Type Inference

Relevance to Telescoping Languages

Arun Chauhan

COMP 612 December 6, 2002

Questions

e Why do we need type inference?

e Can we leverage the type inference work in the

programming languages community?’

COMP 612: Type Inference December 6, 2002

Towards High-Level Systems
for High-Performance Computing

COMP 612: Type Inference December 6, 2002

Towards High-Level Systems
for High-Performance Computing

e software engineering issues

COMP 612: Type Inference December 6, 2002

Towards High-Level Systems
for High-Performance Computing

e software engineering issues

- bigger, more complicated, applications

COMP 612: Type Inference December 6, 2002

Towards High-Level Systems
for High-Performance Computing

e software engineering issues
- bigger, more complicated, applications

- fewer people to program in low-level languages

COMP 612: Type Inference December 6, 2002

Towards High-Level Systems
for High-Performance Computing

e software engineering issues
- bigger, more complicated, applications

- fewer people to program in low-level languages

e programmer productivity
- shortage of programmers, in general

- domain-specific libraries reduce effort

COMP 612: Type Inference December 6, 2002

Towards High-Level Systems
for High-Performance Computing

e software engineering issues
- bigger, more complicated, applications

- fewer people to program in low-level languages

e programmer productivity
- shortage of programmers, in general

- domain-specific libraries reduce effort

e several recent solutions
- systems like POOMA, CCA, ROSE
- languages like Matlab, S+

COMP 612: Type Inference December 6, 2002

Telescoping Languages and
Type Inference

e telescoping languages is a strategy for compiling

high-level languages

e high-level languages are typically typeless or weakly
typed

e type information is needed for efficient mapping onto

hardware

e type information is needed for optimizations
- users often implicitly intend multiple types

- type information enables other optimizations

COMP 612: Type Inference December 6, 2002

What is a Type?

COMP 612: Type Inference December 6, 2002

What is a Type?

e the universe, V', is the set of all values

COMP 612: Type Inference December 6, 2002

What is a Type?

e the universe, V', is the set of all values

e a subset, obeying certain properties, is an tdeal

COMP 612: Type Inference December 6, 2002

What is a Type?

e the universe, V', is the set of all values
e a subset, obeying certain properties, is an tdeal

e a type 1s an ideal

- there are other more complicated views of types as well

COMP 612: Type Inference December 6, 2002

What is a Type?

e the universe, V', is the set of all values
e a subset, obeying certain properties, is an tdeal

e a type 1s an ideal

- there are other more complicated views of types as well

e the set of all types forms a lattice
- T is the set of all values, V

- L is a singleton with the least element of V

- elements are ordered by set inclusion, C

COMP 612: Type Inference December 6, 2002

Example of a Simple System

/T =V
complex
real
1 char cell
integer
logical
1L =9

COMP 612: Type Inference December 6, 2002

Defining Terms

COMP 612: Type Inference December 6, 2002

Defining Terms

having a type membership in the appropriate set

type system a small subset of all possible ideals
monomorphic type system each value belongs to at most one type
polymorphic type system = some values may belong to more than one type
T is a subtype of T T, C T,

untyped system the type system consists of only one set, V'

e language primitives allow constructing new types
- function definitions create new function types

- in an object-oriented language, class definitions create new
data types

COMP 612: Type Inference December 6, 2002

Basic Lambda Calculus

e akin to Turing Machine for programming languages

e ::= X a variable is a A expression
e ::= A(x) e functional abstraction of e
e ::= e(e) operator e applied to operand e

