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Two True Stories

• the world of Digital Signal Processing

- almost everyone uses MATLAB

- a large number uses MATLAB exclusively

- almost everyone hates writing C code

- prefer coding for an hour and letting it run for 7 days, than

the other way round

- often forced to rewrite programs in C

• linear algebra through MATLAB

- ARPACK—a linear algebra package to solve eigenvalue

problems

- prototyped in MATLAB

- painfully hand translated to FORTRAN
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Lessons

• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003



Lessons
• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003



Lessons
• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003



Lessons
• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003



Lessons
• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003



Lessons
• programming is an unavoidable fact of life to conduct

research in science and engineering

• users do not like programming in traditional

languages

• users love domain-specific high-level scripting

languages

- MATLAB has over 500,000 worldwide licenses

- Python, Perl, R, Mathematica

• performance problems limit their use

• the productivity connection

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003



History Repeats

“It was our belief that if FORTRAN, during its first

months, were to translate any reasonable ‘scientific’

source program into an object program only half as fast

as its hand-coded counterpart, then acceptance of our

system would be in serious danger... I believe that had

we failed to produce efficient programs, the widespread

use of languages like FORTRAN would have been seri-

ously delayed.”

–John Backus
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Pushing the Level Again

effective compilation

efficient compilation
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Thesis

It is possible to efficiently compile

numerical programs written in high-

level languages to achieve perfor-

mance close to that achievable in a

lower-level language.
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Fundamental Observation

• libraries are the key in optimizing high-level scripting

languages

a = x * y ⇒ a = MATMULT(x, y)

• libraries define high-level languages!

- a large effort in HPC is towards writing libraries

- domain-specific libraries make scripting languages useful and

popular

- high-level operations are largely “syntactic sugar”
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Libraries as Black Boxes

library compiler
library

binaries

user

program
compiler object code
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Whole Program Compilation

user

program

library

one

library

two

one.one

one.two
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Telescoping Languages Approach

• pre-compile libraries to minimize end-user

compilation time

• annotate libraries to capture specialized knowledge of

library writers

• generate specialized variants based on interesting

contexts

• link appropriate versions into the user script

analogous to offline indexing by search engines
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Telescoping Languages: Entities

library writer

library compiler

end user

script compiler

subroutine VMP (C, Z, ... , s)

“expect s to be mostly 1”

write libraries

write annotations

VMP step1 (C, Z, ... )
specialize code

call VMP (C, Z, ... , 1)
write script

call VMP step1 (C, Z, ... )
choose optimized variant
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Telescoping Languages Approach

domain

library

language

building

compiler

script
script

translator

enhanced

language

compiler

optimized

object

program
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Challenges

• identifying specialization opportunities

- which kinds of specializations

- how many

• identifying high pay-off optimizations

- must be applicable in telescoping languages context

- should focus on these first

• enabling the library writer to express these

transformations

- guide the specialization
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Developing the Compiler

MATLAB
library

compiler

C / FORTRAN
(multiple variants)

• compile MATLAB

• emit specialized output code

• implement identified high-payoff optimizations

• implement newly discovered optimizations
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Example Compilation

function mcc demo

x = 1;

y = x / 10;

z = x * 20;

r = y + z;
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Example Compilation

static void Mmcc demo (void) {

. . .

mxArray * r = NULL;

mxArray * z = NULL;

mxArray * y = NULL;

mxArray * x = NULL;

mlfAssign(&x, mxarray0 ); /* x = 1; */

mlfAssign(&y, mclMrdivide(mclVv(x, ”x”), mxarray1 )); /* y = x / 10; */

mlfAssign(&z, mclMtimes(mclVv(x, ”x”), mxarray2 )); /* z = x * 20; */

mlfAssign(&r, mclPlus(mclVv(y, ”y”), mclVv(z, ”z”))); /* r = y + z; */

mxDestroyArray(x);

mxDestroyArray(y);

mxDestroyArray(z);

mxDestroyArray(r);

. . .

