies of scalability and effects of optimizations on parallel applications,
is that done by Holts et al. [HSH96]. They report simulation results for a cross section of
SPLASH 2 [WOT+95] applications, in terms of scalability of applications as well as the effects
of various optimizations. They found that most applications scaled well with relatively simple
optimizations for locality and load balancing. In their paper, they presented results for four
applications, viz., Barnes, Ocean, Radix, and FFT. They found good speedups on their simulator
as well as the Stanford DASH machine for up to 1024 processors.

The first detailed simulation study was done by Pai et al [PRA97] using a much more detailed
execution driven simulator that modeled a Release Consistent parallel machine based on R10000
like processors. They found that modern ILP processors improve CPU performance much more
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than memory performance, causing relatively poor parallel efficiencies in machines based on
such processors. This is in contrast to the earlier study by Holt et al, that found good parallel
efficiencies for a range of applications on their simulator.

A recent study, by Laudon and Lenoski [LL97], on SGI Origin reported consistently good
speedups for NAS benchmarks. Among the SPLASH-2 applications, they found good speedups
for Barnes and Ocean, but poor speedups beyond 16 and 32 processors for Lu, Radiosity, and
Raytrace. They do not report results for other SPLASH-2 applications. At the time of writ-
ing the paper, they were still investigating the causes for this behavior. They conjecture that
small data sets, owing to limited amount of memory per node, could be a reason for the fall in
speedups beyond 32 processors.

An intersting study by Remzi et al [ACK+95] at UC Berkeley, involved what they called “mi-
crobenchmarks”. These are small tight loops written to test a specific parameter of a parallel
machine using the “grey box” approach. This inspired us to use similar small probes to test
local and remote memory latencies on SGI Origin.

1.3 Motivation

One motivation behind this project is to validate the results of Holt et al, on a modern industrial
machine. In the wake of their simulation model that models a previous generation processor,
it is interesting to investigate whether the results obtained using such a simulation model can
accurately predict the behavior of applications on a real modern ccNUMA machine that employs
heavy weight ILP processors at every node. The detailed simulation study by Pai et al, indicates
that there is reason to believe that an ILP based parallel machine, like SGI Origin, will perform
differently.

Apart from the optimizations for locality and load balancing that these applications have built in
them, compiler optimization can become important given that compiler technology has improved
considerably. A real machine provides a good opportunity to study the effects of compiler
optimizations on sequential and parallel versions of applications.

One optimization technique that was explored for all applications in the study by Holt et al, was
the effect of data placement. A larger difference between remote and local memory latencies
can enhance the benefits of data placement. In the simulation, the study assumes a remote
to local latency ratio of 6:1. On SGI Origin, this ratio is no more than 2:1. Therefore, it is
not clear at the outset the degree to which data placement can improve performance in parallel
applications.

2 Experimental Environment

2.1 The ccNUMA Machine Used

The machine used is SGI’s Origin 20000 (referred to as the Origin). It is a directory-based
cache-coherent shared memory machine. Origin20000 architecture can scale to 128 processors
using hypercube links and over 1000 processors using a ring connecting 128-processor units.
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2.1.1 R10K Uniprocessor

The uni-processor used in Origin is MIPS R10000 (referred to as R10K). R10K is an advanced
superscalar processor. It can fetch and decode four instructions per cycle and run them on five
pipelined functional units: a non-blocking load-store unit, 2 integer ALUs, a pipelined floating-
point adder, and a pipelined floating-point multiplier. It can graduate one floating-point addition
and one floating-point multiply every cycle, so the peak rate is 390MFlops.

R10K uses register remapping, out-of-order and speculative execution in conjunction with non-
blocking cache to achieve higher instruction throughput.

Each R10K has 32KB first-level (L1) instruction cache and 32KB first-level (L1) data cache. The
second-level (L2) cache can be 1MB or 4MB. Both level caches are two-way set associative and
non-blocking. Up to 4 outstanding misses from the combined two levels of cache are supported.
The latency is 2 cycles for L1 hits and 8 to 10 cycles for L1 misses that hit in L2.