COMP 612: Type Inference December 6, 2002

Basic Lambda Calculus

e akin to Turing Machine for programming languages

e ::= X a variable is a A expression

e ::= A(x) e functional abstraction of e

e ::= e(e) operator e applied to operand e
id = A(x) x identity function

succ = A(x) x+1 successor function for integers

COMP 612: Type Inference December 6, 2002

Typed A-Calculus

succ = AN(x:Int) x+1

e the above definition has type Int — Int

e this typed A-calculus is sufficient to describe

monomorphic type systems

COMP 612: Type Inference December 6, 2002

Universal Quantification
Va id = A(x:a) x
e the above definition has type a — a

e universal quantification is needed to model

polymorphic functions (or generic types)
e ML infers polymorphic function types (modeled by V)

e restricted universal quantification models

Hindley-Milner type systems

e general universal quantification models

Girard-Reynolds type systems

COMP 612: Type Inference December 6, 2002

Types of Polymorphism

parametric
umversal
/ inclusion
ploymorphism
\ overloading
ad- hoc
coercion

COMP 612: Type Inference December 6, 2002

Existential Quantification
p: da.t(a)

e the above means that p has the type t(a) for some
type a

e cxistential quantification enables modeling

information hiding

- e.g., private members of classes in object-oriented languages

e combining universal and existential quantification

models parametric data abstraction

COMP 612: Type Inference December 6, 2002

Bounded Quantification
Via < T] e

e the above means that a ranges over all subtypes of T

in the scope of e

e this involves defining a < relation among types,

which models subtyping

e bounded quantification is necessary to model

inheritance (inclusion polymorphism) adequately

COMP 612: Type Inference December 6, 2002

Matlab Types for Tel. Languages

type = (7, p, 0, V) = <intrinsic type, rank, size, shape>

e array size needed to eliminate dynamic resizing

e intrinsic type needed to minimize computation

requirement
e shape useful in optimization

e all type information can be used to specialize

procedures

COMP 612: Type Inference December 6, 2002

Matlab Type Inference

Telescoping Languages Framework

e the Matlab type system just defined needs bounded

quantification to be modeled

- a procedure can always accept a larger array, thus, has

inclusion polymorphism

e this makes type inference in telescoping languages

context very hard
e cven for straight line code, the problem is N/P-hard

e need to infer all possible valid types to trigger

specialization

COMP 612: Type Inference December 6, 2002

Matlab Type Inference
McCosh’s propositional-logic approach

e static technique employing procedure-level

annotations

e clique-based solution efficient under certain

assumptions

e finds all valid type configurations

COMP 612: Type Inference December 6, 2002

Matlab Type Inference
McCosh’s propositional-logic approach

e static technique employing procedure-level

annotations

e clique-based solution efficient under certain

assumptions
e finds all valid type configurations

e imprecise for certain cases
- does not handle data-dependent types precisely
- type information not transferred across SSA ¢-functions

- needs extra support for dynamic inference

COMP 612: Type Inference December 6, 2002

Set-based Type Inference
Cormac Flanagan, PhD, Rice 1997

e types are explicitly represented as sets of values

e a specification phase builds constraints on the sets of

values for each expression in the program

e a solution phase solves the set constraints to

compute the least solution

e implemented for Scheme, and subsequently for Java

(MrSpidey)

COMP 612: Type Inference December 6, 2002

Set-based Type Inference
Cormac Flanagan, PhD, Rice 1997

e types are explicitly represented as sets of values

e a specification phase builds constraints on the sets of

values for each expression in the program

e a solution phase solves the set constraints to

compute the least solution

e implemented for Scheme, and subsequently for Java

(MrSpidey)

e cannot handle overloaded operators for type inference

COMP 612: Type Inference December 6, 2002

Dependent Types for Array Sizes
Hongwei Xi, Frank Pfenning, PLDI 1998

e dependent types defined in terms of an index

- e.g., a type can be defined as int (2)
e well-typed language (ML) and some annotations
e carry out the standard ML type inference
e then build constraints from indexed expressions

e constraints simplified to linear inqeualities to solve

COMP 612: Type Inference December 6, 2002

Dependent Types for Array Sizes
Hongwei Xi, Frank Pfenning, PLDI 1998

e dependent types defined in terms of an index

- e.g., a type can be defined as int (2)
e well-typed language (ML) and some annotations
e carry out the standard ML type inference
e then build constraints from indexed expressions
e constraints simplified to linear inqeualities to solve

