Telescoping Languages

or
High Performance Computing for Dummies — |

presentation by
Arun Chauhan

joint work with

Ken Kennedy

Pizza Talk, Feb 26", 2001

Other Collaborators
* Rice
— John Mellor—-Crummey
- Rob Fowler
- Bradley Broom
- Keith Cooper

— Linda Torczon
* Qutside Rice

- Jack Dongarra
— Lennort Johnson

- Dennis Gannon

Motivation

* Shortage of programmers

— Increasing application demands
- rapidly changing architectures

- need programmers for scientific applications too

Motivation

* Shortage of programmers
— Increasing application demands

- rapidly changing architectures

- need programmers for scientific applications too
* High Performance programming Is hard

— Increasingly a specialized activity

- more complex architectures

— more high performance applications

One Solution

* Enable end—users to program

- language should be high level

- should provide domain-specific features

- must have effective and efficient compilers

One Solution

* Enable end—users to program

- language should be high level

- should provide domain-specific features
- must have effective and efficient compilers
* Scripting systems like MATLAB exist

— very popular with end—users

- lack effective and efficient compilers

Fundamental Observations

* Libraries extremely important

— cannot treat libraries as black boxes

— lib sources may not be available to end users

* Compl

— shou

INg user scripts must be fast

d follow principle of no surprise

Existing Approaches:

based on transforming to lower level languages

Gobal
Optimizer
component
library
user intermediate Code
: Translator
library code Generator
script

Pizza Talk, Feb 26™, 2001 Telescoping Languages

Existing Approaches:

based on transforming to lower level languages

Gobal
Optimizer
component
library
user Translator intermediate Code
library code Generator
script * (potentially) high compilation time

 expert knowledge about libraries lost

Pizza Talk, Feb 26", 2001 Telescoping Languages

Expert Knowledge

Example 1

function result = matrix_op (input_1, input_ 2,

I =1

for j = 1.N
result(i) =result(i) + input _1())*input _2(j)
| =1 + step

end

st ep)

Pizza Talk, Feb 26", 2001

Telescoping Languages

Expert Knowledge

Example 1

function result matrix_op (input_1, input_ 2,

1

for |j 1:N
result (i)
| =1 + step

end

result(i) + input _1(j)*input_2(j)

st ep)

Example 2

.sin (a);
cos (a);

x -

[x ¥l =

'y]

sincos (a);

Pizza Talk, Feb 26", 2001

Telescoping Languages

Desiderata

* Utilize expert knowledge on libraries
* Fast compilation of user—scripts

* Still achieve high performance

Telescoping Languages Approach

library writer

library compiler
end user

script compiler

Pizza Talk, Feb 26™, 2001 Telescoping Languages

Telescoping Languages Approach

write library procedures

result = matrix_op (input_1, input_2, step)

library writer

"expect step to be non-zero most of the times"
annotate library procedures

library compiler

end user

script compiler

Pizza Talk, Feb 26™, 2001 Telescoping Languages

Telescoping Languages Approach

write library procedures

result = matrix_op (input_1, input_2, step)

library writer

"expect step to be non-zero most of the times"
annotate library procedures

extensively compile library routines _
library compiler =——-(| €SU|l t = matri x_op_non_zero_step (...)

end user

script compiler

Pizza Talk, Feb 26™, 2001 Telescoping Languages

Telescoping Languages Approach

write library procedures

result = matrix_op (input_1, input_2, step)

library writer

"expect step to be non-zero most of the times"
annotate library procedures

extensively compile library routines _
library compiler =——-(| €SU|l t = matri x_op_non_zero_step (...)

write scripts using libraries :
end user - [— rmt i X_Op (A, B’ 1)

script compiler

Pizza Talk, Feb 26™, 2001 Telescoping Languages

Telescoping Languages Approach

write library procedures

result = matrix_op (input_1, input_2, step)

library writer
"expect step to be non-zero most of the times"

annotate library procedures

extensively compile library routines _
library compiler =——-(| €SU|l t = matri x_op_non_zero_step (...)