In order to hide the latency of cache misses, R10K dynamically executes instructions whose
operands are available. Its instruction buffer can hold up to 32 active instructions at any given
time. Register renaming is performed to allow out-of-order issuing. In order to do renaming, the
processor has twice as many physical registers as logical registers (64 integer and 64 floating-point
physical registers).

R10K can speculate 4 nested branches. According to the manufacturer’s data, the branch
prediction scheme used predicts correctly 87% of the times for SpecInt92 programs.

2.1.2 Origin Multi-processor Organization

Each node of Origin consists of a special communication device called the Hub, which connects
to two R10K processors and a memory module. The Hub controls all the accesses of processors
to memory. The cache-coherent protocol and all communications in to and out of the node are
also managed by the Hub. Nodes are connected by linking all Hubs together in a hypercube
architecture. The protocol used is a directory-based cache-coherent invalidation-based protocol.
Directory information is maintained in the memory module. The Hub manages all memory
accesses of the processors, both to local and to remote memory. Figure 1 illustrates the node
structure.

The nodes are connected by a hypercube architecture. Routers are used to connect nodes and
other routers. Figure 2 shows the organization of a 32-processor system.

Larger systems are linked by higher dimension hypercubes of up to 128 processors. Due to the
hypercube network architecture, the memory bandwidth and remote latency scales nicely with
the number of processors. The following table gives the system bandwidth and memory latency.

4



Node Structure of Origin

R10K R10K

HUB

MEM

L2 L2

To Router
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Figure 2: Organization of a 32 processor Origin
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Figure 3: Memory Latencies

Peak Mem BW (GB/s) Read Latency (ns)
No. Nodes No. Procs Overall Read Max Avg

1 2 0.68 0.59 313 313
2 4 1.37 1.19 497 405
4 8 2.73 2.38 601 528
8 16 5.47 4.75 703 641
16 32 10.94 9.50 805 710

The first column is the number of nodes in each configuration. The number of R10K processors
is twice the number of nodes (column two). The next two columns give the bandwidth and
memory read latency for each of the configuration. The remote bandwidth scales linearly with
the number of processors and the remote latency scales with the logarithm of the number of
processors.

2.1.3 The Machine Used

The machine we used has 24 195MHz R10K processors. Each of the 12 memory modules has
320MB memory and the total memory is 3.84GB.

The 24 processors reside in 12 nodes, which are linked by 6 routers to form three quarters of a
cube. Hence, the ratio between remote and local latency is less than 3 in the worse case and
around 2 in an average case.

To verify these numbers we ran micro-benchmarks to measure relative latencies of different
levels of memory. Figure 3 gives the relative read and write latencies for an array of long int’s of
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varying size. The numbers are micro-seconds to traverse per KB of the array. We observe three
distinct “jumps” in all the plots. The first, and smallest, jump is when array size grows beyond
L1 cache. The second jump corresponds to going from L2 to memory. Finally, the third, and
largest, jump occurs to the far right of the graph for very large input. This is likely to be due
to increased thrashing of virtual memory system. The latency difference between L2 cache and
memory is around 5, which agrees with the manufacturer’s published figures.

2.2 Compilers and Tools

2.2.1 The Compiler Used

The compiler we used is MIPSpro 7.10. The major optimizations it performs are as follows. (A
good text for all the following materials can be found in Ken’s book [AKpt]).

• software pipelining

• inter-procedural analysis

• loop nested optimizations

– loop interchange

– out loop unrolling and blocking

– loop distribution and loop fusion

– prefetching

The flags we used are the recommended ones for best performance. All of the above optimizations
are enabled. Although it is said that cache optimization may degrade performance of programs
that have been manually optimized for cache performance, we found that the recommended
optimization flags did give the best performance for the programs used.

2.2.2 Data Placement Tools

Origin provides powerful tools for data placement. A programmer can declare the number of
threads to run and allocate a given number of memory modules. Different parts of the virtual
address and different threads can then be explicitly associated with different memory modules
and processors.

Once data and threads are placed, the operating system will always try to run a given thread
on its allocated processor.