e works in a limited context

COMP 612: Type Inference December 6, 2002

Type Inference for Matlab
Luiz DeRose, PhD, UIUC 1995

e based on traditional standard dataf

ow techniques

e type inference mapped to a flow inc

framework

ependent

e iterative solver used to arrive at a fixed point

COMP 612: Type Inference

December 6, 2002

Type Inference for Matlab
Luiz DeRose, PhD, UIUC 1995

e based on traditional standard dataflow techniques

e type inference mapped to a flow independent

framework
e iterative solver used to arrive at a fixed point

e termination considerations affect the analysis
- loops handled in an ad-hoc manner

- backward flow of information limited to one step

e the approach is inadequate for inter-procedural

analysis or recursion

COMP 612: Type Inference December 6, 2002

Conclusion

e high-level programming systems rapidly becoming

important for high-performance computing

e type inference necessary for effective compilation of

high-level languages

e language theory provides useful understanding of

issues related to type inference

e compiler writers must find engineering solutions for

practical languages

COMP 612: Type Inference December 6, 2002

References

. Luca Cardelli, Peter Wegner. On Understanding Types, Data

Abstraction, and Polymorphism. Computing Surveys 17(4),
471-522, December 1985.

. Luiz de Rose. Compiler Techniques for MATLAB Programs.
PhD Thesis, University of Illinois at Urbana-Champaign, 1995.

. Cormac Flanagan. Effective Static Debugging via Componential
Set-based Analysis. PhD Thesis, Rice University, 1997.

. Hongwei Xi, Frank Pfenning. Eliminating Array Bound

Checking Through Dependent Types. In Proceedings of the
ACM SIGPLAN PLDI Conference, pages 249-257, June 1998.

. Cheryl McCosh. Type-based Specialization in a Telescoping
Compiler for Matlab. MS Thesis, Rice University, 2002.

COMP 612: Type Inference December 6, 2002

Extra Slides

COMP 612: Type Inference December 6, 2002

Type Inference for Arrays

type = (7, p, 0, ¥) = <intrinsic type, rank, size, shape>
function [A, F] = pisar (xt, sin_num)

mcos = [];
for n = 1:sin num
vcos = [];
for i = 1:sin_num
vcos = [vcos cos(n*w_est(i))];
end
mcos = [mcos; vcos]

end

COMP 612: Type Inference December 6, 2002

Type Inference for Arrays

type = (7, p, 0, ¥) = <intrinsic type, rank, size, shape>
function [A, F] = pisar (xt, sin_num)

mcos = [];
for n = 1:sin num
vcos = [];
for i = 1:sin_num
vcos = [vcos cos(n*xw_est(i))];
end
mcos = [mcos; vcos]

end

(size can grow around a loop]

COMP 612: Type Inference December 6, 2002

Another Way to Grow

A = zeros(1,N);
A(end+1) = x;
for 1 = 1:2%N

A(i) = sqrt(i);

end

A(3, :) = [1:2%N];

AC:,:,2) = zeros(3, 2xN);

COMP 612: Type Inference

Arrays

December 6, 2002

Example 1

A = zeros(1l, N);

y = ...
A(y)

COMP 612: Type Inference December 6, 2002

COMP 612: Type Inference

Example 1

zeros (1, N);
4= <N>

December 6, 2002

COMP 612: Type Inference

Example 1

A, = zeros(1, N);
ot = <N>

December 6, 2002

Example 1

A, = zeros(1, N);

=gl = <N>

COMP 612: Type Inference

December 6, 2002

Example 1

=o' = <N>

—V1 =

=04 = max(o{, <yp>)
X1 =

=04 = max(o3, <v>)

COMP 612: Type Inference

allocate (A, o4");
A, = zeros(1, N);
A1(Y1) =
A(xp =

December 6, 2002

Slice Hoisting

e Insert o statements
e do SSA conversion
e identify the slice involved in computing the o values

e hoist the slice before the first use of the array

COMP 612: Type Inference December 6, 2002

Example 2

y = ...

