
Telescoping MATLAB for DSP Applications

PhD Thesis Defense

Arun Chauhan

Computer Science, Rice University

PhD Thesis Defense July 10, 2003

Two True Stories

• the world of Digital Signal Processing

- almost everyone uses MATLAB

- a large number uses MATLAB exclusively

- almost everyone hates writing C code

- prefer coding for an hour and letting it run for 7 days, than

the other way round

- often forced to rewrite programs in C

• linear algebra through MATLAB

- ARPACK—a linear algebra package to solve eigenvalue

problems

- prototyped in MATLAB

- painfully hand translated to FORTRAN

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Two True Stories
• the world of Digital Signal Processing

- almost everyone uses MATLAB

- a large number uses MATLAB exclusively

- almost everyone hates writing C code

- prefer coding for an hour and letting it run for 7 days, than

the other way round

- often forced to rewrite programs in C

• linear algebra through MATLAB

- ARPACK—a linear algebra package to solve eigenvalue

problems

- prototyped in MATLAB

- painfully hand translated to FORTRAN

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Two True Stories
• the world of Digital Signal Processing

- almost everyone uses MATLAB

- a large number uses MATLAB exclusively

- almost everyone hates writing C code

- prefer coding for an hour and letting it run for 7 days, than

the other way round

- often forced to rewrite programs in C

• linear algebra through MATLAB

- ARPACK—a linear algebra package to solve eigenvalue

problems

- prototyped in MATLAB

- painfully hand translated to FORTRAN

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Two True Stories
• the world of Digital Signal Processing

- almost everyone uses MATLAB

- a large number uses MATLAB exclusively

- almost everyone hates writing C code

- prefer coding for an hour and letting it run for 7 days, than

the other way round

- often forced to rewrite programs in C

• linear algebra through MATLAB

- ARPACK—a linear algebra package to solve eigenvalue

problems

- prototyped in MATLAB

- painfully hand translated to FORTRAN

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Two True Stories
• the world of Digital Signal Processing

- almost everyone uses MATLAB

- a large number uses MATLAB exclusively

- almost everyone hates writing C code

- prefer coding for an hour and letting it run for 7 days, than

the other way round

- often forced to rewrite programs in C

• linear algebra through MATLAB

- ARPACK—a linear algebra package to solve eigenvalue

problems

- prototyped in MATLAB

- painfully hand translated to FORTRAN

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Lessons

• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Lessons
• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Lessons
• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Lessons
• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Lessons
• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Lessons
• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

History Repeats

“It was our belief that if FORTRAN, during its first

months, were to translate any reasonable ‘scientific’

source program into an object program only half as fast

as its hand-coded counterpart, then acceptance of our

system would be in serious danger... I believe that had

we failed to produce efficient programs, the widespread

use of languages like FORTRAN would have been seri-

ously delayed.”

–John Backus

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Pushing the Level Again

effective compilation

efficient compilation

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Pushing the Level Again

effective compilation

efficient compilation

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Pushing the Level Again

effective compilation

efficient compilation

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Thesis

It is possible to efficiently compile

numerical programs written in high-

level languages to achieve perfor-

mance close to that achievable in a

lower-level language.

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Fundamental Observation

• libraries are the key in optimizing high-level scripting

languages

a = x * y ⇒ a = MATMULT(x, y)

• libraries define high-level languages!

- a large effort in HPC is towards writing libraries

- domain-specific libraries make scripting languages useful and

popular

- high-level operations are largely “syntactic sugar”

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Fundamental Observation

• libraries are the key in optimizing high-level scripting

languages

a = x * y ⇒ a = MATMULT(x, y)

• libraries define high-level languages!