The data placement tools of Origin make it possible to study the effect of data placement
optimizations. One can explicitly place data on one memory module or on multiple memory
modules in either round-robin or blocked fashion.
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3 Applications

This section describes the three applications used by our study – FFT, Radix, and Barnes Hut
– out of the SPLASH-2 benchmark suite. Each description introduces the applications and
mentions the expected behavior in terms of parallel efficiency observed by earlier simulation
studies, and potential bottlenecks.

3.1 FFT

FFT is a fast Fourier transform program. It contains two transform phases, one forward and
one backward, and two matrix transposes. The major data structures are square matrices of
complex numbers. They are organized as row-major matrices. The size of each matrix must be
an even number power of 2. Let the input size be 2M , then the matrices are 2M/2 × 2M/2.

The program is an explicit parallel program where each thread transforms and transposes a
block of contiguous rows. The transformation phase is fully parallelizable. Data movement is
local in this phase. The transpose phase, however, requires global communication in an all-to-all
fashion, since each processor needs to read a contiguous column of one matrix and write to the
rows (local) of another matrix. In the process, each processor needs to communicate with all
other processors.

Two optimizations were proposed to improve its scalability on a ccNUMA machine ([HSH96]):
data placement and staggered communication.

The data placement optimization puts the local rows of each processor into the processor’s own
private memory. Thus memory accesses of the transformation phase can be satisfied locally.
There is a problem with the data placement. At the beginning of the transpose, all processors
will contend with each other in communicating with the first processor. To solve this contention,
the staggered communication optimization changes the access pattern of transpose so that at
any given time, each processor is communicating with a different processor.

To avoid false sharing, each row of the matrix is padded in such a way that no two rows share
the same cache line and no two partitions of rows share the same page.

The goals of experiment on FFT are:

• examine the scalability of FFT on Origin, and

• examine the effect of data placement optimizations.

3.2 Radix Sort

Radix sort is an integer sorting kernel from the SPLASH-2 application suite. Radix performs an
iterative sweep over the input keys for each radix digit. Each node forms a local histogram of
its assigned keys and then merges this with the other nodes’ local histograms to form a global
histogram for all keys. Each node uses this global histogram to permute its keys for the next
iteration.

8



Radix’s major performance hindrance is its irregular communication structure. During the
permutation phase, each processor iterates over its keys and writes them to a destination array
in a scattered fashion. As the number of processors increases, the number of remote writes during
this phase also increases. This leads to resource contention and hotspotting which increases the
write latency and degrades performance. Another potential bottleneck of Radix is the merging of
the local histograms. Some implementations utilize a linear communication structure to create
the global histogram. This creates contention at the node that owns the global histogram.

The implementation of Radix used in these experiments benefits from several optimizations.
To create the global histogram, this implementation utilizes a parallel prefix tree as opposed
to the linear communication structure. The prefix tree affords more parallelism thus reducing
contention and the time processors spend merging the local histograms. Another attempted
optimization is data placement. This consists of distributing the portion of the key and individual
rank data structures to the nodes that use them most. Similarly, the global rank data structure
and prefix tree are distributed among the nodes such that the portion each node computes on is
in the local node’s memory. In this way, a node’s keys are allocated in the nodes local memory,
thus reducing remote communication.

3.3 Barnes Hut

Barnes Hut is an N-body simulation of a set of bodies evolving under the influence of gravita-
tional force. To reduce the algorithmic complexity, it uses a hierarchical octree representation
of three dimensional space and all bodies beyond a certain neighborhood are approximated by
point mass.

The application executes in time steps and parallelism is exploited within the phases of each
time step, across particles. Each time step involves an upward pass through the tree to find
the center-of-mass of each cell, represented by a node of the octree, partition the bodies among
processors, compute forces on all bodies, and advance the body positions. Almost the entire
time is consumed in the force calculation phase. Only the tree building and center-of-mass
computation phases require communication and synchronization.

Since the bodies evolve over time in an unpredictable way, the application is quite irregular.
Communication patterns too are irregular. However, the application has been found to have a
small working set that grows relatively slowly with the input data size. As a result, the working
set fits almost entirely in the cache and locality enhancing optimizations are not expected to
yield much benefit.

