
Type Inference

Relevance to Telescoping Languages

Arun Chauhan

COMP 612 December 6, 2002

Questions

• Why do we need type inference?

• Can we leverage the type inference work in the

programming languages community?

COMP 612: Type Inference December 6, 2002

Towards High-Level Systems
for High-Performance Computing

• software engineering issues

- bigger, more complicated, applications

- fewer people to program in low-level languages

• programmer productivity

- shortage of programmers, in general

- domain-specific libraries reduce effort

• several recent solutions

- systems like POOMA, CCA, ROSE

- languages like Matlab, S+

COMP 612: Type Inference December 6, 2002

Towards High-Level Systems
for High-Performance Computing

• software engineering issues

- bigger, more complicated, applications

- fewer people to program in low-level languages

• programmer productivity

- shortage of programmers, in general

- domain-specific libraries reduce effort

• several recent solutions

- systems like POOMA, CCA, ROSE

- languages like Matlab, S+

COMP 612: Type Inference December 6, 2002

Towards High-Level Systems
for High-Performance Computing

• software engineering issues

- bigger, more complicated, applications

- fewer people to program in low-level languages

• programmer productivity

- shortage of programmers, in general

- domain-specific libraries reduce effort

• several recent solutions

- systems like POOMA, CCA, ROSE

- languages like Matlab, S+

COMP 612: Type Inference December 6, 2002

Towards High-Level Systems
for High-Performance Computing

• software engineering issues

- bigger, more complicated, applications

- fewer people to program in low-level languages

• programmer productivity

- shortage of programmers, in general

- domain-specific libraries reduce effort

• several recent solutions

- systems like POOMA, CCA, ROSE

- languages like Matlab, S+

COMP 612: Type Inference December 6, 2002

Towards High-Level Systems
for High-Performance Computing

• software engineering issues

- bigger, more complicated, applications

- fewer people to program in low-level languages

• programmer productivity

- shortage of programmers, in general

- domain-specific libraries reduce effort

• several recent solutions

- systems like POOMA, CCA, ROSE

- languages like Matlab, S+

COMP 612: Type Inference December 6, 2002

Towards High-Level Systems
for High-Performance Computing

• software engineering issues

- bigger, more complicated, applications

- fewer people to program in low-level languages

• programmer productivity

- shortage of programmers, in general

- domain-specific libraries reduce effort

• several recent solutions

- systems like POOMA, CCA, ROSE

- languages like Matlab, S+

COMP 612: Type Inference December 6, 2002

Telescoping Languages and
Type Inference

• telescoping languages is a strategy for compiling

high-level languages

• high-level languages are typically typeless or weakly

typed

• type information is needed for efficient mapping onto

hardware

• type information is needed for optimizations

- users often implicitly intend multiple types

- type information enables other optimizations

COMP 612: Type Inference December 6, 2002

What is a Type?

• the universe, V , is the set of all values

• a subset, obeying certain properties, is an ideal

• a type is an ideal

- there are other more complicated views of types as well

• the set of all types forms a lattice

- > is the set of all values, V

- ⊥ is a singleton with the least element of V

- elements are ordered by set inclusion, ⊂

COMP 612: Type Inference December 6, 2002

What is a Type?

• the universe, V , is the set of all values

• a subset, obeying certain properties, is an ideal

• a type is an ideal

- there are other more complicated views of types as well

• the set of all types forms a lattice

- > is the set of all values, V

- ⊥ is a singleton with the least element of V

- elements are ordered by set inclusion, ⊂

COMP 612: Type Inference December 6, 2002

What is a Type?

• the universe, V , is the set of all values

• a subset, obeying certain properties, is an ideal

• a type is an ideal

- there are other more complicated views of types as well

• the set of all types forms a lattice

- > is the set of all values, V

- ⊥ is a singleton with the least element of V

- elements are ordered by set inclusion, ⊂

COMP 612: Type Inference December 6, 2002

What is a Type?

• the universe, V , is the set of all values

• a subset, obeying certain properties, is an ideal

• a type is an ideal

- there are other more complicated views of types as well

• the set of all types forms a lattice

- > is the set of all values, V

- ⊥ is a singleton with the least element of V

- elements are ordered by set inclusion, ⊂

COMP 612: Type Inference December 6, 2002

What is a Type?