- a large effort in HPC is towards writing libraries

- domain-specific libraries make scripting languages useful and

popular

- high-level operations are largely “syntactic sugar”

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Libraries as Black Boxes

library compiler
library

binaries

user

program
compiler object code

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Libraries as Black Boxes

library compiler
library

binaries

user

program
compiler object code

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Whole Program Compilation

user

program

library

one

library

two

one.one

one.two

compiler object code

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Telescoping Languages Approach

• pre-compile libraries to minimize end-user

compilation time

• annotate libraries to capture specialized knowledge of

library writers

• generate specialized variants based on interesting

contexts

• link appropriate versions into the user script

analogous to offline indexing by search engines

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Telescoping Languages Approach

• pre-compile libraries to minimize end-user

compilation time

• annotate libraries to capture specialized knowledge of

library writers

• generate specialized variants based on interesting

contexts

• link appropriate versions into the user script

analogous to offline indexing by search engines

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Telescoping Languages Approach

• pre-compile libraries to minimize end-user

compilation time

• annotate libraries to capture specialized knowledge of

library writers

• generate specialized variants based on interesting

contexts

• link appropriate versions into the user script

analogous to offline indexing by search engines

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Telescoping Languages Approach

• pre-compile libraries to minimize end-user

compilation time

• annotate libraries to capture specialized knowledge of

library writers

• generate specialized variants based on interesting

contexts

• link appropriate versions into the user script

analogous to offline indexing by search engines

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Telescoping Languages Approach

• pre-compile libraries to minimize end-user

compilation time

• annotate libraries to capture specialized knowledge of

library writers

• generate specialized variants based on interesting

contexts

• link appropriate versions into the user script

analogous to offline indexing by search engines

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Telescoping Languages Approach

• pre-compile libraries to minimize end-user

compilation time

• annotate libraries to capture specialized knowledge of

library writers

• generate specialized variants based on interesting

contexts

• link appropriate versions into the user script

analogous to offline indexing by search engines

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

subroutine VMP (C, Z, ... , s)

“expect s to be mostly 1”

write libraries

write annotations

VMP step1 (C, Z, ...)
specialize code

call VMP (C, Z, ... , 1)
write script

call VMP step1 (C, Z, ...)
choose optimized variant

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

subroutine VMP (C, Z, ... , s)

“expect s to be mostly 1”

write libraries

write annotations

VMP step1 (C, Z, ...)
specialize code

call VMP (C, Z, ... , 1)
write script

call VMP step1 (C, Z, ...)
choose optimized variant

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

subroutine VMP (C, Z, ... , s)

“expect s to be mostly 1”

write libraries

write annotations

VMP step1 (C, Z, ...)
specialize code

call VMP (C, Z, ... , 1)
write script

call VMP step1 (C, Z, ...)
choose optimized variant

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

subroutine VMP (C, Z, ... , s)

“expect s to be mostly 1”

write libraries

write annotations

VMP step1 (C, Z, ...)
specialize code

call VMP (C, Z, ... , 1)
write script

call VMP step1 (C, Z, ...)
choose optimized variant

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

subroutine VMP (C, Z, ... , s)

“expect s to be mostly 1”

write libraries

write annotations

VMP step1 (C, Z, ...)
specialize code

call VMP (C, Z, ... , 1)
write script

call VMP step1 (C, Z, ...)
choose optimized variant

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Telescoping Languages Approach

domain

library

language

building

compiler

script
script

translator

enhanced

language

compiler

optimized

object

program

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Challenges

• identifying specialization opportunities

- which kinds of specializations

- how many

• identifying high pay-off optimizations

- must be applicable in telescoping languages context

- should focus on these first

• enabling the library writer to express these

transformations

- guide the specialization

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Challenges

• identifying specialization opportunities

- which kinds of specializations

- how many

• identifying high pay-off optimizations

- must be applicable in telescoping languages context

- should focus on these first

• enabling the library writer to express these

transformations

- guide the specialization

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Challenges

• identifying specialization opportunities

- which kinds of specializations

- how many

• identifying high pay-off optimizations

- must be applicable in telescoping languages context

- should focus on these first

• enabling the library writer to express these

transformations

- guide the specialization

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Challenges

• identifying specialization opportunities

- which kinds of specializations

- how many

• identifying high pay-off optimizations

- must be applicable in telescoping languages context

- should focus on these first

• enabling the library writer to express these

transformations

- guide the specialization

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Developing the Compiler

MATLAB
library

compiler

C / FORTRAN
(multiple variants)