Indeed, the previously mentioned simulation study found that data placement and prefetching
techniques were hardly useful for this application. The only major architectural bottleneck is
latency. Most work needed to optimize the application is algorithmic in nature, like building
trees with multiple particles per leaf, and dynamic partitioning of data. These form a part of
the standard application that is included in SPLASH-2 suite.

Nevertheless, owing to its small working set behavior, Barnes Hut has been found to scale very
well and deliver good speedups on relatively small input sizes.
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Figure 4: Comparison of Speedups with Default and Maximum Data Sizes

4 Results

Figure 4 summarizes the speedups obtained on SGI Origin for the three applications. The
figure shows speedups for the data sizes suggested in the study by Holt et al, and the maximum
speedups obtained on Origin using maximum possible data sizes. For comparison, the figure
also shows the speedup corresponding to 70% parallel efficiency for each application.

The speedups obtained on 1 to 16 processors are summarized in figure 5. The figure shows the
speedups for three applications for default as well as maximum data sizes.

Finally, figure 6 shows the effects of data placement on speedups for the three applications.

We found two things that are quite different from the previous belief on ccNUMA machines,

• the unexpected poor speedup for FFT and Radix, especially FFT, and

• data placement optimizations have no observable effect on performance up to 16 processors.

The Origin machine we used is different from the previous ccNUMA models in the following
three aspects:

• the uni-processor used, R10K, is much more powerful than previous uni-processors,

• the optimizing compiler for the Origin is also more aggressive than previous compilers,

• the hypercube communication architecture is more effective in minimizing the latency and
bandwidth difference of local and remote memory access,
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In this section, we will show that these three differences are the reason for the unexpected results
we found. First, the advanced uni-processor and compiler improve the sequential execution
much more effectively than they do the parallel execution. Therefore, the parallel efficiency
and the speedup are reduced. Second, the advanced uni-processor, along with the aggressive
communication architecture also reduces the penalty of remote access. Thus, the effect of data
placement is not significant for processor counts up to 16.

The next three subsections investigates the performance difference made by the advanced uni-
processor, compiler, and the communication architecture of the Origin. We then compare these
differences with the architectural assumptions used in two previous simulation studies to explain
why some of our results are almost opposite to what was found before. The last three subsections
give a detailed analysis on each of the applications we studied.

4.1 Impact of the Advanced Uni-processor

As explained in the previous section, the uni-processor used on the Origin machine, R10K,
is an aggressive superscalar processor that is quite different from previous-generation micro-
processors. R10K effectively improves the instruction throughput and reduces the memory
access penalty for sequential executions. However, it does not always give similar improvement
to parallel executions.

The dynamic and speculative execution of R10K can effectively hide penalties due to program
dependences. With the increased capability of instruction throughput, the memory latency
become an important, even dominant part of the execution time. To reduce the time waiting
for memory, R10K exploits non-blocking caches to overlap memory latency with instruction
execution and other memory accesses. With these techniques, R10K greatly improves its uni-
processor performance.

Given the performance improvement of R10K over previous-generation processors, one might
think that parallel programs using R10Ks can also benefit as well as sequential programs. How-
ever, a simulation study done by Pai et al showed that the advanced features generally have a
negative effect on the speedup of a parallel machine. In another words, modern uni-processors
give relatively poor improvement to parallel programs.

Pai et al compared parallel execution on multi-processors that use R10K-like uni-processors
and multi-processors that use previous-generation uni-processors (single-issue, static scheduling,
and with blocking reads). There are a number of differences between the machine and processor
model they used and that of the Origin. We will present some of their results here and cover
their study in more detail in a later section. They divide the major parallel execution time into
the time spent on instruction execution (CPU time) and the time spent waiting for memory
(memory time). They found that the system with advanced processors achieved significant
speedup over CPU time (3.15 to 3.70) but the speedup over memory time is much lower than
that of CPU time (0.74 to 2.61). In some cases, e.g. Radix (memory speedup of 0.74), the
memory time was actually longer in parallel execution than in sequential execution.

