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Computing as a Fundamental Science

“Computing is as fundamental as the physical, life, 
and social sciences.”

Peter J. Denning and Paul S. Rosenbloom
Communications of the ACM, Sep 2009

“What our community should really aim for is the 
development of a curriculum that turns our subject 
into the fourth R—as in ’rogramming—of our 
education systems.
…
A form of mathematics can be used as a full- fledged 
programming language, just like Turing Machines.”

Matthias Felleisen and Shriram Krishnamurthy
Communications of the ACM, Jul 2009
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Computing is Inexpensive

“I would rather spend 10 minutes coding and letting 
the program run overnight, than spend weeks 
writing and debugging to be able to run the 
program in 10 minutes.”

A DSP researcher in EE
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MATLAB
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MATLAB: Ease of Use
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MATLAB in a Nutshell

• C-like syntax

• x = 1+1;

• y = 2*x + 100;

• Array operations

• C = A*B;

• C = A .* B;

• IF, FOR, WHILE,  SWITCH statements
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Motivation: NASMG

number of array dimensions. If a variable is a scalar then
S = (1, 1), following MATLAB convention. Note that
there is no standard terminology for types, and many
authors prefer to use the term “intrinsic” for base type,
and “shape” for array size.

The benefits of having the type information at compile
time are well known [16], [1], [7], [14], [10], [13], [3].
Normally, MATLAB (as well as Octave) carries the run-
time type information for each variable, along with its
data, in an encapsulating structure, called mx_array
(octave_value in the case of Octave). Since the
MATLAB operators are often heavily overloaded, the
interpreter must use the type information of the operands,
at run-time, to dynamically dispatch the right underlying
procedure for the given operands. For example, the *
operator will need to dispatch a matrix multiplier if the
operands are two-dimensional arrays with compatible
sizes, a scalar multiplier when both the operands are
scalars, or an array scaling procedure if one of the
operands is scalar and the other an array. This dynamic
type disambiguation (inference) is a major source of in-
terpretive overhead. If the types were known in advance,
the dynamic dispatch could be replaced with direct calls
to the more specialized procedures. Moreover, once the
types are known several other optimizations become
possible, such as recognizing code patterns, vectorization
of loops [3], better mapping of high-level operations to
the underlying libraries [13], and more efficient handling
of array subscripts.

The last one has not been reported in earlier studies
but has been found by us to be a critical source of over-
heads, creating several unnecessary array temporaries
and increasing the pressure on the already saturated
memory bandwidth on the modern multi-core processors.
Consider the following code.

m = f(1).*(n(c,c,c))
+ f(2).*(n(c,c,u)+n(c,c,d)

+n(c,u,c)+n(c,d,c)
+n(u,c,c)+n(d,c,c))

+ f(3).*(n(c,u,u)+n(c,u,d)
+n(c,d,u)+n(c,d,d)
+n(u,c,u)+n(u,c,d)
+n(d,c,u)+n(d,c,d)
+n(u,u,c)+n(u,d,c)
+n(d,u,c)+n(d,d,c))

+ f(4).*(n(u,u,u)+n(u,u,d)
+n(u,d,u)+n(u,d,d)
+n(d,u,u)+n(d,u,d)
+n(d,d,u)+n(d,d,d));

This is an abbreviated version of a procedure called
dlaplacian that is the performance bottleneck in a
MATLAB version of the NAS MG benchmark [2]. The
extensive use of subscripts in this computation points to
the central role of optimizing subscripted array accesses
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Fig. 3. Optimizing array subscripts.

in determining the code’s performance. In the above code
f is a vector of four elements, n is a three-dimensional
array and c, d, and u are permutations of values 1 to N,
where N is the size of n along each dimension. Figure 3
shows the order of magnitude performance improvement
in the whole program achieved by optimizing this proce-
dure. The optimization critically depends on the ability
to infer variable types within the procedure.