}
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static void Mmcc demo (void) {

. . .

double r;

double z;

double y;

double z;
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Example Compilation

static void Mmcc demo (void) {

. . .

double r;

double z;

double y;

double z;

scalarAssign(&x, 1); /* x = 1; */

scalarAssign(&y, scalarDivide(x, 10)); /* y = x / 10; */

scalarAssign(&z, scalarTimes(x, 20)); /* z = x * 20; */

scalarAssign(&r, scalarPlus(y, z)); /* r = y + z; */

mxDestroyArray(x);

mxDestroyArray(y);

mxDestroyArray(z);

mxDestroyArray(r);

. . .

}
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Example Compilation

static void Mmcc demo (void) {

. . .

double r;

double z;

double y;

double z;

x = 1; /* x = 1; */

y = x / 10; /* y = x / 10; */

z = x * 20; /* z = x * 20; */

r = y + z; /* r = y + z; */

/* mxDestroyArray(x); */

/* mxDestroyArray(y); */

/* mxDestroyArray(z); */

/* mxDestroyArray(r); */

. . .

}
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Inferring Types
(Joint work with Cheryl McCosh)

• type ≡ <τ , δ, σ, ψ>

- τ = intrinsic type, e.g., int, real, complex, etc.

- δ = array dimensionality, 0 for scalars

- σ = δ-tuple of positive integers

- ψ = “structure” of an array

• type inference in general

- type = “smallest” set of values that preserves meaning
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Static Type Inference
(Appears in McCosh’s Masters’ Thesis)

• dimensionality constraints

x = 1

LHS dims = RHS dims

y = x / 10

(x, y scalar) OR (x, y arrays of same size)

z = x * 20

(x, z scalar) OR (x, z arrays of same size)

r = y + z

(r, y, z scalar) OR (r, y, z arrays of same size)

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003



Static Type Inference
(Appears in McCosh’s Masters’ Thesis)

• dimensionality constraints

x = 1 LHS dims = RHS dims

y = x / 10

(x, y scalar) OR (x, y arrays of same size)

z = x * 20

(x, z scalar) OR (x, z arrays of same size)

r = y + z

(r, y, z scalar) OR (r, y, z arrays of same size)

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003



Static Type Inference
(Appears in McCosh’s Masters’ Thesis)

• dimensionality constraints

x = 1 LHS dims = RHS dims

y = x / 10 (x, y scalar) OR (x, y arrays of same size)

z = x * 20

(x, z scalar) OR (x, z arrays of same size)

r = y + z

(r, y, z scalar) OR (r, y, z arrays of same size)

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003



Static Type Inference
(Appears in McCosh’s Masters’ Thesis)

• dimensionality constraints

x = 1 LHS dims = RHS dims

y = x / 10 (x, y scalar) OR (x, y arrays of same size)

z = x * 20 (x, z scalar) OR (x, z arrays of same size)

r = y + z

(r, y, z scalar) OR (r, y, z arrays of same size)

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003



Static Type Inference
(Appears in McCosh’s Masters’ Thesis)

• dimensionality constraints

x = 1 LHS dims = RHS dims

y = x / 10 (x, y scalar) OR (x, y arrays of same size)

z = x * 20 (x, z scalar) OR (x, z arrays of same size)

r = y + z (r, y, z scalar) OR (r, y, z arrays of same size)

PhD Thesis Defense: Telescoping MATLAB for DSP Applications July 10, 2003



Static Type Inference
(Appears in McCosh’s Masters’ Thesis)

• write constraints

- each operation or function call imposes certain “constraints”

- incomparable types give rise to multiple valid configurations

• the problem is hard to solve in general

- efficient solution possible under certain conditions

• reducing to the clique problem

- a constraint defines a level

- clauses in a constraint are nodes at that level

- an edge whenever two clauses are “compatible”

- a clique defines a valid type configuration
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Limitations

• control join-points may result in too many configs

• array sizes defined by indexed expressions

- assignment to a(i) can resize a

• control join-points ignored for array-sizes

• symbolic expressions may be unknown at compile

time

• array sizes changing in a loop not handled
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Size Grows in a Loop

function [A, F] = pisar (xt, sin num)

...

mcos = [];

for n = 1:sin num

vcos = [];

for i = 1:sin num

vcos = [vcos cos(n*w est(i))];

end

mcos = [mcos; vcos]

end

...
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Slice-hoisting: Simple Example

A

1

= zeros(1, N);

⇒σ1
A1 = <N>

⇒

y

1

= ...