• the universe, V , is the set of all values

• a subset, obeying certain properties, is an ideal

• a type is an ideal

- there are other more complicated views of types as well

• the set of all types forms a lattice

- > is the set of all values, V

- ⊥ is a singleton with the least element of V

- elements are ordered by set inclusion, ⊂

COMP 612: Type Inference December 6, 2002

Example of a Simple System

> = V

⊥ = φ

complex

real

integer

logical

char cell

COMP 612: Type Inference December 6, 2002

Defining Terms

having a type membership in the appropriate set

type system a small subset of all possible ideals

monomorphic type system each value belongs to at most one type

polymorphic type system some values may belong to more than one type

T1 is a subtype of T2 T1 ⊆ T2

untyped system the type system consists of only one set, V

• language primitives allow constructing new types

- function definitions create new function types

- in an object-oriented language, class definitions create new

data types

COMP 612: Type Inference December 6, 2002

Defining Terms

having a type membership in the appropriate set

type system a small subset of all possible ideals

monomorphic type system each value belongs to at most one type

polymorphic type system some values may belong to more than one type

T1 is a subtype of T2 T1 ⊆ T2

untyped system the type system consists of only one set, V

• language primitives allow constructing new types

- function definitions create new function types

- in an object-oriented language, class definitions create new

data types

COMP 612: Type Inference December 6, 2002

Basic Lambda Calculus

• akin to Turing Machine for programming languages

e ::= x a variable is a λ expression

e ::= λ(x) e functional abstraction of e

e ::= e(e) operator e applied to operand e

id = λ(x) x identity function

succ = λ(x) x+1 successor function for integers

COMP 612: Type Inference December 6, 2002

Basic Lambda Calculus

• akin to Turing Machine for programming languages

e ::= x a variable is a λ expression

e ::= λ(x) e functional abstraction of e

e ::= e(e) operator e applied to operand e

id = λ(x) x identity function

succ = λ(x) x+1 successor function for integers

COMP 612: Type Inference December 6, 2002

Typed λ-Calculus

succ = λ(x:Int) x+1

• the above definition has type Int → Int

• this typed λ-calculus is sufficient to describe

monomorphic type systems

COMP 612: Type Inference December 6, 2002

Universal Quantification

∀a id = λ(x:a) x

• the above definition has type a → a

• universal quantification is needed to model

polymorphic functions (or generic types)

• ML infers polymorphic function types (modeled by ∀)

• restricted universal quantification models

Hindley-Milner type systems

• general universal quantification models

Girard-Reynolds type systems

COMP 612: Type Inference December 6, 2002

Types of Polymorphism

ploymorphism

universal

ad-hoc

parametric

inclusion

overloading

coercion

COMP 612: Type Inference December 6, 2002

Existential Quantification

p: ∃a.t(a)

• the above means that p has the type t(a) for some

type a

• existential quantification enables modeling

information hiding

- e.g., private members of classes in object-oriented languages

• combining universal and existential quantification

models parametric data abstraction

COMP 612: Type Inference December 6, 2002

Bounded Quantification

∀[a ≤ T] e

• the above means that a ranges over all subtypes of T

in the scope of e

• this involves defining a ≤ relation among types,

which models subtyping

• bounded quantification is necessary to model

inheritance (inclusion polymorphism) adequately

COMP 612: Type Inference December 6, 2002

Matlab Types for Tel. Languages
type = (τ , ρ, σ, ψ) = <intrinsic type, rank, size, shape>

• array size needed to eliminate dynamic resizing

• intrinsic type needed to minimize computation

requirement

• shape useful in optimization

• all type information can be used to specialize

procedures

COMP 612: Type Inference December 6, 2002

Matlab Type Inference
Telescoping Languages Framework

• the Matlab type system just defined needs bounded

quantification to be modeled

- a procedure can always accept a larger array, thus, has

inclusion polymorphism

• this makes type inference in telescoping languages

context very hard

• even for straight line code, the problem is NP-hard

• need to infer all possible valid types to trigger

specialization

COMP 612: Type Inference December 6, 2002

Matlab Type Inference
McCosh’s propositional-logic approach

• static technique employing procedure-level

annotations

• clique-based solution efficient under certain

assumptions

• finds all valid type configurations

• imprecise for certain cases

- does not handle data-dependent types precisely

- type information not transferred across SSA φ-functions

- needs extra support for dynamic inference

COMP 612: Type Inference December 6, 2002

Matlab Type Inference
McCosh’s propositional-logic approach

• static technique employing procedure-level

annotations

• clique-based solution efficient under certain

assumptions

• finds all valid type configurations

• imprecise for certain cases

- does not handle data-dependent types precisely

- type information not transferred across SSA φ-functions

- needs extra support for dynamic inference

COMP 612: Type Inference December 6, 2002

Set-based Type Inference
Cormac Flanagan, PhD, Rice 1997

• types are explicitly represented as sets of values

• a specification phase builds constraints on the sets of

values for each expression in the program

• a solution phase solves the set constraints to

compute the least solution

• implemented for Scheme, and subsequently for Java

(MrSpidey)