With the knowledge of the array types the compiler
can translate the code to C or C++ with vector operations
expanded into loops and achieve significant performance
improvement (bars labeled “Direct translation to C”).
A greater performance is possible after recognizing that
most of these loops can be fused into a single tight for-
loop in C or C++, eliminating all the intermediate array
temporaries (bars labeled “Loop fusion”). Moreover, the
fact that the index expressions are all permutations can
also be derived from their definitions, leading to even
more subscript optimizations (bars labeled “Loop fusion
+ subscript opt.”).

It may be possible for the MATLAB Just-In-Time
compiler to perform a limited type inference and some
of the above mentioned optimizations. Unfortunately,
its capabilities are unpublished making it practically
impossible to make meaningful comparisons with it.

C. Disambiguating Types with Concrete Partial Evalu-
ation

In order to infer types statically we use a four-step
process as shown in Figure 5. These steps are carried
out on the Static Single Assignment (SSA) form of the
code. Notice that the type transfer function is a MATLAB
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Optimization Potential
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MATLAB / Octave Compiler
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MATLAB / Octave Compiler

Infrastructure written in Ruby
Uses our own embedded DSL called RubyWrite
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• Dynamic types

• infer types to enable translation to lower-level 
(statically typed) language

• Dynamic dispatch

• specialize for static dispatch

• use types info. to specialize based on input types

• High-level operators

• intelligently map to underlying libraries

Basic Compilation Issues

Chun-Yu Shei, Arun Chauhan, and Sidney Shaw. Compile-time Disambiguation of MATLAB Types through Concrete 
Interpretation with Automatic Run-time Fallback. In Proceedings of the 2009 International Conference on High 
Performance Computing (HiPC), 2009.
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• Dynamic types

• infer types to enable translation to lower-level 
(statically typed) language

• Dynamic dispatch

• specialize for static dispatch

• use types info. to specialize based on input types

• High-level operators

• intelligently map to underlying libraries

Basic Compilation Issues

Chun-Yu Shei, Arun Chauhan, and Sidney Shaw. Compile-time Disambiguation of MATLAB Types through Concrete 
Interpretation with Automatic Run-time Fallback. In Proceedings of the 2009 International Conference on High 
Performance Computing (HiPC), 2009.



Arun Chauhan, Programming for the Masses,  Purdue, Oct 28, 2011

MATLAB Type Inference: Past Efforts

• As a data flow problem

• abstract interpretation to propagate types

• can be combined with constant propagation

• not easy to handle complex library functions

• As a set-theoretic problem

• need external symbolic analysis tool (e.g., Mathematica)

• As constraint equations over sets

• could be too loosely constrained
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Leverage MATAB Interpreter (1)

x = 10;

y = 20;
z = x + y;



Arun Chauhan, Programming for the Masses,  Purdue, Oct 28, 2011

Leverage MATAB Interpreter (1)
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Leverage MATAB Interpreter (1)

x = 10;

y = 20;

z = x + y;

BT_x = ‘i’;
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Leverage MATAB Interpreter (1)

x = 10;

y = 20;

z = x + y;

BT_x = ‘i’;

BT_y = ‘i’;
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Leverage MATAB Interpreter (1)

x = 10;

y = 20;

z = x + y;

BT_x = ‘i’;

BT_y = ‘i’;

BT_z = BXF_sum(BT_x,BT_y);
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Leverage MATAB Interpreter (2)

x = 10.5;

y = [1, 2; 3, 4];

y = x*y + a;
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Leverage MATAB Interpreter (2)

x = 10.5;

y = [1, 2; 3, 4];

y = t + a;

t = x*y;



Arun Chauhan, Programming for the Masses,  Purdue, Oct 28, 2011

Leverage MATAB Interpreter (2)

x$1 = 10.5;

y$1 = [1, 2; 3, 4];

y$2 = t$1 + a$1;

t$1 = x$1*y$1;
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Leverage MATAB Interpreter (2)
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Leverage MATAB Interpreter (2)

x$1 = 10.5;

y$1 = [1, 2; 3, 4];

y$2 = t$1 + a$1;

t$1 = x$1*y$1;