• compile MATLAB

• emit specialized output code

• implement identified high-payoff optimizations

• implement newly discovered optimizations

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Developing the Compiler

MATLAB
library

compiler
C / FORTRAN
(multiple variants)

• compile MATLAB

• emit specialized output code

• implement identified high-payoff optimizations

• implement newly discovered optimizations

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Example Compilation

function mcc demo

x = 1;

y = x / 10;

z = x * 20;

r = y + z;

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Example Compilation

static void Mmcc demo (void) {

. . .

mxArray * r = NULL;

mxArray * z = NULL;

mxArray * y = NULL;

mxArray * x = NULL;

mlfAssign(&x, mxarray0); /* x = 1; */

mlfAssign(&y, mclMrdivide(mclVv(x, ”x”), mxarray1)); /* y = x / 10; */

mlfAssign(&z, mclMtimes(mclVv(x, ”x”), mxarray2)); /* z = x * 20; */

mlfAssign(&r, mclPlus(mclVv(y, ”y”), mclVv(z, ”z”))); /* r = y + z; */

mxDestroyArray(x);

mxDestroyArray(y);

mxDestroyArray(z);

mxDestroyArray(r);

. . .

}

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Example Compilation

static void Mmcc demo (void) {

. . .

double r;

double z;

double y;

double z;

mlfAssign(&x, mxarray0); /* x = 1; */

mlfAssign(&y, mclMrdivide(mclVv(x, ”x”), mxarray1)); /* y = x / 10; */

mlfAssign(&z, mclMtimes(mclVv(x, ”x”), mxarray2)); /* z = x * 20; */

mlfAssign(&r, mclPlus(mclVv(y, ”y”), mclVv(z, ”z”))); /* r = y + z; */

mxDestroyArray(x);

mxDestroyArray(y);

mxDestroyArray(z);

mxDestroyArray(r);

. . .

}

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Example Compilation

static void Mmcc demo (void) {

. . .

double r;

double z;

double y;

double z;

scalarAssign(&x, 1); /* x = 1; */

scalarAssign(&y, scalarDivide(x, 10)); /* y = x / 10; */

scalarAssign(&z, scalarTimes(x, 20)); /* z = x * 20; */

scalarAssign(&r, scalarPlus(y, z)); /* r = y + z; */

mxDestroyArray(x);

mxDestroyArray(y);

mxDestroyArray(z);

mxDestroyArray(r);

. . .

}

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Example Compilation

static void Mmcc demo (void) {

. . .

double r;

double z;

double y;

double z;

x = 1; /* x = 1; */

y = x / 10; /* y = x / 10; */

z = x * 20; /* z = x * 20; */

r = y + z; /* r = y + z; */

/* mxDestroyArray(x); */

/* mxDestroyArray(y); */

/* mxDestroyArray(z); */

/* mxDestroyArray(r); */

. . .

}

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Inferring Types
(Joint work with Cheryl McCosh)

• type ≡ <τ , δ, σ, ψ>

- τ = intrinsic type, e.g., int, real, complex, etc.

- δ = array dimensionality, 0 for scalars

- σ = δ-tuple of positive integers

- ψ = “structure” of an array

• type inference in general

- type = “smallest” set of values that preserves meaning

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Inferring Types
(Joint work with Cheryl McCosh)

• type ≡ <τ , δ, σ, ψ>

- τ = intrinsic type, e.g., int, real, complex, etc.

- δ = array dimensionality, 0 for scalars

- σ = δ-tuple of positive integers

- ψ = “structure” of an array

• type inference in general

- type = “smallest” set of values that preserves meaning

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Inferring Types
(Joint work with Cheryl McCosh)

• type ≡ <τ , δ, σ, ψ>

- τ = intrinsic type, e.g., int, real, complex, etc.