Unfortunately, a parallel execution often spends a much greater portion of the execution time
waiting for memory due to two reasons. First, the remote memory access takes longer than
local memory access. Second, the coherence misses increase the number of memory accesses
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in parallel executions. Since memory time is a larger part in parallel executions than that
in sequential executions, the low memory speedup of the advanced uni-processor causes an
imbalanced effect. Indeed, the parallel execution benefits much less from the advanced processors
than the sequential execution. This effect directly implies a lower parallel speedup on a multi-
processor using advanced uni-processors than the parallel speedup using previous-generation
processors.

4.2 Impact of the Optimizing Compiler

R10K, though having very powerful capacity, is limited in its optimizing scope since its instruc-
tion window is only 32 instructions long. Therefore, compiler optimizations are essential to help
programs to maximaly exploit computing power, especially for scientific programs. We found
that the optimizing compiler on the Origin can improve sequential execution by several times.
However, the same optimizing compiler has a much limited effect on parallel executions for some
applications. The imbalanced effect of the compiler further worsens the lowered speedup.

In the following description, we call the program compiled with the flags described in section 2.2.1
as the optimized version and the program compiled with the “-O1” flag as the non-optimized
version. The optimized version is compiled with all the optimizations describe in (previous
section), including software pipelining, loop restructuring and software prefetch, whereas the
non-optimized version is compiled with only local optimizations.

The following table illustrates the performance difference between the optimized version and the
non-optimized version for both sequential and parallel executions. Two input data sizes, the
smallest and the largest, are shown for each application.

Application Input Size Speedup (1 procs) Speedup (16 procs)
FFT M = 12 3.8 1.2
FFT M = 22 3.2 1.8

Radix 327K keys 2.2 1.2
Radix 67M keys 1.4 1.3
Barnes 384 particles 2.5 1.1
Barnes 128K part. 2.4 2.9

The third and fourth column give the sequential and the parallel (16 procs) execution speedup
of the optimized over the non-optimized version respectively. The speedup figure in the third
column is significantly greater than the figure in the fourth column (for FFT and Radix). The
differences show that the compiler optimizations are more effective on the sequential programs
than on parallel programs. Therefore, the effect of optimizing compiler reduces the parallel
speedup.

Figure 7 shows the effect of the optimizing compiler in another view. It compares the scalability
of the optimized version and the non-optimized version for all three applications. The scalability
of non-optimized version is significantly better than that of the optimized version.

As we can see from the figure, although the optimizing compiler improves both sequential and
parallel execution time, it does lower the scalability of applications due to its imbalanced effect on
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sequential execution and on parallel execution. Therefore, the effect of the optimizing compiler,
along with the effect of the advanced processor R10K on the Origin counts for a dramatic
reduction in the scalability of FFT and Radix.

4.3 Effect of Data Placement on the Origin

The previous two sections investigate the causes for poor scalability of FFT and Radix. In this
section, we will explore the reason why data placement optimizations do not perform as well on
CC-NUMA machines as previously expected.

Data placement optimizations can benefit ccNUMA machines in many ways. First, as the remote
latency is larger than the local latency, placing data locally can change remote access to local
access and reduce memory latency. Second, when remote memory bandwidth is smaller than the
local memory bandwidth, locally placed data can avoid adding contention to the network. Data
placement can also be used to avoid contention to a given memory module in parallel execution.

The effect of the non-blocking cache used in R10K reduces the benefit of changing remote access
to local access by data placement. A non-blocking cache makes it possible to overlap the memory
loads (both remote and local) with instruction executions or other memory accesses. The load
latency is no longer fully exposed to the execution time. If there are sufficient overlaps to hide
remote latency, changing memory access from remote to local would not help execution time
directly.

In addition to the non-blocking cache, the communication structure of the Origin is quite effec-
tive in reducing latency and bandwidth differences between remote and local memory access,
therefore further reducing the need for data placement.
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As we have described in section 1.4, the difference of remote and local access latency is not large
for 16 processor configurations. The ratio between the average remote latency and the average
local latency is close to 2. The table in section 2.1.2 also showed that the memory bandwidth
increases linearly with the number of processors. Therefore, changing local access to remote
access would not cause contention on the network. We believe these two features of the Origin
reduce the need for data placement to the degree that data placement optimizations have no
significant effect for the three applications up to 16 processors.

