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Motivation

* Shortage of programmers
— Increasing application demands

- rapidly changing architectures

- need programmers for scientific applications too
* High Performance programming Is hard

— Increasingly a specialized activity

- more complex architectures

— more high performance applications
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- should provide domain-specific features
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One Solution

* Enable end—users to program

- language should be high level

- should provide domain-specific features
- must have effective and efficient compilers
* Scripting systems like MATLAB exist

— very popular with end—users

- lack effective and efficient compilers



Fundamental Observations

* Libraries extremely important

— cannot treat libraries as black boxes

— lib sources may not be available to end users

* Compl

— shou

INg user scripts must be fast

d follow principle of no surprise



Existing Approaches:

based on transforming to lower level languages

Gobal
Optimizer
component
library
user intermediate Code
: Translator
library code Generator
script
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Existing Approaches:

based on transforming to lower level languages

Gobal
Optimizer
component
library
user Translator intermediate Code
library code Generator
script * (potentially) high compilation time

 expert knowledge about libraries lost
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Expert Knowledge

Example 1

function result = matrix_op (input_1, input_ 2,

I =1

for j = 1.N
result(i) =result(i) + input _1())*input _2(j)
| =1 + step

end

st ep)
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Expert Knowledge

Example 1

function result matrix_op (input_1, input_ 2,

1

for |j 1:N
result (i)
| =1 + step

end

result(i) + input _1(j)*input_2(j)

st ep)

Example 2

.sin (a);
cos (a);

x -

[x ¥l =

'y]

sincos (a);
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Desiderata

* Utilize expert knowledge on libraries
* Fast compilation of user—scripts

* Still achieve high performance



Telescoping Languages Approach

library writer

library compiler
end user

script compiler
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Telescoping Languages Approach

write library procedures

result = matrix_op (input_1, input_2, step)

library writer

"expect step to be non-zero most of the times"
annotate library procedures

library compiler

end user

script compiler
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Telescoping Languages Approach

write library procedures

result = matrix_op (input_1, input_2, step)

library writer

"expect step to be non-zero most of the times"
annotate library procedures

extensively compile library routines _
library compiler =——-(| €SU|l t = matri x_op_non_zero_step (...)

end user

script compiler
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Telescoping Languages Approach

write library procedures

result = matrix_op (input_1, input_2, step)

library writer

"expect step to be non-zero most of the times"
annotate library procedures

extensively compile library routines _
library compiler =——-(| €SU|l t = matri x_op_non_zero_step (...)

write scripts using libraries :
end user - [ — rmt i X_Op (A, B’ 1)

script compiler
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Telescoping Languages Approach

write library procedures

result = matrix_op (input_1, input_2, step)

library writer
"expect step to be non-zero most of the times"

annotate library procedures

extensively compile library routines _
library compiler =——-(| €SU|l t = matri x_op_non_zero_step (...)

write scripts using libraries :
end user - [ — rmt i X_Op (A, B’ 1)

pick the most optimized version _
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Telescoping Languages Approach

optimized
object
code

enahanced
language
compiler

language
builder

annotations

library
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Telescoping Languages Approach

language
builder

annotations

optimized
object
code

enahanced
language
compiler

language
builder

annotations

library

N\ J
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Telescoping Performance

enahanced
language
compiler

optimized
object
code
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Strength Reduction

for 1 = n: n0+N
X =1 * C;
y = g(x);
end
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Strength Reduction

= n:.n+N
0 0

| * C;

a(x);
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X
for

X< -

n.: n0+N

.g(X);
X + C,

end
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Procedure Strength Reduction

* Procedure called inside loop

— several arguments typically invariant
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- do Incremental computations inside loop
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— move Iinvariant computations into init part
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for1=1:N
f(cl, c2,1, c3)
end




Procedure Strength Reduction

* Procedure called inside loop

— several arguments typically invariant

— move Iinvariant computations into init part

- do Incremental computations inside loop

for1=1:N
f(cl, c2,1, c3)
end

f init (c1, c2, c3)
for1=1:N

f 1ter (i)
end




Procedure Strength Reduction

1: 200
] akes_npl (16500, 160, ii, num paths);

for i1
chan

for snr = 2:2:20

[s,Xx,ci,h, L ,a,y,n0] = ...
newcodesig (NO |, numpaths, M snr, chan, sig pow paths);

[ 01, d1,d2,d3,nf, mM = codesdhd (y, a, h, NO Tm Bd, M B, n0);

end
end
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Procedure Strength Reduction

jakes _mpl_init (16500, 160, num paths);
for i1 1: 200
chan = jakes npl iter (ii);

for snr = 2:2:20

[s,Xx,ci,h, L ,a,y,n0] = ...
newcodesig (NO |, numpaths, M snr, chan, sig pow paths);

[ 01, d1,d2,d3,nf, mM = codesdhd (y, a, h, NO Tm Bd, M B, n0);

end
end
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ctss: strength reduction

optimized execution times for top—level procedures in ctss relative to unoptimized
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chan est: strength reduction

performance improvement in SML_chan_est
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outage Ib fad: strength reduction

performance improvement in outage |b_fad
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Conclusion

* Telescoping Languages approach
— enable end-users write high perf. programs
— libraries optimized as primitive operations
— fast compilation of user scripts

* Procedure Strength Reduction
- 10% - 50% gain