- δ = array dimensionality, 0 for scalars

- σ = δ-tuple of positive integers

- ψ = “structure” of an array

• type inference in general

- type = “smallest” set of values that preserves meaning

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Static Type Inference
(Appears in McCosh’s Masters’ Thesis)

• dimensionality constraints

x = 1

LHS dims = RHS dims

y = x / 10

(x, y scalar) OR (x, y arrays of same size)

z = x * 20

(x, z scalar) OR (x, z arrays of same size)

r = y + z

(r, y, z scalar) OR (r, y, z arrays of same size)

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Static Type Inference
(Appears in McCosh’s Masters’ Thesis)

• dimensionality constraints

x = 1 LHS dims = RHS dims

y = x / 10

(x, y scalar) OR (x, y arrays of same size)

z = x * 20

(x, z scalar) OR (x, z arrays of same size)

r = y + z

(r, y, z scalar) OR (r, y, z arrays of same size)

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Static Type Inference
(Appears in McCosh’s Masters’ Thesis)

• dimensionality constraints

x = 1 LHS dims = RHS dims

y = x / 10 (x, y scalar) OR (x, y arrays of same size)

z = x * 20

(x, z scalar) OR (x, z arrays of same size)

r = y + z

(r, y, z scalar) OR (r, y, z arrays of same size)

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Static Type Inference
(Appears in McCosh’s Masters’ Thesis)

• dimensionality constraints

x = 1 LHS dims = RHS dims

y = x / 10 (x, y scalar) OR (x, y arrays of same size)

z = x * 20 (x, z scalar) OR (x, z arrays of same size)

r = y + z

(r, y, z scalar) OR (r, y, z arrays of same size)

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Static Type Inference
(Appears in McCosh’s Masters’ Thesis)

• dimensionality constraints

x = 1 LHS dims = RHS dims

y = x / 10 (x, y scalar) OR (x, y arrays of same size)

z = x * 20 (x, z scalar) OR (x, z arrays of same size)

r = y + z (r, y, z scalar) OR (r, y, z arrays of same size)

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Static Type Inference
(Appears in McCosh’s Masters’ Thesis)

• write constraints

- each operation or function call imposes certain “constraints”

- incomparable types give rise to multiple valid configurations

• the problem is hard to solve in general

- efficient solution possible under certain conditions

• reducing to the clique problem

- a constraint defines a level

- clauses in a constraint are nodes at that level

- an edge whenever two clauses are “compatible”

- a clique defines a valid type configuration

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Static Type Inference
(Appears in McCosh’s Masters’ Thesis)

• write constraints

- each operation or function call imposes certain “constraints”

- incomparable types give rise to multiple valid configurations

• the problem is hard to solve in general

- efficient solution possible under certain conditions

• reducing to the clique problem

- a constraint defines a level

- clauses in a constraint are nodes at that level

- an edge whenever two clauses are “compatible”

- a clique defines a valid type configuration

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Static Type Inference
(Appears in McCosh’s Masters’ Thesis)

• write constraints

- each operation or function call imposes certain “constraints”

- incomparable types give rise to multiple valid configurations

• the problem is hard to solve in general

- efficient solution possible under certain conditions

• reducing to the clique problem

- a constraint defines a level

- clauses in a constraint are nodes at that level

- an edge whenever two clauses are “compatible”

- a clique defines a valid type configuration

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Limitations

• control join-points may result in too many configs

• array sizes defined by indexed expressions

- assignment to a(i) can resize a

• control join-points ignored for array-sizes

• symbolic expressions may be unknown at compile

time

• array sizes changing in a loop not handled

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Limitations

• control join-points may result in too many configs

• array sizes defined by indexed expressions

- assignment to a(i) can resize a

• control join-points ignored for array-sizes

• symbolic expressions may be unknown at compile

time

• array sizes changing in a loop not handled

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Size Grows in a Loop

function [A, F] = pisar (xt, sin num)

...

mcos = [];

for n = 1:sin num

vcos = [];

for i = 1:sin num

vcos = [vcos cos(n*w est(i))];

end

mcos = [mcos; vcos]

end

...