BT_x$1 = ‘d’;
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Leverage MATAB Interpreter (2)

x$1 = 10.5;

y$1 = [1, 2; 3, 4];

y$2 = t$1 + a$1;

t$1 = x$1*y$1;

BT_x$1 = ‘d’;

BT_y$1 = BXF_vertcat( …
BXF_horzcat(‘i’,’i’),…
BXF_horzcat(‘i’,’i’)…

);
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Leverage MATAB Interpreter (2)

x$1 = 10.5;

y$1 = [1, 2; 3, 4];

y$2 = t$1 + a$1;

t$1 = x$1*y$1;

BT_x$1 = ‘d’;

BT_y$1 = BXF_vertcat( …
BXF_horzcat(‘i’,’i’),…
BXF_horzcat(‘i’,’i’)…

);

BT_t$1 = BXF_product(BT_x$1,BT_y$1);
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Leverage MATAB Interpreter (2)

x$1 = 10.5;

y$1 = [1, 2; 3, 4];

y$2 = t$1 + a$1;

t$1 = x$1*y$1;

BT_x$1 = ‘d’;

BT_y$1 = BXF_vertcat( …
BXF_horzcat(‘i’,’i’),…
BXF_horzcat(‘i’,’i’)…

);

BT_t$1 = BXF_product(BT_x$1,BT_y$1);

BT_y$2 = BXF_sum(BT_t$1,BT_a$1);
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Leverage MATAB Interpreter (2)

x$1 = 10.5;
y$1 = [1, 2; 3, 4];

y$2 = t$1 + a$1;

t$1 = x$1*y$1;
BT_y$2 = BXF_sum(BT_t$1,BT_a$1);
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Leverage MATAB Interpreter (3)

y = 1.5;

y = 2;

if x < 0

else

end
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Leverage MATAB Interpreter (3)

y$1 = 1.5;

y$2 = 2;

if x$1 < 0

else

end
y$3 = φ(y$1,y$2)
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Leverage MATAB Interpreter (3)

y$1 = 1.5;

y$2 = 2;

if x$1 < 0

else

end

y$3 = φ(y$1,y$2)
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Leverage MATAB Interpreter (3)

y$1 = 1.5;

y$2 = 2;

if x$1 < 0

else

end

BT_y$1 = ‘d’;

BT_y$2 = ‘i’;

y$3 = φ(y$1,y$2)
BT_y$2 = BTMAX(BT_y$1,BT_y$2);
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Leverage MATAB Interpreter (3)

y$1 = 1.5;

y$2 = 2;

if x$1 < 0

else

end

BT_y$1 = ‘d’;

BT_y$2 = ‘i’;

y$3 = φ(y$1,y$2)
BT_y$2 = BTMAX(BT_y$1,BT_y$2);
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Inference Steps

• For each statement of the form ρ = f(α), insert a 
statement ρτ = fBXF(ατ)

• Perform concrete partial evaluation

• Perform dead-code elimination

• leaves those type computations that are used for run 
time optimization
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Inference Steps

• For each statement of the form ρ = f(α), insert a 
statement ρτ = fBXF(ατ)

• Perform concrete partial evaluation

• Perform dead-code elimination

• leaves those type computations that are used for run 
time optimization

Need to do a bit more for loops (details in the paper)
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Base Type Lattice

⟙

⟘

char cell

logical

integer

double

complex
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Other Type Inference Issues

• Struct types

• each field can be considered a separate variable

• Procedures with side-effects

• output types cannot be computed if that involves 
executing a slice of the original procedure with side-
effects

• Recursive procedures

• can be handled with a fixed-point evaluation
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Evaluation: Precision (Base)

dlaplacian arnoldi v_hbmult clean_image reseat_points get_slopes
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Evaluation: Precision (Size)

dlaplacian arnoldi v_hbmult clean_image reseat_points get_slopes
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Evaluation: Static vs Dynamic

dlaplacian arnoldi v_hbmult clean_image reseat_points get_slopes
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Observations

• Advantages of concrete interpretation

• maintains semantic fidelity for languages defined by their 
interpreters

• protects against language changes

• avoids duplication of effort

• Solving other problems

• can be seen as an alternative to traditional data flow 
analysis, for certain problems
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The Free Lunch is Over