A

1

(y

1

) = ...

⇒σ2
A1 = max(σ1

A1, <y1>)

⇒

x

1

= ...

A

1

(x

1

) = ...

⇒σ3
A1 = max(σ2

A1, <x1>)
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Slice-hoisting: Simple Example

A

1

= zeros(1, N);

⇒

σ

1

A

1

= <N>

⇒

y

1

= ...

A

1

(y

1

) = ...

⇒

σ

2

A

1

= max(σ

1

A

1

, <y

1

>)

⇒

x

1

= ...

A

1

(x

1

) = ...

⇒

σ

3

A

1

= max(σ

2

A

1

, <x

1

>)
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Slice-hoisting: Simple Example

A1 = zeros(1, N);

⇒

σ1
A1 = <N>

⇒

y1 = ...

A1(y1) = ...

⇒

σ2
A1 = max(σ1

A1, <y1>)

⇒

x1 = ...

A1(x1) = ...

⇒

σ3
A1 = max(σ2

A1, <x1>)
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⇒σ1
A1 = <N>

⇒y1 = ...

A1(y1) = ...

⇒σ2
A1 = max(σ1

A1, <y1>)

⇒x1 = ...

A1(x1) = ...
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Slice-hoisting: Simple Example

⇒σ1
A1 = <N>

⇒y1 = ...

⇒σ2
A1 = max(σ1

A1, <y1>)

⇒x1 = ...

⇒σ3
A1 = max(σ2

A1, <x1)

allocate(A1, σ3
A1);

A1 = zeros(1, N);

A1(y1) = ...

A1(x1) = ...
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Slice-hoisting: Steps

• insert σ statements

• do SSA conversion

• identify the slice involved in computing the σ values

• hoist the slice before the first use of the array
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Slice-hoisting: Loop

A

1

(x

1

) = ...

⇒σ1
A1 = <x1>

⇒

for i

1

= 1:N

...

⇒ σ2
A1 = φ(σ1

A1, σ3
A1)

A

1

= [A

1

f(i

1

)];

⇒ σ3
A1 = σ2

A1 + <1>

⇒

end

• add σ statements

• do SSA

• identify slice
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Slice-hoisting: Loop

A

1

(x

1

) = ...

⇒

σ

1

A

1

= <x

1

>

⇒

for i

1

= 1:N

...

⇒ σ2
A1 = φ(σ1

A1, σ3
A1)

A

1

= [A

1

f(i

1

)];

⇒

σ

3

A

1

= σ

2

A

1

+ <1>

⇒

end

• add σ statements

• do SSA

• identify slice
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Slice-hoisting: Loop

A1(x1) = ...

⇒

σ1
A1 = <x1>

⇒

for i1 = 1:N

...

⇒

σ2
A1 = φ(σ1

A1, σ3
A1)

A1 = [A1 f(i1)];

⇒

σ3
A1 = σ2

A1 + <1>

⇒

end

• add σ statements

• do SSA

• identify slice
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Slice-hoisting: Loop

A1(x1) = ...

⇒σ1
A1 = <x1>

⇒for i1 = 1:N

...

⇒ σ2
A1 = φ(σ1

A1, σ3
A1)

A1 = [A1 f(i1)];

⇒ σ3
A1 = σ2

A1 + <1>

⇒end

• add σ statements

• do SSA

• identify slice
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Slice-hoisting: Loop

⇒σ1
A1 = <x1>

⇒for i1 = 1:N

⇒ σ2
A1 = φ(σ1

A1, σ3
A1)

⇒ σ3
A1 = σ2

A1 + <1>

⇒end

allocate(A1, σ3
A1);

A1(x1) = ...

for i1 = 1:N

...