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Slice-hoisting: Simple Example

A

1

= zeros(1, N);

⇒σ1
A1 = <N>

⇒

y

1

= ...

A

1

(y

1

) = ...

⇒σ2
A1 = max(σ1

A1, <y1>)

⇒

x

1

= ...

A

1

(x

1

) = ...

⇒σ3
A1 = max(σ2

A1, <x1>)

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Slice-hoisting: Simple Example

A

1

= zeros(1, N);

⇒

σ

1

A

1

= <N>

⇒

y

1

= ...

A

1

(y

1

) = ...

⇒

σ

2

A

1

= max(σ

1

A

1

, <y

1

>)

⇒

x

1

= ...

A

1

(x

1

) = ...

⇒

σ

3

A

1

= max(σ

2

A

1

, <x

1

>)

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Slice-hoisting: Simple Example

A1 = zeros(1, N);

⇒

σ1
A1 = <N>

⇒

y1 = ...

A1(y1) = ...

⇒

σ2
A1 = max(σ1

A1, <y1>)

⇒

x1 = ...

A1(x1) = ...

⇒

σ3
A1 = max(σ2

A1, <x1>)

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Slice-hoisting: Simple Example

A1 = zeros(1, N);

⇒σ1
A1 = <N>

⇒y1 = ...

A1(y1) = ...

⇒σ2
A1 = max(σ1

A1, <y1>)

⇒x1 = ...

A1(x1) = ...

⇒σ3
A1 = max(σ2

A1, <x1>)

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Slice-hoisting: Simple Example

⇒σ1
A1 = <N>

⇒y1 = ...

⇒σ2
A1 = max(σ1

A1, <y1>)

⇒x1 = ...

⇒σ3
A1 = max(σ2

A1, <x1)

allocate(A1, σ3
A1);

A1 = zeros(1, N);

A1(y1) = ...

A1(x1) = ...

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Slice-hoisting: Steps

• insert σ statements

• do SSA conversion

• identify the slice involved in computing the σ values

• hoist the slice before the first use of the array

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Slice-hoisting: Loop

A

1

(x

1

) = ...

⇒σ1
A1 = <x1>

⇒

for i

1

= 1:N

...

⇒ σ2
A1 = φ(σ1

A1, σ3
A1)

A

1

= [A

1

f(i

1

)];

⇒ σ3
A1 = σ2

A1 + <1>

⇒

end

• add σ statements

• do SSA

• identify slice

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Slice-hoisting: Loop

A

1

(x

1

) = ...

⇒

σ

1

A

1

= <x

1

>

⇒

for i

1

= 1:N

...

⇒ σ2
A1 = φ(σ1

A1, σ3
A1)

A

1

= [A

1

f(i

1

)];

⇒

σ

3

A

1

= σ

2

A

1

+ <1>

⇒

end

• add σ statements

• do SSA

• identify slice

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Slice-hoisting: Loop

A1(x1) = ...

⇒

σ1
A1 = <x1>

⇒

for i1 = 1:N

...

⇒

σ2
A1 = φ(σ1

A1, σ3
A1)

A1 = [A1 f(i1)];

⇒

σ3
A1 = σ2

A1 + <1>

⇒

end

• add σ statements

• do SSA

• identify slice

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Slice-hoisting: Loop

A1(x1) = ...

⇒σ1
A1 = <x1>

⇒for i1 = 1:N

...

⇒ σ2
A1 = φ(σ1

A1, σ3
A1)

A1 = [A1 f(i1)];

⇒ σ3
A1 = σ2

A1 + <1>

⇒end

• add σ statements

• do SSA

• identify slice

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Slice-hoisting: Loop

⇒σ1
A1 = <x1>

⇒for i1 = 1:N

⇒ σ2
A1 = φ(σ1

A1, σ3
A1)

⇒ σ3
A1 = σ2

A1 + <1>

⇒end

allocate(A1, σ3
A1);

A1(x1) = ...

for i1 = 1:N

...