Herb Sutter, The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software, Dr. Dobb's Journal, 30(3), March 2005

http://www.ddj.com/
http://www.ddj.com/
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Exa-scale Challenge
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Trends in Concurrency
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Long History of Parallelism

• Vector processors

• Symmetric multi-processors (SMPs)

• Nodes over inter-connection networks

• Instruction-level parallelism

• Multi-cores

• GPUs

• ...
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Parallelism

Mainstream  
Parallelism-Oblivious  

Developers 

Parallelism–Aware 
Developers 

Concurrency 
Experts 

(Doug) 

(Stephanie) 

(Joe) 

Joe needs high level 
Programming Models 
designed for Domain 

Experts  

Stephanie needs simple 
Parallel Programming 

Models with safety nets 

Focus of today’s Parallel 
Programming Models 

Courtesy: Vivek Sarkar, Rice University
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Parallelism
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Parallelism
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Thinking of Joe 
programmers
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Automatic parallelization

• MATLAB is the lingua franca of scientists and 
engineers

• Joe programmers would rather write in 10 
minutes and let the program run for 24 hours, 
than vice versa

• They would still like their programs to run in 10 
minutes!

• We can leverage inferred types for automatic 
parallelization

“The reports of my death are highly exaggerated”



Arun Chauhan, Programming for the Masses,  Purdue, Oct 28, 2011

Parallelism in MATLAB

• Built-in parallel-for (with the parallel 
computing toolbox)

• Third party libraries to offload computations on 
clusters

• Third party and MathWorks libraries to offload 
computation on GPUs

• “declare” variables to be of GPU type

A = GPUdouble(a);

B = GPUdouble(b);

C = A*B;
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MATLAB: Empirical Study

Basic Block Sizes

0 10 20 30 40 50 60

Basic Block Counts

0 5 10 15 20
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Automatic GPU Computation

• Model the computation

• cost model for CPU times

• cost model for GPU times

• cost model for CPU-GPU data transfer

• Solve a binary integer linear programming problem

i f (˜ a on cpu )

a = double ( gpu a ) ;

end
a on cpu = true ;

i f (˜ b on cpu )

b = double ( gpu b ) ;

end
b on cpu = true ;

x = a + b ;

x on cpu = true ;

i f (˜ x on gpu )

gpu x = GPUdouble ( x ) ;

end
x on gpu = true ;

gpu y = gpu x ⇤ gpu x ;

y on gpu = true ;

Figure 2: Runtime code inserted by the compiler to
ensure input arguments are located correctly.

one, and each histogram has been truncated at an upper
limit with the rightmost bar showing the sum of all the
remaining counts. The exact counts are unimportant, so
we have omitted labeling the vertical axis. We note that a
vast majority of matlab code has very small basic blocks,
even though the number of basic blocks can sometimes be
large. The number of schedulable statements per basic block
is predominantly in the single digits or low double digits.
This indicates that a recursive strategy that handles basic
blocks individually—even if it has to solve a hard problem
for each—can be practically feasible.

We divide the scheduling process into two steps, parti-
tioning the statements into CPU and GPU computations,
and ordering the statements to achieve maximal concurrency
across the CPU and GPU. Partitioning the statements, de-
scribed in greater detail in Section 4, is the more expensive
step while reordering statements, described next, is rela-
tively straightforward.

3.4 Reordering Statements
Once the set of statements to run on the GPU have been

identified, we next try to maximize the overlap of CPU and
GPU operations. This is possible since GPUmat function
calls are asynchronous, which results in a simple strategy to
maximize overlap. The GPU function calls are hoisted as
high as the dependencies allow within each basic block.

As the partitioning step, the reordering step also works
recursively through the statements, working at one level of
statements at a time to reorder the statements. Unlike par-
titioning, this process is, in fact, optimal as long as the code
has already gone through other optimizations such as loop-
invariant code motion and unreachable code elimination.