B =1[...1;
x = min(B);

else

end

Alx) = ...

COMP 612: Type Inference December 6, 2002

Example 2

y —
A (y) =
g = <y >
C = .
if (c)
B =1[...1;
x = min(B); . .
e insert o functions
else
x = 10;
end
Alx) = ...
o4 = max(c4, <z >)

COMP 612: Type Inference December 6, 2002

Example 2

Yi = ...
Al(yl) = ...

JlA = <y1>

By = [... 1;

x1 = min(Bq); : .
e insert ¢ functions

e do SSA

else

>

\V)

I
-
o

COMP 612: Type Inference December 6, 2002

Example 2

=V1 = ...
Ay (y) = ...
—0i = <yp>
=cq =
—if (cq)
= By =10[...1];
= x1 = min(By); . .
elee e insert o functions
e do SSA
- *x2 =10 e identify slice
—end
—x3 = ¢(x1, X2)
A(xz) =

COMP 612: Type Inference December 6, 2002

Example 2

=>y1 = ...

—C1 = ...

=—1if (c1)

= By =[... 1;
= x1 = min(B1);
—else

= xo = 10;
—end

—x3 = ¢(x1, x2)
=o' = <y1>

o = max(oft, <zs>) e insert o functions
allocate(A, o4)); ° dO SSA
A (y1) = ...
if (c1) e identify slice
else o hOiSt SliCe
end
Ai(x3) = ...

COMP 612: Type Inference December 6, 2002

Example 3

Ax) = ...

for 1 = 1:N

A =[A f(i)];

end

COMP 612: Type Inference December 6, 2002

COMP 612: Type Inference

Example 3

A (x) =
0A=<:E>
for 1 = 1:N

e Insert o functions

December 6, 2002

Example 3

Al(Xl) — - o0 o
A _

o1 = <I1>
for i; = 1:N

Ay = ¢(A;, A3)
o3 = ¢(of, 03')
A3 = [AQ f(ll)],

e = gid < 1>

e Insert o functions

e do SSA

end

COMP 612: Type Inference December 6, 2002

Example 3

Al(Xl) = 55
:>O'i4 = 11>
—for 1; = 1:N

A2 = ¢ (Al ’ A3) . .
A A A e insert o functions
= 02 = ¢(0-1 s 03)

As = [Ay £(ip]; 0 doBSA
= off = of+<1> e identity slice
—end

COMP 612: Type Inference December 6, 2002

Example 3

=of' = <>

—for 1; = 1:N

= g4 = o(af', of")
= g4 = g+ <1>

—end
allocate(A, o04);
A(xy) = ... e insert o tunctions
for 1i; = 1:N e do SSA

C e identity slice
A2 = ¢(A1 ’ Ag)

‘A £(i0] - e hoist the slice
2 1/ 4

=
w
|

COMP 612: Type Inference December 6, 2002

Advantages of the Approach

e very simple and fast

- needs only SSA analysis and linear time

e it can leverage more advanced analyses, if available
- symbolic analysis

- dependence analysis
e subsumes inspector-executor style

e benefits from the telescoping languages framework
- procedure specialization

- procedure strength reduction

e handles most common cases

COMP 612: Type Inference December 6, 2002

Dependences Can Raise Roadblocks

ACL) = ...

x = f(A)
Ax) = ...

COMP 612: Type Inference December 6, 2002

Dependences Can Raise Roadblocks

ACL) = ...

g = <1>

x = f(A)
Ax) = ...

ot = max(oc?, <x>)

COMP 612: Type Inference December 6, 2002

Dependences Can Raise Roadblocks

ACl) = ...
=4 = <1>

—=x = f(A)

A(x) = ...
=04 = max(c?, <z>)

COMP 612: Type Inference December 6, 2002

Dependences Can Raise Roadblocks

ACl) = ...
o = <1>

—x = f(4)
A(x) = ...
=04 = max(c?, <z>)

(dependence blocks hoisting]

COMP 612: Type Inference December 6, 2002

