
$ ([HFXWL 0RGH
�
IRU

,UUHJXOD $SSOLFDWLRQV

$U � � &KDX � � �5L ��� 8QLYHUVLW\�

.DWKOH � � .QRE � �&RP �
	�� &RPSXWH � &RUS�

Workshop on
Compilers for Parallel Computation - 2000

January 4-7, Aussois, France

CPC 2000, Aussois, France

0RWLYDWLRQ

Parallelization is hard
It is even harder for irregular applications

Most popular current solutions are
inadequate
message passing: efficient, but hard

shared memory: easy, but could be inefficient

We need an intermediate solution

CPC 2000, Aussois, France

:KD Z ZDQ GR"

For irregular applications

On heterogeneous environments

$XWRPDWL
�
3DUDOOHOL]DWLR � IURP

�
+LJK�/HYH

�
GHVFULSWLRQ

CPC 2000, Aussois, France

+LJK�/HYH
�
$SSURDFK

Develop Compiler Technology to recognize
and handle irregular applications

Develop run-time support system

Increasingly, the distinction is fading. We could view
the run-time system as dynamic compilation, in some cases.

CPC 2000, Aussois, France

.H ,GHDV

Decompose data domain
⇒ data items

Partition computation
⇒ work-orders

Work Queue based execution
“Data Repository” for shared data

global naming scheme for data items

CPC 2000, Aussois, France

2YHUDO
�
$UFKLWHFWXUH

W1 W2 W3 W4

Enabler

Data Repository

Parameterized Code
Application

Run-time System

Finished WorkReady Queue

CPC 2000, Aussois, France

.H &KDUDFWHULVWLFV

Load balancing through workers
Tuple-based global naming for blocked data
Read-only data

avoids coherency problem
eliminates all but true dependencies

Reference count based garbage collection

CPC 2000, Aussois, France

The problem:
Given symmetric positive definite matrix, M,
compute L such that L.LT = M.

Sequential algorithm:

&KROHVN)DFWRUL]DWLRQ

A = √A
B = B / A
C = C − B.BT

A

B
C

A

B
C

CPC 2000, Aussois, France

%ORFN &KROHVN\

A = Cholesky(A)
B = B × A-1

C = C − B × BT

A

B C

Opportunities
for
Parallelization

CPC 2000, Aussois, France

3DUDOOHOLOL]L &KROHVN\

register application dependent information
tuple size, iteration vector size, etc.

register three types of code:
input thread: initial data and work orders
output thread: gather final results and display

executors: various computations

run-time system executes a virtual data-flow
computation

CPC 2000, Aussois, France

3DUDOOH
�
&KROHVN\

Executor A:
input: work order WO
{
 read_inputs (WO, matrix A);
 B = Cholesky(A);
 let i = row & col number of block A;
 let d = data-item ID for B;
 for r = i+1, NUM_BLOCKS do
 let w = work-order for block i;
 insert work-order (w, d, 2);
 endfor
 write data-item (B, d, NUM_BLOCKS-i);
}

A

CPC 2000, Aussois, France

The problem:
Given N bodies in a bounded box, compute

their evolution in time based on mutual
interactions.

0ROHFXOD '\QDPLFV

for t = 1, MAX_TIME_STEPS do
 if (mod(t,K) == 0)
 re_compute_neighbors;
 endif
 compute_mutual_forces;
 update_particle_attributes;
 compute_system_KE;
endfor

CPC 2000, Aussois, France

for t = 1, MAX_TIME_STEPS do
 if (mod(t,K) == 0)
 re_compute_neighbors;
 endif
 compute_mutual_forces;
 update_particle_attributes;
 compute_system_KE;
endfor

3DUDOOH
�
0ROHFXOD '\QDPLFV

work queue

workers

interactions ⇒ work orders
computations ⇒ executors

CPC 2000, Aussois, France

&XUUHQ 6WDWXV

Two applications validate our system
Performance tuning in progress

application level

system level

Porting other applications to the model
e.g., hierarchical n-body

Refining the model in the process

CPC 2000, Aussois, France

5HODWH :RUN

LINDA, from Yale
tuple spaces similar; but different focus

SMARTS, from LANL
iteration level scheduling
no mechanism for remote data-naming

CHAOS, from UMCP
inspector-executor model

CPC 2000, Aussois, France

)XWXU 'LUHFWLRQV

Hierarchical design
scalability
locality

Heterogeneous environments
Locality awareness
Compiler technology

CPC 2000, Aussois, France

&RQFOXVLRQ

An Execution Model for irregular apps
dynamic load balancing
scalable in space usage

avoids coherency & dependency problems
fine granularity minimizes false sharing

Past experience shows promise
Stay tuned:
http://www.cs.rice.edu/~achauhan/