However, this result does not imply that data placement is not important for the Origin for
larger number of processors. Next, we will describe one case where data placement did give a
positive performance impact when we intentionally added heavier loads to the memory system.

To give heavier load to the memory system in the transpose phase of FFT, we disabled the cache
blocking intentionally. With cache blocking, only one out of every 16 memory accesses is an L2
cache miss. Without cache blocking, the number of L2 cache misses (the number of memory
accesses) should be increased. We ran FFT with the largest input data size, M = 22. The data
placement version (with staggered communication) did achieve slightly better speedups over
non-data placement version. However, we haven’t investigated further the reason for this result.

4.4 Comparison with Previous Simulation Studies

Our work has a purpose similar to two previous simulation studies: the simulation study on
the scalability of ccNUMA done by Holt et al[HSH96], and the simulation study on the impact
of advanced uni-processors on multi-processor performance done by Pai et al[PRA97]. The
results we found on the Origin have some dramatic differences with both previous studies. In
this section, we will compare our results with each of the simulation study. We will single
out the differences between our machine model (the Origin) with their machine model that are
responsible for the different results. For a complete description of the results and assumptions
of the two simulation studies, we refer the reader to their original papers.

The study of Holt et al[HSH96] found that the minimal data size for achieving 11.2 speedup
on a 16-processor is surprisingly small for FFT, Barnes and Radix, and data placement is key
to the performance of all applications. Our results for the scalability of FFT and Radix and
the effect of data placement optimizations are almost the opposite. The reason their results are
not accurate for the Origin machine lies on the assumptions they made. The uni-processor they
modeled is single-issue, static scheduling, and with blocking cache. As we described previously,
this assumption could not take into account the effect of modern uni-processor and today’s
optimizing compiler. Therefore, their estimation of the scalability of FFT and Radix was quite
over-optimistic.

The simulated multi-processor in their model has a much higher remote access penalty than
the Origin. The network topology they used is a two-dimensional mesh whereas the network of
Origin is hypercube. As a result, they assumed a longer remote access latency. For 64 processors,
the ratio of remote latency over local latency is about 2.9. The remote memory bandwidth is
also smaller than the local bandwidth in their model. As described in the previous section, the
blocking cache of their uni-processor model and the less aggressive communication architecture
they used can lead to their observation that data placement optimizations have significant effect
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on 16 processors.

The study done by Pai et al[PRA97] is the first one that performed an extensive experiment
and analysis on the impact of modern micro-processors on the performance of ccNUMA multi-
processor. The uni-processor they modeled, in fact, is very similar to the processor used on
Origin. However, our result of FFT is quite different from theirs. They observed a 5.9 speedup
of FFT on problem size of M equal to 16; our result showed a speedup of 3.4. There are a
number of reasons that may cause this difference. The memory consistency model they used is
release consistency and Origin uses sequential sequency. Sequential consistency is more sensitive
to memory waiting time than release consistency. It can be expected that with sequential
consistency, the disparity between the speedups of memory and CPU time is even larger than
the release consistency case. Therefore, the effect of the modern uni-processor causes more
reduction of the parallel speedup on Origin than on the model used in their study. The other
important reason is the difference in the compiler 1. The compiler they used is a version of
the SPARC V9 gcc compiler with flags of “-O2 -funrollloop”. This compiler is unlikely to
have the advanced optimizing abilities of the MIPS Pro compiler on Origin. Some important
optimizations, software pipelining for example, are highly sensitive to the machine architecture
that is targeted. Any such optimizations not tuned for R10K specifically is likely to be much
less effective compared to a compiler tuned for Origin. Therefore, their study may not have fully
considered the effect of the optimizing compilers.

4.5 Detailed Study of Individual Applications

4.5.1 FFT

For FFT, timing was also collected for the transpose phase alone. By computing the parallel
speedup for the transpose phase and for the rest part of the execution, we found that the
transpose phase scales much poorer than the rest of FFT. For data size of M equal to 12, the
transpose phase is slowed down for all processor counts greater than 1, ranging from 71% for 2
procs to 42% for 16 procs. The speedup of the remaining part is always greater than 1 and is
about 1.77 for 16 procs. A similar difference of scalability is also shown for the largest data size
(M=22). The speedup of transpose phase for 16 procs is 2.4 whereas the speedup for the rest
part is 12.2.