3.5 Code Generation
After code has been scheduled to run on either the CPU

or GPU, additional matlab code is inserted to ensure that
all input arguments are present at the appropriate location
for each statement. We use the convention of appending a
gpu_ prefix to variable names corresponding to GPU vari-
ables introduced by our compiler, and leaving CPU variables
as-is. We also introduce two “flag” variables by appending a
_on_cpu and _on_gpu su�x to each base variable name, that
indicate whether a variable is available on the CPU or GPU
respectively. Thus, for a base variable foo, if it is involved
in any GPU computations, a gpu_foo variable will be intro-
duced to hold the GPU copy, and the variables foo_on_cpu
and foo_on_gpu will be set to true.

The flag variables are used in the code inserted to ensure
that all input arguments are present in the appropriate lo-
cation. For every statement that is to be run on the GPU,
each input argument’s _on_gpu flag is tested in an if, and
if it is unset, the necessary GPU variable is created from

the CPU variable using GPUdouble(). The _on_gpu flag of
every GPU variable created is then set to true, as well as
the output variable’s. Statements to be run on the CPU
are handled similarly, with the exception that the _on_cpu

flag is checked instead, and conversions are performed using
double(). For example, Figure 2 shows the compiler gen-
erated output for the input x = a + b; y = x * x; when
the first statement is scheduled on the CPU and the second
on the GPU. This strategy facilitates dynamic scheduling of
statements.
Although this strategy seems to introduce a large amount

of code as an intermediate step, it is still linear in the size
of the input program. Subsequent partial evaluation and
dead-code elimination passes get rid of all extra code except
that needed for run time correctness or optimization.

3.6 Assumptions
We make a core assumption that the amount of compu-

tation involved in a matlab operation (or function) is pro-
portional to the size of the inputs and outputs for that oper-
ation (or function). This assumption is obviously incorrect
for certain functions, such as the matlab size function, for
which the compiler maintains a table of known exceptions.
We assume that most computationally intensive portions of
the matlab program are statements that are schedulable on
the GPU. This is not a drastic assumption, since GPU li-
braries try to support most computationally intensive func-
tions. For the purpose of this work, we also assume that
array sizes can be estimated at compile time. Although this
sounds overly constraining, the staged design of our algo-
rithm allows us to perform the scheduling just-in-time when
array sizes and loop bounds can be resolved. In those cases
where just-in-time resolution is impossible, compiler annota-
tions let the compiler proceed assuming“typical”array sizes.
Given that even manual parallelization e↵orts need to make
an assumption about array sizes, it is reasonable for a com-
piler to expect this information. If widely di↵erent array
sizes are expected then, in principle, it is possible to gener-
ate multiple schedules by appropriately partitioning the set
of possible sizes [2]. However, that is outside the scope of
this paper.

4. STATEMENT PARTITIONING
Let S = {s1, s2, . . ., sn} be a sequence of n schedulable

statements. A dependence graph D for the sequence S is
a directed graph consisting of n nodes, one for each state-
ment, and edges si ! sj if, and only if, there is a data
dependence from statement si to sj . The dependence graph
can be equivalently represented as an adjacency matrix, Ad,
of size n⇥n. We assume that edges in the dependence graph
are weighted with the amount of data that flows along that
dependence edge. Thus, the matrix Ad contains the edge
weights instead of binary values. The weighted dependence
graph for straight line code, as in our case, is easily con-
structed e�ciently using type information that provides us
array sizes.
We solve the partitioning problem by reducing it to a bi-

nary integer linear programming (BILP) problem:

Minimize ~

f

0
~x

such that A~x  ~

b

and Aeq~x = ~

beq

Chun-Yu Shei, Pushkar Ratnalikar, and Arun Chauhan. Automating GPU Computing in MATLAB. In Proceedings of 
the 2011 International Conference on Supercomputing (ICS), 2011.
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Experimental Results
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Extending to other Languages

• Unique characteristics of MATLAB

• simple basic data types

• simple control flow

• first-order functions

• array language directly encodes data parallelism

• Ruby

• object-oriented, with meta-programming support

• closures, co-routines, higher-order functions

• open classes
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Ruby: Type Complications

class Foo
def my_method
...

