
Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Optimizing Strategies for
Telescoping Languages:

 Procedure Strength Reduction
 and

 Procedure Vectorization

presentation by

Arun Chauhan

joint work with

Ken Kennedy

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Motivation
" Shortage of programmers

� increasing application demands

� rapidly changing architectures

� need programmers for scientific applications too

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Motivation
" Shortage of programmers

� increasing application demands

� rapidly changing architectures

� need programmers for scientific applications too

" High Performance programming is hard
� increasingly a specialized activity

� more complex architectures

� more high performance applications

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

One Solution

" Make end−users application developers

� language should be high level

� should provide domain−specific features

� must have effective and efficient compilers

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

One Solution

" Make end−users application developers

� language should be high level

� should provide domain−specific features

� must have effective and efficient compilers

" Scripting systems like MATLAB exist
� very popular with end−users

� lack effective and efficient compilers

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Existing Approaches:
based on transforming to lower level languages

component
library

user
library

script

intermediate
codeTranslator Code

Generator

Gobal
Optimizer

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Existing Approaches:
based on transforming to lower level languages

component
library

user
library

script

intermediate
codeTranslator Code

Generator

Gobal
Optimizer

" (potentially) high compilation time
" expert knowledge about libraries lost

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Telescoping Languages Approach

library writer

library compiler

end user

script compiler

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Telescoping Languages Approach
write library procedures

annotate library procedures

result = matrix_op (input_1, input_2, step)

"expect step to be non−zero most of the times"

library writer

library compiler

end user

script compiler

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Telescoping Languages Approach
write library procedures

annotate library procedures

result = matrix_op (input_1, input_2, step)

"expect step to be non−zero most of the times"

extensively compile library routines
result = matrix_op_non_zero_step (...)

library writer

library compiler

end user

script compiler

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Telescoping Languages Approach
write library procedures

annotate library procedures

result = matrix_op (input_1, input_2, step)

"expect step to be non−zero most of the times"

extensively compile library routines
result = matrix_op_non_zero_step (...)

write scripts using libraries
r = matrix_op (A, B, 1)

library writer

library compiler

end user

script compiler

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Telescoping Languages Approach
write library procedures

annotate library procedures

result = matrix_op (input_1, input_2, step)

"expect step to be non−zero most of the times"

extensively compile library routines
result = matrix_op_non_zero_step (...)

write scripts using libraries
r = matrix_op (A, B, 1)

pick the most optimized version
r = matrix_op_non_zero_step (...)

library writer

library compiler

end user

script compiler

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Telescoping Languages Approach

library

annotations language
builder

enahanced
language
compiler

user
script

optimized
object
code

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Telescoping Languages Approach

library

annotations language
builder

enahanced
language
compiler

user
script

optimized
object
code

annotations
language
builder

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Application to DSP

" Digital Signal Processing is an important
application area

" Matlab extremely popular with DSP
researchers

" Researchers frequently rewrite their code in
C / C++
� to fit it onto embedded systems

� to be accepted in their community

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Study of DSP Applications

" Real DSP applications used in the ECE dept.

" Long running (several hours)

" Transformed by hand

" Run under Matlab environment

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Relevant Optimizations
" Vectorization

" Common sub−expression elimination

" Array pre−allocation

� using the zeros call

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Relevant Optimizations
" Vectorization

" Common sub−expression elimination

" Array pre−allocation

� using the zeros call

Novel Optimizations
" Procedure Strength Reduction

" Procedure Vectorization

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Strength Reduction

for i = n
0
:n

0
+N

 x = i * c;
 y = g(x);

end

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Strength Reduction

for i = n
0
:n

0
+N

 x = i * c;
 y = g(x);

end

x = n
0
 * c;

for i = n
0
:n

0
+N

 y = g(x);
 x = x + c;

end

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Procedure Strength Reduction
" Motivation

� procedure calls inside loop

� several arguments typically invariant

" Key
� move invariant computations into init part

� do incremental computations inside loop

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Procedure Strength Reduction
" Motivation

� procedure calls inside loop

� several arguments typically invariant

" Key
� move invariant computations into init part

� do incremental computations inside loop

for i = 1:N
 f (c

1
, c

2
, i, c

3
)

end

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Procedure Strength Reduction
" Motivation

� procedure calls inside loop

� several arguments typically invariant

" Key
� move invariant computations into init part

� do incremental computations inside loop

for i = 1:N
 f (c

1
, c

2
, i, c

3
)

end

f_init (c
1
, c

2
, c

3
)

for i = 1:N
 f_iter (i)
end

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Procedure Vectorization
" Motivation

� vectorized operations more "optimizable"

� expensive library call boundaries

" Key
� interchange loops and procedure calls

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Procedure Vectorization
" Motivation

� vectorized operations more "optimizable"

� expensive library call boundaries

" Key
� interchange loops and procedure calls

for i = 1:N
 f (c

1
, c

2
, i, A[i])

end

function f (a

1
, a

2
, a

3
, a

4
)

 <body of f>

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Procedure Vectorization
" Motivation

� vectorized operations more "optimizable"

� expensive library call boundaries

" Key
� interchange loops and procedure calls

for i = 1:N
 f (c

1
, c

2
, i, A[i])

end

function f (a

1
, a

2
, a

3
, a

4
)

 <body of f>

f_vect (c
1
, c

2
, [i:N], A[1:N])

function f_vect (a

1
, a

2
, a

3
, a

4
)

 for i = 1:N
 <body of f>
 end

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Evaluation Results:
Procedure Strength Reduction

ctss chan_est outage_lb_fad
0

0.5

1

1.5

2

2.5
sp

ee
du

p

speedups with procedure strength reduction

normalized orignal
optimized

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

ctss:
Procedure Strength Reduction

jakes_mp1 newcodesig codesdhd whole program
0

0.5

1

1.5

2

2.5

3

3.5

sp
ee

du
p

speedups for top−level procedures in ctss relative to unoptimized

0 5 10 15 20 25

original

optimized

total time (in thousands of seconds)

distribution of the total execution time among top−level procedures in ctss

jakes_mp1
newcodesig
codesdhd

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

ctss:
Procedure Vectorization

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
sp

ee
du

p
(f

or
 1

00
 it

er
at

io
ns

)
procedure vectorization of jakes_mp1

normalized original
optimized

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

outage_lb_fad:
Effect of Compilation

interpreted compiled stand−alone
0

50

100

150

200

250

300

350

400

450
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

effect of compilation on ser_test_fad

original
optimized

Optimizing Strategies for Telescoping LanguagesICS, June 18th, 2001, Sorrento, Italy

Conclusion
" Telescoping Languages approach

� libraries optimized as primitive operations

� fast compilation of user scripts

" Application to DSP programs
� identified relevant optimizations

" vectorization, common sub−expression elimination,
pre−allocation

� two novel optimizations
" procedure strength reduction and procedure

vectorization
" 10% − 50% application level gain