A1 = [A1 f(i1)];

end

• add σ statements

• do SSA

• identify slice

• hoist the slice
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Type-based Specialization

Sun SPARC 336MHz SGI Origin Apple PowerBook G4 667MHz
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Precision of Static Inference

acf art. Q ffth fourier by jump huffcode
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Inference Mechanisms

acf art. Q ffth fourier by jump huffcode
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Relevant Optimizations

“It is a capital mistake to theorize before one has data.

Insensibly one begins to twist facts to suit theories, in-

stead of theories to suit facts.”

–Sir Arthur Conon Doyle in a A Scandal in Bohemia
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Identifying and Discovering

• study of DSP applications

- real life code from the ECE department

• identified high-payoff well-known optimization

techniques

• discovered two novel optimizations

- procedure strength reduction

- procedure vectorization
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High-payoff Optimizations

• vectorization

- 33 times speedup in one case!

• common subexpression elimination

• beating and dragging along

• constant propagation

• library identities

- single call replaces a sequence

• value of library annotations
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Procedure Strength Reduction

for i = 1:N

. . .

f (c1, c2, i, c3);

. . .

end

f init (c1, c2, c3);

for i = 1:N

. . .

f iter (i);

. . .

end
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Procedure Strength Reduction

for i = 1:N

. . .

f (c1, c2, i, c3);

. . .

end

f init (c1, c2, c3);

for i = 1:N

. . .

f iter (i);

. . .

end
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Applying to ctss

jakes_mp1 newcodesig codesdhd whole program
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Applying to sML chan est

original (per iteration) init call init (with preallocation) iterative call
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Effect of mcc Compilation

interpreted compiled stand−alone
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More on Strength Reduction

• procedure strength reduction somewhat different

from operator strength reduction

- could be similar if the iter component provided

• automatic differentiation is a more powerful approach

that matches procedure strength reduction

- more work needed to utilize automatic diff. for optimizing

loops
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Procedure Vectorization

for i = 1:N

f (c1, c2, i, A[i]);

end

. . .

function f (a1, a2, a3, a4)

<body of f >

f vect (c1, c2, [1:N], A)

. . .

function f vect (a1, a2, a3, a4)

for i = 1:N

<body of f >

end
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Procedure Vectorization

for i = 1:N

f (c1, c2, i, A[i]);

end

. . .

function f (a1, a2, a3, a4)

<body of f >

f vect (c1, c2, [1:N], A)

. . .

function f vect (a1, a2, a3, a4)

for i = 1:N

<body of f >

end
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Applying to jakes
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Overall Architecture

Parser

and

Front-

End

Type

Infer.

Engine

Spl’n

Engine

Code

Gen.

Annot.

Lib.

Opt. Specs

C
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Contributions

• validation of the telescoping languages strategy

- the library compiler component

• type-based specialization

- NP-completeness of type-inference for straight line code

- a new way to infer types

- slice-hoisting as a new approach to do dynamic size-inference

• identification of relevant optimizations

• discovery of two new optimizations

- procedure strength reduction and procedure vectorization

• infrastructure development

- a novel compiler architecture
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Contributions: Publications
• Arun Chauhan and Ken Kennedy. Procedure strength reduction and

procedure vectorization: Optimization strategies for telescoping languages.

In Proceedings of ACM-SIGARCH International Conference on

Supercomputing, June 2001. Also available as Reducing and vectorizing

procedures for telescoping languages. International Journal of Parallel

Programming, 30(4):289–313, August 2002.

• Arun Chauhan, Cheryl McCosh, Ken Kennedy, and Richard Hanson.

Automatic type-driven library generation for telescoping languages. To

appear in the Proceedings of SC: High Performance Networking and

Computing Conference, 2003.

• Arun Chauhan and Ken Kennedy. Slice-hoisting for dynamic size-inference

in MATLAB. In writing.

• Cheryl McCosh, Arun Chauhan, and Ken Kennedy. Computing type

jump-functions for MATLAB libraries. In writing.
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Future Directions

• high-level reasoning

• time-bound compilation and AI techniques

• dynamic compilation and the grid

• automatic parallelization

• automatic differentiation

• other domains
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