• cannot handle overloaded operators for type inference

COMP 612: Type Inference December 6, 2002

Set-based Type Inference
Cormac Flanagan, PhD, Rice 1997

• types are explicitly represented as sets of values

• a specification phase builds constraints on the sets of

values for each expression in the program

• a solution phase solves the set constraints to

compute the least solution

• implemented for Scheme, and subsequently for Java

(MrSpidey)

• cannot handle overloaded operators for type inference

COMP 612: Type Inference December 6, 2002

Dependent Types for Array Sizes
Hongwei Xi, Frank Pfenning, PLDI 1998

• dependent types defined in terms of an index

- e.g., a type can be defined as int(2)

• well-typed language (ML) and some annotations

• carry out the standard ML type inference

• then build constraints from indexed expressions

• constraints simplified to linear inqeualities to solve

• works in a limited context

COMP 612: Type Inference December 6, 2002

Dependent Types for Array Sizes
Hongwei Xi, Frank Pfenning, PLDI 1998

• dependent types defined in terms of an index

- e.g., a type can be defined as int(2)

• well-typed language (ML) and some annotations

• carry out the standard ML type inference

• then build constraints from indexed expressions

• constraints simplified to linear inqeualities to solve

• works in a limited context

COMP 612: Type Inference December 6, 2002

Type Inference for Matlab
Luiz DeRose, PhD, UIUC 1995

• based on traditional standard dataflow techniques

• type inference mapped to a flow independent

framework

• iterative solver used to arrive at a fixed point

• termination considerations affect the analysis

- loops handled in an ad-hoc manner

- backward flow of information limited to one step

• the approach is inadequate for inter-procedural

analysis or recursion

COMP 612: Type Inference December 6, 2002

Type Inference for Matlab
Luiz DeRose, PhD, UIUC 1995

• based on traditional standard dataflow techniques

• type inference mapped to a flow independent

framework

• iterative solver used to arrive at a fixed point

• termination considerations affect the analysis

- loops handled in an ad-hoc manner

- backward flow of information limited to one step

• the approach is inadequate for inter-procedural

analysis or recursion

COMP 612: Type Inference December 6, 2002

Conclusion

• high-level programming systems rapidly becoming

important for high-performance computing

• type inference necessary for effective compilation of

high-level languages

• language theory provides useful understanding of

issues related to type inference

• compiler writers must find engineering solutions for

practical languages

COMP 612: Type Inference December 6, 2002

References

1. Luca Cardelli, Peter Wegner. On Understanding Types, Data

Abstraction, and Polymorphism. Computing Surveys 17(4),

471–522, December 1985.

2. Luiz de Rose. Compiler Techniques for MATLAB Programs .

PhD Thesis, University of Illinois at Urbana-Champaign, 1995.

3. Cormac Flanagan. Effective Static Debugging via Componential

Set-based Analysis . PhD Thesis, Rice University, 1997.

4. Hongwei Xi, Frank Pfenning. Eliminating Array Bound

Checking Through Dependent Types. In Proceedings of the

ACM SIGPLAN PLDI Conference, pages 249–257, June 1998.

5. Cheryl McCosh. Type-based Specialization in a Telescoping

Compiler for Matlab. MS Thesis, Rice University, 2002.

COMP 612: Type Inference December 6, 2002

Extra Slides

COMP 612: Type Inference December 6, 2002

Type Inference for Arrays
type = (τ , ρ, σ, ψ) = <intrinsic type, rank, size, shape>

function [A, F] = pisar (xt, sin num)

...

mcos = [];

for n = 1:sin num

vcos = [];

for i = 1:sin num

vcos = [vcos cos(n*w est(i))];

end

mcos = [mcos; vcos]

end

...

size can grow around a loop

COMP 612: Type Inference December 6, 2002

Type Inference for Arrays
type = (τ , ρ, σ, ψ) = <intrinsic type, rank, size, shape>

function [A, F] = pisar (xt, sin num)

...

mcos = [];

for n = 1:sin num

vcos = [];

for i = 1:sin num

vcos = [vcos cos(n*w est(i))];

end

mcos = [mcos; vcos]

end

...

size can grow around a loop

COMP 612: Type Inference December 6, 2002

Another Way to Grow Arrays

A = zeros(1,N);

A(end+1) = x;

for i = 1:2*N

A(i) = sqrt(i);

end

...