A1 = [A1 f(i1)];

end

• add σ statements

• do SSA

• identify slice

• hoist the slice

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Type-based Specialization

Sun SPARC 336MHz SGI Origin Apple PowerBook G4 667MHz

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

tim
e

(s
ec

on
ds

)

jakes: Type−specialized FORTRAN vs MATLAB
MATLAB 6.x
MATLAB 5.3
FORTRAN

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Precision of Static Inference

acf art. Q ffth fourier by jump huffcode
0

20

40

60

80

100

120

140

160

180

200

220

240

nu
m

be
r

of
 c

on
fig

s
without annotations
with annotations

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Inference Mechanisms

acf art. Q ffth fourier by jump huffcode
0

10

20

30

40

50

60

70

80

90

100

110

120

pe
rc

en
t o

f t
ot

al
 v

ar
ia

bl
es

statically inferred
inferred by slice−hoisting
externally specified args

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Relevant Optimizations

“It is a capital mistake to theorize before one has data.

Insensibly one begins to twist facts to suit theories, in-

stead of theories to suit facts.”

–Sir Arthur Conon Doyle in a A Scandal in Bohemia

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Identifying and Discovering

• study of DSP applications

- real life code from the ECE department

• identified high-payoff well-known optimization

techniques

• discovered two novel optimizations

- procedure strength reduction

- procedure vectorization

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

High-payoff Optimizations

• vectorization

- 33 times speedup in one case!

• common subexpression elimination

• beating and dragging along

• constant propagation

• library identities

- single call replaces a sequence

• value of library annotations

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

High-payoff Optimizations

• vectorization

- 33 times speedup in one case!

• common subexpression elimination

• beating and dragging along

• constant propagation

• library identities

- single call replaces a sequence

• value of library annotations

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Procedure Strength Reduction

for i = 1:N

. . .

f (c1, c2, i, c3);

. . .

end

f init (c1, c2, c3);

for i = 1:N

. . .

f iter (i);

. . .

end

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Procedure Strength Reduction

for i = 1:N

. . .

f (c1, c2, i, c3);

. . .

end

f init (c1, c2, c3);

for i = 1:N

. . .

f iter (i);

. . .

end

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Procedure Strength Reduction

for i = 1:N

. . .

f (c1, c2, i, c3);

. . .

end

f init (c1, c2, c3);

for i = 1:N

. . .

f iter (i);

. . .

end

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Applying to ctss

jakes_mp1 newcodesig codesdhd whole program
0

0.5

1

1.5

2

2.5

3

3.5

sp
ee

du
p

speedups for top−level procedures in ctss relative to unoptimized

0 5 10 15 20 25

original

optimized

total time (in thousands of seconds)

distribution of the total execution time among top−level procedures in ctss

jakes_mp1
newcodesig
codesdhd

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Applying to sML chan est

original (per iteration) init call init (with preallocation) iterative call
0

2

4

6

8

10

12

14

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Effect of mcc Compilation

interpreted compiled stand−alone
0

50

100

150

200

250

300

350

400

450

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

original
optimized

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

More on Strength Reduction

• procedure strength reduction somewhat different

from operator strength reduction

- could be similar if the iter component provided

• automatic differentiation is a more powerful approach

that matches procedure strength reduction

- more work needed to utilize automatic diff. for optimizing

loops

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Procedure Vectorization

for i = 1:N

f (c1, c2, i, A[i]);

end

. . .

function f (a1, a2, a3, a4)

<body of f >

f vect (c1, c2, [1:N], A)

. . .

function f vect (a1, a2, a3, a4)

for i = 1:N

<body of f >

end

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Procedure Vectorization

for i = 1:N

f (c1, c2, i, A[i]);

end

. . .

function f (a1, a2, a3, a4)

<body of f >

f vect (c1, c2, [1:N], A)

. . .

function f vect (a1, a2, a3, a4)

for i = 1:N

<body of f >

end

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Procedure Vectorization

for i = 1:N

f (c1, c2, i, A[i]);

end

. . .

function f (a1, a2, a3, a4)

<body of f >

f vect (c1, c2, [1:N], A)

. . .

function f vect (a1, a2, a3, a4)

for i = 1:N

<body of f >

end

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Applying to jakes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

sp
ee

du
p

(f
or

 1
00

 it
er

at
io

ns
)

normalized original
optimized

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Overall Architecture

Parser

and

Front-

End

Type

Infer.