The causes of the poor speedup of the transpose phase are still under investigation. We haven’t
characterized the effects of ccNUMA architecture on this kind of computation.

4.6 Radix Analysis

Timing was also collected for the ranking and sorting subsections of Radix. The results indicate
two points. First, the sort time for Radix is typically much larger than the rank time. In general,
the sort time is at least 4 times the rank time. Second, the sort phase of Radix scales much

1They did perform many optimizations at the source level, such as cache blocking and prefetching. However,
our experience showed that the optimizing effect of the MIPS Pro compiler is orthogonal to many of these
optimizations.
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better than the rank time. For a data size of 4194304 keys and 16 processors, the sort phase
demonstrates a parallel efficiency of 56% (speedup of 8.90) while the rank phase has an efficiency
of only 37% (speedup of 5.98). The performance gap decreases as the data size increases, but
the sort phase still outperforms the rank phase. For 67108864 keys and 16 processors, the sort
efficiency is about 63% and the rank efficiency about 61%.

In addition, the sorting portion of Radix dominates the overall performance of Radix. Because
the sort phase is much longer, its affects on the total performance overshadow those of the rank
phase. Hence, the speedup of Radix as a whole is influenced mostly by the performance of the
sort phase.

The poor speedup of Radix can again be attributed to the aggressive nature of the processor
and the irregular communication requirements of the application itself. For small data sizes, the
number of keys each processor computes on is not large enough to overcome the communication
bottlenecks and the high uniprocessor performance of SGI system. As a result, the speedups
obtained are generally poor. As the number of input keys increases, however, each processor
obtains more keys to compute on. For very large data sizes, the processors have enough keys
that the communication penalties are somewhat overcome by the increased computation. Never-
theless, performance improvement increases very slowly with data size and may not be practical
for greater than 16 processors.

4.6.1 Barnes Hut

Barnes Hut behaved as predicted by the simulation study. It scaled very well, and data placement
hardly affected the performance.

Particles Number of Processors
2 4 8 16

w/ P w/o P w/ P w/o P w/ P w/o P w/ P w/o P
384 1.72 1.72 2.58 2.47 2.65 2.15 0.85 0.90

16384 1.94 1.93 3.66 3.63 6.51 6.46 8.49 8.52
131072 1.94 1.94 3.76 3.72 7.22 7.06 12.94 12.62

1048576 1.87 1.83 3.60 3.38 6.78 6.20 12.52 12.31

In the above table “w/ P” indicates with placement and “w/o P” indicates without placement
strategy. The above results are the best of several experiments staggered over time, in order to
minimize the effect of varying load conditions.

We notice very good speedups except for the first set which is for 384 particles – the data
size that the simulation found adequate for 70% efficiency on 16 processors – and the second
set which is the default input size. Clearly, these sizes are too small for the SGI Origin due
to its high performance single processor. Beyond 128K particles, the speedups remain almost
unchanged.

Also, as predicted by the earlier study, data placement has practically no effect on parallel
performance of Barnes.
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Numbers for just the force calculation phase, which is the major computation phase, show near
perfect speedup. Notice that this part shows very good speedups even for small data sizes, thus
validating the hypothesis that CPU performance scales well while the memory performance
(latencies) are the bottleneck.

Particles Number of Processors
2 4 8 16

w/ P w/o P w/ P w/o P w/ P w/o P w/ P w/o P
384 1.92 1.94 3.62 3.71 6.94 7.19 14.26 14.20

16384 1.99 1.99 3.95 3.94 7.78 7.80 15.35 15.33
131072 1.99 1.99 3.95 3.92 7.85 7.77 15.57 15.45

1048576 1.99 1.73 3.90 3.28 7.78 6.50 15.31 13.21

Comparison of program performance for optimized and non-optimized versions of the code for
384 and 131072 (128K) input particles is summarized in the table below. It shows the com-
putation ratio for unoptimized and optimized versions of the program on different number of
processors for the two input sizes.

