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� increasing application demands

� rapidly changing architectures
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Motivation
" Shortage of programmers

� increasing application demands

� rapidly changing architectures

� need programmers for scientific applications too

" High Performance programming is hard
� increasingly a specialized activity

� more complex architectures

� more high performance applications
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One Solution

" Enable end−users to program

� language should be high level

� should provide domain−specific features

� must have effective and efficient compilers
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One Solution

" Enable end−users to program

� language should be high level

� should provide domain−specific features

� must have effective and efficient compilers

" Scripting systems like MATLAB exist
� very popular with end−users

� lack effective and efficient compilers
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Fundamental Observations

" Libraries extremely important

� cannot treat libraries as black boxes

� lib sources may not be available to end users

" Compiling user scripts must be fast

� should follow principle of no surprise
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Existing Approaches:
based on transforming to lower level languages
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Existing Approaches:
based on transforming to lower level languages

component
library

user
library

script

intermediate
codeTranslator Code

Generator

Gobal
Optimizer

" (potentially) high compilation time
" expert knowledge about libraries lost
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Expert Knowledge

function result = matrix_op (input_1, input_2, step)

i = 1
for j = 1:N
   result(i) = result(i) + input_1(j)*input_2(j)
   i = i + step
end

Example 1
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Expert Knowledge

function result = matrix_op (input_1, input_2, step)

i = 1
for j = 1:N
   result(i) = result(i) + input_1(j)*input_2(j)
   i = i + step
end

Example 1

 ....
 x = sin (a);
 y = cos (a);
 ....

 ....
 [x, y] = sincos (a);
 ....

Example 2
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 Desiderata

" Utilize expert knowledge on libraries

" Fast compilation of user−scripts

" Still achieve high performance
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Telescoping Languages Approach

library writer

library compiler

end user

script compiler
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Telescoping Languages Approach
write library procedures

annotate library procedures

result = matrix_op (input_1, input_2, step)

"expect step to be non−zero most of the times"

library writer

library compiler

end user

script compiler
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write library procedures
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"expect step to be non−zero most of the times"
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result = matrix_op_non_zero_step (...)
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Telescoping Languages Approach
write library procedures

annotate library procedures

result = matrix_op (input_1, input_2, step)

"expect step to be non−zero most of the times"

extensively compile library routines
result = matrix_op_non_zero_step (...)

write scripts using libraries
r = matrix_op (A, B, 1)

library writer

library compiler

end user

script compiler
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Telescoping Languages Approach
write library procedures

annotate library procedures

result = matrix_op (input_1, input_2, step)

"expect step to be non−zero most of the times"

extensively compile library routines
result = matrix_op_non_zero_step (...)

write scripts using libraries
r = matrix_op (A, B, 1)

pick the most optimized version 
r = matrix_op_non_zero_step (...)

library writer

library compiler

end user

script compiler
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Telescoping Languages Approach
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Telescoping Performance
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Strength Reduction

for i = n
0
:n

0
+N

  ....
  x = i * c;
  y = g(x);
  ....
end
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Strength Reduction

for i = n
0
:n

0
+N

  ....
  x = i * c;
  y = g(x);
  ....
end

x = n
0
 * c;

for i = n
0
:n

0
+N

  ....
  y = g(x);
  x = x + c;
  ....
end
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Procedure Strength Reduction
" Procedure called inside loop

� several arguments typically invariant

� move invariant computations into init part

� do incremental computations inside loop
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Procedure Strength Reduction
" Procedure called inside loop

� several arguments typically invariant

� move invariant computations into init part

� do incremental computations inside loop

for i = 1:N
     f (c1, c2, i, c3)
end
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Procedure Strength Reduction
" Procedure called inside loop

� several arguments typically invariant

� move invariant computations into init part

� do incremental computations inside loop

for i = 1:N
     f (c1, c2, i, c3)
end

f_init (c1, c2, c3)
for i = 1:N
     f_iter (i)
end
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Procedure Strength Reduction
....

for ii = 1:200
  chan = jakes_mp1 (16500, 160, ii, num_paths);

  ....  

  for snr = 2:2:20
   ....
   [s,x,ci,h,L,a,y,n0] = ...
     newcodesig (NO, l, num_paths, M, snr, chan, sig_pow_paths);
   ....
   [o1,d1,d2,d3,mf,m]= codesdhd (y, a, h, NO, Tm, Bd, M, B, n0);
   ....
  end
end
....
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Procedure Strength Reduction
....
jakes_mp1_init (16500, 160, num_paths);
for ii = 1:200
  chan = jakes_mp1_iter (ii);

  ....  

  for snr = 2:2:20
   ....
   [s,x,ci,h,L,a,y,n0] = ...
     newcodesig (NO, l, num_paths, M, snr, chan, sig_pow_paths);
   ....
   [o1,d1,d2,d3,mf,m]= codesdhd (y, a, h, NO, Tm, Bd, M, B, n0);
   ....
  end
end
....
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ctss: strength reduction
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chan_est: strength reduction
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outage_lb_fad: strength reduction
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Conclusion

" Telescoping Languages approach

� enable end−users write high perf. programs

� libraries optimized as primitive operations

� fast compilation of user scripts

" Procedure Strength Reduction
� 10% − 50% gain