Engine

Spl’n

Engine

Code

Gen.

Annot.

Lib.

Opt. Specs

C

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Contributions

• validation of the telescoping languages strategy

- the library compiler component

• type-based specialization

- NP-completeness of type-inference for straight line code

- a new way to infer types

- slice-hoisting as a new approach to do dynamic size-inference

• identification of relevant optimizations

• discovery of two new optimizations

- procedure strength reduction and procedure vectorization

• infrastructure development

- a novel compiler architecture

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Contributions
• validation of the telescoping languages strategy

- the library compiler component

• type-based specialization

- NP-completeness of type-inference for straight line code

- a new way to infer types

- slice-hoisting as a new approach to do dynamic size-inference

• identification of relevant optimizations

• discovery of two new optimizations

- procedure strength reduction and procedure vectorization

• infrastructure development

- a novel compiler architecture

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Contributions
• validation of the telescoping languages strategy

- the library compiler component

• type-based specialization

- NP-completeness of type-inference for straight line code

- a new way to infer types

- slice-hoisting as a new approach to do dynamic size-inference

• identification of relevant optimizations

• discovery of two new optimizations

- procedure strength reduction and procedure vectorization

• infrastructure development

- a novel compiler architecture

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Contributions
• validation of the telescoping languages strategy

- the library compiler component

• type-based specialization

- NP-completeness of type-inference for straight line code

- a new way to infer types

- slice-hoisting as a new approach to do dynamic size-inference

• identification of relevant optimizations

• discovery of two new optimizations

- procedure strength reduction and procedure vectorization

• infrastructure development

- a novel compiler architecture

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Contributions
• validation of the telescoping languages strategy

- the library compiler component

• type-based specialization

- NP-completeness of type-inference for straight line code

- a new way to infer types

- slice-hoisting as a new approach to do dynamic size-inference

• identification of relevant optimizations

• discovery of two new optimizations

- procedure strength reduction and procedure vectorization

• infrastructure development

- a novel compiler architecture

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Contributions
• validation of the telescoping languages strategy

- the library compiler component

• type-based specialization

- NP-completeness of type-inference for straight line code

- a new way to infer types

- slice-hoisting as a new approach to do dynamic size-inference

• identification of relevant optimizations

• discovery of two new optimizations

- procedure strength reduction and procedure vectorization

• infrastructure development

- a novel compiler architecture

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Contributions: Publications
• Arun Chauhan and Ken Kennedy. Procedure strength reduction and

procedure vectorization: Optimization strategies for telescoping languages.

In Proceedings of ACM-SIGARCH International Conference on

Supercomputing, June 2001. Also available as Reducing and vectorizing

procedures for telescoping languages. International Journal of Parallel

Programming, 30(4):289–313, August 2002.

• Arun Chauhan, Cheryl McCosh, Ken Kennedy, and Richard Hanson.

Automatic type-driven library generation for telescoping languages. To

appear in the Proceedings of SC: High Performance Networking and

Computing Conference, 2003.

• Arun Chauhan and Ken Kennedy. Slice-hoisting for dynamic size-inference

in MATLAB. In writing.

• Cheryl McCosh, Arun Chauhan, and Ken Kennedy. Computing type

jump-functions for MATLAB libraries. In writing.

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

Future Directions

• high-level reasoning

• time-bound compilation and AI techniques

• dynamic compilation and the grid

• automatic parallelization

• automatic differentiation

• other domains

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003