Particles Number of Processors
1 2 4 8 16

384 2.50 2.25 1.74 1.32 0.72
131072 2.36 2.32 2.33 2.25 2.17

Optimization results in a more than two fold improvement in performance for sequential pro-
gram. But the advantage diminishes with increasing number of processors. This is due to the
memory component of the program, as mentioned elsewhere in this report, that does not benefit
from compiler optimization. Also, for a larger data size the gains of optimization reduce more
gradually with increased parallelism, thereby maintaining a higher parallel efficiency – this is
corroborated by the observed behavior.

5 Conclusion

This study examined the scalability and the effect of data placement on a state-of-art directory-
based ccNUMA machine, SGI Origin. We were able to run large test cases and perform data
placement explicitly for up to 16 processors.

We tested three applications from SPLASH2: FFT, Radix and Barnes-Hut. The result of two
input data sizes were studied in detail. The first data size is the one that achieved 70% efficiency
(11.2 speedup on 16 processors) in a recent simulation study by the FLASH group. The second
data size is the largest one that fits in the memory of the machine.

Here is a summary of scalability results on 16 processors. We found that the speedups of all
three applications are less than 1.3 for the first data size, corresponding to a parallel efficiency
of about 8%. For larger data sizes, Barnes-Hut achieves consistently good speedups of more
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than 12 for data sizes of beyond 128K particles. However, both FFT and Radix cannot scale to
70% efficiency even for the largest data size. The maximum speedup is 6.2 for FFT and 9.7 for
Radix. We found that FFT does not scale to 70% efficiency even for 8 processors.

For all input data sizes of all three applications, we tested the performance with and without
data placement optimizations. We found that data placement does not make any observable
differences for all cases.

These results are quite surprising given the recent simulation study by Holt et al[HSH96] . They
found that FFT, Radix and Barnes-Hut can achieve 70% efficiency for 16 processors for fairly
small input data sizes. They also found that data placement optimization is vital to achieve
scalable performance.

We attribute the reason for the unexpectedly poor scalability to the effect of the advanced
uni-processor and the optimizing compiler. The uni-processor, R10K, is a four-way issue, dy-
namically scheduled, with non-blocking cache and speculative execution. As observed by Pai et
al.[PRA97], these features generally lower the parallel efficiency. However, our result for FFT
still scales much worse than the result of Pai et al. One important reason for this is the differ-
ence of the compiler. The optimizing compiler on the Origin is designed to maximaly utilize the
advanced architecture. For FFT and Radix, we found that the optimizing compiler improved
the performance of sequential executions much more than it does parallel execution. For FFT,
the compiler optimizations improved sequential executions by more than a factor of 3 but less
than a factor of 2 for parallel executions using 16 processors.

The reasons for the negligible effect of data placement on the Origin are similar to those for
scalability. The latency-hiding techniques of the R10K processor can tolerate more remote
latency penalties. The aggressive communication architecture of the Origin achieves a remote
memory latency close to local memory latency and the same remote memory bandwidth as local
bandwidth for the processor configurations we used. These reasons together avoid the remote
access penalty and memory contention due to poor data placement for the application we studied
and the processor counts for which we tested.

6 Future Work

To get a more complete idea on the scalability of a ccNUMA machine like the Origin, we need
to test more applications using more processors. In particular, we need to examine data parallel
benchmarks as well as other applications from SPLASH-2.

Data placement should be important given the hardware limit of the communication architecture.
We need to examine data placement using larger number of processors to see at which point
data placement becomes important for ccNUMA machines.

We also need to identify the performance problems of FFT and Radix more specifically.

We found that current compiler optimizations provide different benefits for sequential and par-
allel programs. However, the exact reasons and the effects of individual compiler optimizations
is not very clearly understood.
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The SGI Origin is a directory-based ccNUMA architecture. A very different ccNUMA architec-
ture, represented by HP-Convex Exemplar machine, is also commercially available. Studying
its scalability and effects of data placement would also be helpful in understanding the inherent
characteristics of ccNUMA architectures in general.
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