A(3, :) = [1:2*N];

...

A(:,:,2) = zeros(3, 2*N);

...

COMP 612: Type Inference December 6, 2002

Example 1

A

1

= zeros(1, N);

⇒σ1
A = <N>

⇒

y

1

= ...

A

1

(y

1

) = ...

⇒σ2
A = max(σ1

A, <y1>)

⇒

x

1

= ...

A

1

(x

1

) = ...

⇒σ3
A = max(σ2

A, <x1>)

COMP 612: Type Inference December 6, 2002

Example 1

A

1

= zeros(1, N);

⇒

σ

1

A = <N>

⇒

y

1

= ...

A

1

(y

1

) = ...

⇒

σ

2

A = max(σ

1

A, <y

1

>)

⇒

x

1

= ...

A

1

(x

1

) = ...

⇒

σ

3

A = max(σ

2

A, <x

1

>)

COMP 612: Type Inference December 6, 2002

Example 1

A1 = zeros(1, N);

⇒

σ1
A = <N>

⇒

y1 = ...

A1(y1) = ...

⇒

σ2
A = max(σ1

A, <y1>)

⇒

x1 = ...

A1(x1) = ...

⇒

σ3
A = max(σ2

A, <x1>)

COMP 612: Type Inference December 6, 2002

Example 1

A1 = zeros(1, N);

⇒σ1
A = <N>

⇒y1 = ...

A1(y1) = ...

⇒σ2
A = max(σ1

A, <y1>)

⇒x1 = ...

A1(x1) = ...

⇒σ3
A = max(σ2

A, <x1>)

COMP 612: Type Inference December 6, 2002

Example 1

⇒σ1
A = <N>

⇒y1 = ...

⇒σ2
A = max(σ1

A, <y1>)

⇒x1 = ...

⇒σ3
A = max(σ2

A, <x1>)

allocate(A, σ3
A);

A1 = zeros(1, N);

A1(y1) = ...

A1(x1) = ...

COMP 612: Type Inference December 6, 2002

Slice Hoisting

• insert σ statements

• do SSA conversion

• identify the slice involved in computing the σ values

• hoist the slice before the first use of the array

COMP 612: Type Inference December 6, 2002

Example 2

⇒

y

1

= ...

A

1

(y

1

) = ...

⇒σ1
A = <y1>

⇒

c

1

= ...

⇒

if (c

1

)

...

⇒

B

1

= [...];

⇒

x

1

= min(B

1

);

⇒

else

...

⇒

x

2

= 10;

⇒

end

⇒x3 = φ(x1, x2)

A

1

(x

3

) = ...

⇒σ2
A = max(σ1

A, <x3>)

• insert σ functions

• do SSA

• identify slice

COMP 612: Type Inference December 6, 2002

Example 2

⇒

y

1

= ...

A

1

(y

1

) = ...

⇒

σ

1

A = <y

1

>

⇒

c

1

= ...

⇒

if (c

1

)

...

⇒

B

1

= [...];

⇒

x

1

= min(B

1

);

⇒

else

...

⇒

x

2

= 10;

⇒

end

⇒x3 = φ(x1, x2)

A

1

(x

3

) = ...

⇒

σ

2

A = max(σ

1

A, <x

3

>)

• insert σ functions

• do SSA

• identify slice

COMP 612: Type Inference December 6, 2002

Example 2

⇒

y1 = ...

A1(y1) = ...

⇒

σ1
A = <y1>

⇒

c1 = ...

⇒

if (c1)

...

⇒

B1 = [...];

⇒

x1 = min(B1);

⇒

else

...

⇒

x2 = 10;

⇒

end

⇒

x3 = φ(x1, x2)

A1(x3) = ...

⇒

σ2
A = max(σ1

A, <x3>)

• insert σ functions

• do SSA

• identify slice

COMP 612: Type Inference December 6, 2002

Example 2
⇒y1 = ...

A1(y1) = ...

⇒σ1
A = <y1>

⇒c1 = ...

⇒if (c1)

...

⇒ B1 = [...];

⇒ x1 = min(B1);

⇒else

...