write scripts using libraries :
end user - [— rmt i X_Op (A, B’ 1)

pick the most optimized version _

Pizza Talk, Feb 26™, 2001 Telescoping Languages

Telescoping Languages Approach

optimized
object
code

enahanced
language
compiler

language
builder

annotations

library

Pizza Talk, Feb 26™, 2001 Telescoping Languages

Telescoping Languages Approach

language
builder

annotations

optimized
object
code

enahanced
language
compiler

language
builder

annotations

library

N\ J

Pizza Talk, Feb 26", 2001 Telescoping Languages

Telescoping Performance

enahanced
language
compiler

optimized
object
code

Pizza Talk, Feb 26™, 2001 Telescoping Languages

Strength Reduction

for 1 = n: n0+N
X =1 * C;
y = g(x);
end

Pizza Talk, Feb 26™, 2001 Telescoping Languages

Strength Reduction

= n:.n+N
0 0

| * C;

a(x);

Pizza Talk, Feb 26", 2001

N\

X
for

X< -

n.: n0+N

.g(X);
X + C,

end

Telescoping Languages

Procedure Strength Reduction

* Procedure called inside loop

— several arguments typically invariant
— move Iinvariant computations into init part

- do Incremental computations inside loop

Procedure Strength Reduction

* Procedure called inside loop

— several arguments typically invariant
— move Iinvariant computations into init part

- do Incremental computations inside loop

for1=1:N
f(cl, c2,1, c3)
end

Procedure Strength Reduction

* Procedure called inside loop

— several arguments typically invariant

— move Iinvariant computations into init part

- do Incremental computations inside loop

for1=1:N
f(cl, c2,1, c3)
end

f init (c1, c2, c3)
for1=1:N

f 1ter (i)
end

Procedure Strength Reduction

1: 200
] akes_npl (16500, 160, ii, num paths);

for i1
chan

for snr = 2:2:20

[s,Xx,ci,h, L ,a,y,n0] = ...
newcodesig (NO |, numpaths, M snr, chan, sig pow paths);

[01, d1,d2,d3,nf, mM = codesdhd (y, a, h, NO Tm Bd, M B, n0);

end
end

Pizza Talk, Feb 26", 2001 Telescoping Languages

Procedure Strength Reduction

jakes _mpl_init (16500, 160, num paths);
for i1 1: 200
chan = jakes npl iter (ii);

for snr = 2:2:20

[s,Xx,ci,h, L ,a,y,n0] = ...
newcodesig (NO |, numpaths, M snr, chan, sig pow paths);

[01, d1,d2,d3,nf, mM = codesdhd (y, a, h, NO Tm Bd, M B, n0);

end
end

Pizza Talk, Feb 26", 2001 Telescoping Languages

ctss: strength reduction

optimized execution times for top—level procedures in ctss relative to unoptimized

1.2

0.8

0.6

optimized execution time

optimized

original

jakes_mpl

newcodesig codesdhd

whole program

distribution of the total execution time among top—level procedures in ctss

Il jakes mpl
I newcodesig
l [] codesdhd H
| | | |
0 5 10 15 20

total time (in thousands of seconds)

25

chan est: strength reduction

performance improvement in SML_chan_est
14 T T T

12 w000

[EEN
o
I

e}
T

execution time (seconds)
(@]
I

N
T

original (per iteration) init call init (with preallocation) iterative call

outage Ib fad: strength reduction

performance improvement in outage |b_fad
50 . .

w B B
(63) ol
T T

W
&)
|

execution time (thousands of seconds)
= N N
o1 o o1
I I

[—
o
|

al
|

o

original time optimized time

Conclusion

* Telescoping Languages approach
— enable end-users write high perf. programs
— libraries optimized as primitive operations
— fast compilation of user scripts

* Procedure Strength Reduction
- 10% - 50% gain

