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Motivation
" Shortage of programmers

� increasing application demands

� rapidly changing architectures

� need programmers for scientific applications too

" High Performance programming is hard
� increasingly a specialized activity

� more complex architectures

� more high performance applications
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One Solution

" Make end−users application developers

� language should be high level

� should provide domain−specific features

� must have effective and efficient compilers

" Scripting systems like MATLAB exist
� very popular with end−users

� lack effective and efficient compilers
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Existing Approaches:
based on transforming to lower level languages
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" (potentially) high compilation time
" expert knowledge about libraries lost
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Telescoping Languages Approach
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Telescoping Languages Approach
write library procedures

annotate library procedures

result = matrix_op (input_1, input_2, step)

"expect step to be non−zero most of the times"

extensively compile library routines
result = matrix_op_non_zero_step (...)

write scripts using libraries
r = matrix_op (A, B, 1)

pick the most optimized version 
r = matrix_op_non_zero_step (...)

library writer

library compiler

end user

script compiler
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Application to DSP

" Digital Signal Processing is an important 
application area

" Matlab extremely popular with DSP 
researchers

" Researchers frequently rewrite their code in 
C / C++
� to fit it onto embedded systems

� to be accepted in their community
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Study of DSP Applications

" Real DSP applications used in the ECE dept.

" Long running (several hours)

" Transformed by hand

" Run under Matlab environment
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Relevant Optimizations
" Vectorization

" Common sub−expression elimination

" Array pre−allocation

� using the zeros call

Novel Optimizations
" Procedure Strength Reduction

" Procedure Vectorization
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Strength Reduction

for i = n
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Strength Reduction

for i = n
0
:n

0
+N

  ....
  x = i * c;
  y = g(x);
  ....
end

x = n
0
 * c;

for i = n
0
:n

0
+N

  ....
  y = g(x);
  x = x + c;
  ....
end
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Procedure Strength Reduction
" Motivation

� procedure calls inside loop

� several arguments typically invariant

" Key
� move invariant computations into init part

� do incremental computations inside loop
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Procedure Strength Reduction
" Motivation

� procedure calls inside loop

� several arguments typically invariant

" Key
� move invariant computations into init part

� do incremental computations inside loop

for i = 1:N
     f (c

1
, c

2
, i, c

3
)

end

f_init (c
1
, c

2
, c

3
)

for i = 1:N
     f_iter (i)
end
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" Motivation

� vectorized operations more "optimizable"
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Procedure Vectorization
" Motivation

� vectorized operations more "optimizable"

� expensive library call boundaries

" Key
� interchange loops and procedure calls

for i = 1:N
     f (c

1
, c

2
, i, A[i])

end
 ....
function f (a

1
, a

2
, a

3
, a

4
)

    <body of f>

f_vect (c
1
, c

2
, [i:N], A[1:N])

 ....
function f_vect (a

1
, a

2
, a

3
, a

4
)

  for i = 1:N
      <body of f>
  end
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Evaluation Results:
Procedure Strength Reduction
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ctss:
Procedure Strength Reduction
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ctss:
Procedure Vectorization
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outage_lb_fad:
Effect of Compilation 
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Conclusion
" Telescoping Languages approach

� libraries optimized as primitive operations

� fast compilation of user scripts

" Application to DSP programs
� identified relevant optimizations

" vectorization, common sub−expression elimination, 
pre−allocation

� two novel optimizations
" procedure strength reduction and procedure 

vectorization
" 10% − 50% application level gain