end
end
…
f = Foo.new

…
g = Foo.new
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Ruby: Type Complications

class Foo
def my_method
...

end
end
…
f = Foo.new

…
g = Foo.new

def bar

end

class Foo
...

end
bar
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Challenges

• Reasonable static type inference

• Identifying conditions under which the inference 
is correct

• Detecting and verifying those conditions at run-
time

• Possibly speculating on types
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What about Stephanie 
programmers?
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High Performance FortranFortran Example

PROGRAM SUM

REAL A(10000)

READ (9) A

SUM = 0.0

DO I = 1, 10000

SUM = SUM + A(I)

ENDDO

PRINT SUM

END

Arun Chauhan High Performance Fortran
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High Performance FortranFortran Example

PROGRAM SUM

REAL A(10000)

READ (9) A

SUM = 0.0

DO I = 1, 10000

SUM = SUM + A(I)

ENDDO

PRINT SUM

END

Arun Chauhan High Performance Fortran

Fortran Example: Parallelized

PROGRAM PARALLEL SUM

REAL A(100), BUFF(100)

IF (PID == 0) THEN

DO IP = 0, 99

READ (9) BUFF(1:100)

IF (IP == 0) A(1:100) = BUFF(1:100)

ELSE SEND(IP, BUFF, 100) ! 100 words to Proc 1

ENDDO

ELSE

RECV(0, A, 100) ! 100 words from proc 0 into A

ENDIF

SUM = 0.0

DO I = 1, 100

SUM = SUM + A(I)

ENDDO

IF (PID == 0) SEND(1, SUM, 1)

IF (PID > 0)

RECV(PID-1, T, 1)

SUM = SUM + T

IF (PID < 99) SEND(PID+1, SUM, 1)

ELSE SEND(0, SUM, 1)

ENDIF

IF (PID == 0) THEN; RECV(99, SUM, 1); PRINT SUM; ENDIF

END

Arun Chauhan High Performance Fortran
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High Performance FortranFortran Example

PROGRAM SUM

REAL A(10000)

READ (9) A

SUM = 0.0

DO I = 1, 10000

SUM = SUM + A(I)

ENDDO

PRINT SUM

END

Arun Chauhan High Performance Fortran

Parallel Sum in HPF

PROGRAM HPF SUM

REAL A(10000)

!HPF$ DISTRIBUTE A(BLOCK)

READ (9) A

SUM = 0.0

DO I = 1, 10000

SUM = SUM + A(I)

ENDDO

PRINT SUM

END

Arun Chauhan High Performance Fortran
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HPF:  Victim of its own Success?

• No prior compiler technology to learn from

• Limited number of data distribution primitives

• not user expandable

• Paucity of good HPF libraries

• Lack of performance-tuning tools

• Lack of patience of user community!

Ken Kennedy, Charles Koelbel, and Hans Zima. The Rise and Fall of High Performance Fortran: An Historical Object Lesson. In 
Proceedings of the third ACM SIGPLAN Conference on History of Programming Languages, pages 7-1–7-22, 2007.
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• Limited number of data distribution primitives

• not user expandable

• Paucity of good HPF libraries

• Lack of performance-tuning tools
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Proceedings of the third ACM SIGPLAN Conference on History of Programming Languages, pages 7-1–7-22, 2007.

Does not motivate users to think in parallel
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Design Principles
• Users must think in parallel (creativity)

• but not be encumbered with optimizations that can be 
automated, or proving synchronization correctness

• Compiler focuses on what it can do (mechanics)

• not creative tasks, such as determining data 
distributions, or creating new parallel algorithms

• Incremental deployment

• not a new programming language

• more of a coordination language (DSL)

• Formal semantics

• provable correctness
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Declarative Approach

• Originally motivated by Block-synchronous 
Parallel (BSP) programs, especially for collective 
communication

• alternate between computation and communication

• communication optimization breaks the structure
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Declarative Approach

• Originally motivated by Block-synchronous 
Parallel (BSP) programs, especially for collective 
communication

• alternate between computation and communication

• communication optimization breaks the structure

• Extend to non BSP-style applications
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Kanor for Clusters

occur in a large program—a programmer might initially write a program using floats,
then change it to use doubles. If the programmer misses a float, the program will likely
produce incorrect results.

