
Telescoping LanguagesPizza Talk, Feb 26th, 2001

Telescoping Languages
or

High Performance Computing for Dummies − II

presentation by

Arun Chauhan

joint work with

Ken Kennedy

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Other Collaborators
" Rice

� John Mellor−Crummey

� Rob Fowler

� Bradley Broom

� Keith Cooper

� Linda Torczon

" Outside Rice

� Jack Dongarra

� Lennort Johnson

� Dennis Gannon

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Motivation
" Shortage of programmers

� increasing application demands

� rapidly changing architectures

� need programmers for scientific applications too

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Motivation
" Shortage of programmers

� increasing application demands

� rapidly changing architectures

� need programmers for scientific applications too

" High Performance programming is hard
� increasingly a specialized activity

� more complex architectures

� more high performance applications

Telescoping LanguagesPizza Talk, Feb 26th, 2001

One Solution

" Enable end−users to program

� language should be high level

� should provide domain−specific features

� must have effective and efficient compilers

Telescoping LanguagesPizza Talk, Feb 26th, 2001

One Solution

" Enable end−users to program

� language should be high level

� should provide domain−specific features

� must have effective and efficient compilers

" Scripting systems like MATLAB exist
� very popular with end−users

� lack effective and efficient compilers

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Fundamental Observations

" Libraries extremely important

� cannot treat libraries as black boxes

� lib sources may not be available to end users

" Compiling user scripts must be fast

� should follow principle of no surprise

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Existing Approaches:
based on transforming to lower level languages

component
library

user
library

script

intermediate
codeTranslator Code

Generator

Gobal
Optimizer

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Existing Approaches:
based on transforming to lower level languages

component
library

user
library

script

intermediate
codeTranslator Code

Generator

Gobal
Optimizer

" (potentially) high compilation time
" expert knowledge about libraries lost

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Expert Knowledge

function result = matrix_op (input_1, input_2, step)

i = 1
for j = 1:N
 result(i) = result(i) + input_1(j)*input_2(j)
 i = i + step
end

Example 1

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Expert Knowledge

function result = matrix_op (input_1, input_2, step)

i = 1
for j = 1:N
 result(i) = result(i) + input_1(j)*input_2(j)
 i = i + step
end

Example 1

 x = sin (a);
 y = cos (a);

 [x, y] = sincos (a);

Example 2

Telescoping LanguagesPizza Talk, Feb 26th, 2001

 Desiderata

" Utilize expert knowledge on libraries

" Fast compilation of user−scripts

" Still achieve high performance

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Telescoping Languages Approach

library writer

library compiler

end user

script compiler

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Telescoping Languages Approach
write library procedures

annotate library procedures

result = matrix_op (input_1, input_2, step)

"expect step to be non−zero most of the times"

library writer

library compiler

end user

script compiler

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Telescoping Languages Approach
write library procedures

annotate library procedures

result = matrix_op (input_1, input_2, step)

"expect step to be non−zero most of the times"

extensively compile library routines
result = matrix_op_non_zero_step (...)

library writer

library compiler

end user

script compiler

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Telescoping Languages Approach
write library procedures

annotate library procedures

result = matrix_op (input_1, input_2, step)

"expect step to be non−zero most of the times"

extensively compile library routines
result = matrix_op_non_zero_step (...)

write scripts using libraries
r = matrix_op (A, B, 1)

library writer

library compiler

end user

script compiler

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Telescoping Languages Approach
write library procedures

annotate library procedures

result = matrix_op (input_1, input_2, step)

"expect step to be non−zero most of the times"

extensively compile library routines
result = matrix_op_non_zero_step (...)

write scripts using libraries
r = matrix_op (A, B, 1)

pick the most optimized version
r = matrix_op_non_zero_step (...)

library writer

library compiler

end user

script compiler

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Telescoping Languages Approach

library

annotations language
builder

enahanced
language
compiler

user
script

optimized
object
code

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Telescoping Languages Approach

library

annotations language
builder

enahanced
language
compiler

user
script

optimized
object
code

annotations
language
builder

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Telescoping Performance

user
script

enahanced
language
compiler

optimized
object
code

Telescoping Perfo
rm

ance

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Strength Reduction

for i = n
0
:n

0
+N

 x = i * c;
 y = g(x);

end

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Strength Reduction

for i = n
0
:n

0
+N

 x = i * c;
 y = g(x);

end

x = n
0
 * c;

for i = n
0
:n

0
+N

 y = g(x);
 x = x + c;

end

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Procedure Strength Reduction
" Procedure called inside loop

� several arguments typically invariant

� move invariant computations into init part

� do incremental computations inside loop

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Procedure Strength Reduction
" Procedure called inside loop

� several arguments typically invariant

� move invariant computations into init part

� do incremental computations inside loop

for i = 1:N
 f (c1, c2, i, c3)
end

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Procedure Strength Reduction
" Procedure called inside loop

� several arguments typically invariant

� move invariant computations into init part

� do incremental computations inside loop

for i = 1:N
 f (c1, c2, i, c3)
end

f_init (c1, c2, c3)
for i = 1:N
 f_iter (i)
end

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Procedure Strength Reduction
....

for ii = 1:200
 chan = jakes_mp1 (16500, 160, ii, num_paths);

 for snr = 2:2:20

 [s,x,ci,h,L,a,y,n0] = ...
 newcodesig (NO, l, num_paths, M, snr, chan, sig_pow_paths);

 [o1,d1,d2,d3,mf,m]= codesdhd (y, a, h, NO, Tm, Bd, M, B, n0);

 end
end
....

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Procedure Strength Reduction
....
jakes_mp1_init (16500, 160, num_paths);
for ii = 1:200
 chan = jakes_mp1_iter (ii);

 for snr = 2:2:20

 [s,x,ci,h,L,a,y,n0] = ...
 newcodesig (NO, l, num_paths, M, snr, chan, sig_pow_paths);

 [o1,d1,d2,d3,mf,m]= codesdhd (y, a, h, NO, Tm, Bd, M, B, n0);

 end
end
....

Telescoping LanguagesPizza Talk, Feb 26th, 2001

ctss: strength reduction

jakes_mp1 newcodesig codesdhd whole program
0

0.2

0.4

0.6

0.8

1

1.2

op
tim

iz
ed

 e
xe

cu
tio

n
tim

e

optimized execution times for top−level procedures in ctss relative to unoptimized

0 5 10 15 20 25

original

optimized

total time (in thousands of seconds)

distribution of the total execution time among top−level procedures in ctss

jakes_mp1
newcodesig
codesdhd

Telescoping LanguagesPizza Talk, Feb 26th, 2001

chan_est: strength reduction

original (per iteration) init call init (with preallocation) iterative call
0

2

4

6

8

10

12

14

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

performance improvement in sML_chan_est

Telescoping LanguagesPizza Talk, Feb 26th, 2001

outage_lb_fad: strength reduction

original time optimized time
0

5

10

15

20

25

30

35

40

45

50

ex
ec

ut
io

n
tim

e
(t

ho
us

an
ds

 o
f s

ec
on

ds
)

performance improvement in outage_lb_fad

Telescoping LanguagesPizza Talk, Feb 26th, 2001

Conclusion

" Telescoping Languages approach

� enable end−users write high perf. programs

� libraries optimized as primitive operations

� fast compilation of user scripts

" Procedure Strength Reduction
� 10% − 50% gain