⇒ x2 = 10;

⇒end

⇒x3 = φ(x1, x2)

A1(x3) = ...

⇒σ2
A = max(σ1

A, <x3>)

• insert σ functions

• do SSA

• identify slice

COMP 612: Type Inference December 6, 2002

Example 2
⇒y1 = ...

⇒c1 = ...

⇒if (c1)

⇒ B1 = [...];

⇒ x1 = min(B1);

⇒else

⇒ x2 = 10;

⇒end

⇒x3 = φ(x1, x2)

⇒σ1
A = <y1>

⇒σ2
A = max(σ1

A, <x3>)

allocate(A, σ3
A);

A1(y1) = ...

if (c1)

...

else

...

end

A1(x3) = ...

• insert σ functions

• do SSA

• identify slice

• hoist slice

COMP 612: Type Inference December 6, 2002

Example 3

A

1

(x

1

) = ...

⇒σ1
A = <x1>

⇒

for i

1

= 1:N

...

A2 = φ(A1, A3)

⇒ σ2
A = φ(σ1

A, σ3
A)

A

3

= [A

2

f(i

1

)];

⇒ σ3
A = σ2

A+ <1>

⇒

end

• insert σ functions

• do SSA

• identify slice

COMP 612: Type Inference December 6, 2002

Example 3

A

1

(x

1

) = ...

⇒

σ

1

A = <x

1

>

⇒

for i

1

= 1:N

...

A2 = φ(A1, A3)

⇒ σ2
A = φ(σ1

A, σ3
A)

A

3

= [A

2

f(i

1

)];

⇒

σ

3

A = σ

2

A+ <1>

⇒

end

• insert σ functions

• do SSA

• identify slice

COMP 612: Type Inference December 6, 2002

Example 3

A1(x1) = ...

⇒

σ1
A = <x1>

⇒

for i1 = 1:N

...

A2 = φ(A1, A3)

⇒

σ2
A = φ(σ1

A, σ3
A)

A3 = [A2 f(i1)];

⇒

σ3
A = σ2

A+ <1>

⇒

end

• insert σ functions

• do SSA

• identify slice

COMP 612: Type Inference December 6, 2002

Example 3

A1(x1) = ...

⇒σ1
A = <x1>

⇒for i1 = 1:N

...

A2 = φ(A1, A3)

⇒ σ2
A = φ(σ1

A, σ3
A)

A3 = [A2 f(i1)];

⇒ σ3
A = σ2

A+ <1>

⇒end

• insert σ functions

• do SSA

• identify slice

COMP 612: Type Inference December 6, 2002

Example 3

⇒σ1
A = <x1>

⇒for i1 = 1:N

⇒ σ2
A = φ(σ1

A, σ3
A)

⇒ σ3
A = σ2

A+ <1>

⇒end

allocate(A, σ3
A);

A1(x1) = ...

for i1 = 1:N

...

A2 = φ(A1, A3)

A3 = [A2 f(i1)];

end

• insert σ functions

• do SSA

• identify slice

• hoist the slice

COMP 612: Type Inference December 6, 2002

Advantages of the Approach

• very simple and fast

- needs only SSA analysis and linear time

• it can leverage more advanced analyses, if available

- symbolic analysis

- dependence analysis

• subsumes inspector-executor style

• benefits from the telescoping languages framework

- procedure specialization

- procedure strength reduction

• handles most common cases

COMP 612: Type Inference December 6, 2002

Dependences Can Raise Roadblocks

A(1) = ...

⇒σA = <1>

...

⇒

x = f(A)

A(x) = ...

⇒σA = max(σA, <x>)

...

dependence blocks hoisting

COMP 612: Type Inference December 6, 2002

Dependences Can Raise Roadblocks

A(1) = ...

⇒

σA = <1>

...

⇒

x = f(A)

A(x) = ...

⇒

σA = max(σA, <x>)

...

dependence blocks hoisting

COMP 612: Type Inference December 6, 2002

Dependences Can Raise Roadblocks

A(1) = ...

⇒σA = <1>

...

⇒x = f(A)

A(x) = ...

⇒σA = max(σA, <x>)

...

dependence blocks hoisting

COMP 612: Type Inference December 6, 2002

Dependences Can Raise Roadblocks

A(1) = ...

⇒σA = <1>

...

⇒x = f(A)

A(x) = ...

⇒σA = max(σA, <x>)

...

dependence blocks hoisting

COMP 612: Type Inference December 6, 2002