Instead, the programmer should be able to write something like:

double b = 0;

float a = 1.0;

@communicate { b@recv rank <<= a@send rank }

and let the compiler and runtime ensure the float value is implicitly converted to double,
preserving the intended behavior for compatible data types. When the data types are
incompatible, the code should fail to compile, rather than behaving incorrectly at run-
time.

Kanor has all the desirable properties described above—indeed, the @communicate

blocks above are correct, running Kanor code.

3 Exploiting Communication Knowledge

For a declarative language for communication to be e�cient, it is essential to exploit all
available information about each communication pattern. Kanor’s design is informed
by a multi-level classification of communications, based on each process’s knowledge
of the global communication pattern. These patterns are a refinement of those our group
identified previously [7].

Global Knowledge Each process can determine the entire communication pattern. This
global knowledge may enable tree-based communication with logarithmic rather
than linear overhead. An advantage of Kanor is that it allows the compiler to gener-
ate tree-based communication as an optimization, without forcing the programmer
to write special-case code for e�ciency.

Corresponding Knowledge Each process knows only a subset of the complete com-
munication topology, but has complete knowledge of the communication in which
it will be participating.

Sender Knowledge Senders know only the destinations they will send to; receivers do
not know which senders they will receive from. The sender knowledge case requires
the receiver to perform a termination protocol. The Kanor runtime uses the Non-
blocking Barrier eXchange (NBX) protocol [8], which allows receiver processes to
receive an unknown amount of data with minimal overhead.

Receiver Knowledge Receivers know only the senders they will receive from; senders
do not know which receivers they will send to. This case requires the receiver to
notify the sender processes from which it wishes to receive data. After this noti-
fication, communication then becomes equivalent to the corresponding knowledge
case.

These categories do not cover all possible applications or communication patterns.
For example, some communications might fit a third-party knowledge pattern. How-
ever, these categories cover the majority of today’s parallel applications [15], and thus

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A 
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical 
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on 
Principles of Programming Languages (POPL).
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For a declarative language for communication to be e�cient, it is essential to exploit all
available information about each communication pattern. Kanor’s design is informed
by a multi-level classification of communications, based on each process’s knowledge
of the global communication pattern. These patterns are a refinement of those our group
identified previously [7].

Global Knowledge Each process can determine the entire communication pattern. This
global knowledge may enable tree-based communication with logarithmic rather
than linear overhead. An advantage of Kanor is that it allows the compiler to gener-
ate tree-based communication as an optimization, without forcing the programmer
to write special-case code for e�ciency.

Corresponding Knowledge Each process knows only a subset of the complete com-
munication topology, but has complete knowledge of the communication in which
it will be participating.

Sender Knowledge Senders know only the destinations they will send to; receivers do
not know which senders they will receive from. The sender knowledge case requires
the receiver to perform a termination protocol. The Kanor runtime uses the Non-
blocking Barrier eXchange (NBX) protocol [8], which allows receiver processes to
receive an unknown amount of data with minimal overhead.

Receiver Knowledge Receivers know only the senders they will receive from; senders
do not know which receivers they will send to. This case requires the receiver to
notify the sender processes from which it wishes to receive data. After this noti-
fication, communication then becomes equivalent to the corresponding knowledge
case.

These categories do not cover all possible applications or communication patterns.
For example, some communications might fit a third-party knowledge pattern. How-
ever, these categories cover the majority of today’s parallel applications [15], and thus

good performance (Section 6). It should be possible for the compiler to infer this hint
in many cases; when in doubt, the compiler can use the default sender hint.

A remote reference, of the form e0@e1, can appear only within a reduction. The
right-hand-side of a remote reference must evaluate to a processor rank; the left-hand-
side must evaluate to a data item (on the sender) or a location for data to be stored (on
the receiver). The rules for evaluating e0 and e1 are critical to the design of Kanor, and
are described in detail in Section 4.1.

Our fundamental unit of communication is the generalized reduction construct, of
the form:

e0@e1 << op << e2@e3 where e4

From left-to-right, the reduction comprises four major parts: receiver remote reference,
reduction operator, sender remote reference, and qualifier. The variable op must evalu-
ate to a reduction function (described below); e4 is the qualifier of the set comprehen-
sion. Because the majority of communication statements simply move data, we allow
transfer statements, which are merely syntactic sugar for reductions using a special
operator that performs assignment. A transfer of the form:

e0@e1 <<= e2@e3 where e4

is equivalent to:
e0@e1 << assign << e2@e3 where e4

The qualifier portion of a reduction uses comprehension syntax, which expresses
the “control structure” of a communication pattern more succinctly than conditionals
or loops. Comprehensions allow declarative specification using concepts and notation
many programmers are already familiar with. The body of the comprehension contains
generator expressions and filter expressions. Generator expressions are of the form

x0, . . . , xn

in e

where x0 through x

n

are variables to be bound, and e is an expression that must eval-
uate to a set S. When the comprehension is evaluated, the variables x0 through x

n

are
independently assigned values from the set S, in e↵ect forming a Cartesian product.
A filter expression is an arbitrary Boolean expression, which may reference variables
bound in any generators that appear before it. Each filter expression is evaluated once
for each generator assignment of variables that are in scope. If every filter expression
evaluates to true for a given set of variable assignments, the sender and receiver remote
references are evaluated with those variable bindings and a message is sent; otherwise,
the remote references are not evaluated for those bindings. Details of these evaluation
rules are given in Section 4.1.

Once a message is received, the receiver updates the values within the storage loca-
tion by means of a reduction operator op. The operator has the signature:

op(e0 : ref ⌧0, e2 : ⌧1)

where e0 represents the storage address to be updated, and e2 represents the message’s
data. The reduction operator is called once per message received. As is explained in

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A 
Declarative Language for Explicit Communication. In Proceedings of the Thirteenth International Symposium on the Practical 
Aspects of Declarative Languages (PADL), 2011. Held in conjunction with the ACM SIGACT-SIGPLAN Symposium on 
Principles of Programming Languages (POPL).
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produce incorrect results.

Instead, the programmer should be able to write something like:

double b = 0;

float a = 1.0;

@communicate { b@recv rank <<= a@send rank }
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time.

Kanor has all the desirable properties described above—indeed, the @communicate

blocks above are correct, running Kanor code.

3 Exploiting Communication Knowledge

For a declarative language for communication to be e�cient, it is essential to exploit all
available information about each communication pattern. Kanor’s design is informed
by a multi-level classification of communications, based on each process’s knowledge
of the global communication pattern. These patterns are a refinement of those our group
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occur in a large program—a programmer might initially write a program using floats,
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references are evaluated with those variable bindings and a message is sent; otherwise,
the remote references are not evaluated for those bindings. Details of these evaluation
rules are given in Section 4.1.

Once a message is received, the receiver updates the values within the storage loca-
tion by means of a reduction operator op. The operator has the signature:

op(e0 : ref ⌧0, e2 : ⌧1)

where e0 represents the storage address to be updated, and e2 represents the message’s
data. The reduction operator is called once per message received. As is explained in

Section 4.1, the operator expression is evaluated, and the resulting operator applied, on
the receiving process. Here is a simple reduction operator written in C++, which updates
the storage location with the sum of the values received:

template<typename T>
void sum(T &left, T right) {

left += right;

}

We assume user-defined reduction operators are both commutative and associative.
The behavior of non-commutative or non-associative reduction operators is undefined.

The order of evaluation is unspecified between e1, e2, and e3 on the sender and
between e0 and op on the receiver. The operator op is call-by-value, and is applied only
after all of its arguments have been evaluated.

The dependency chain within a Kanor communication can only be of length one:
no read can depend upon another read. Kanor also uses parallel assignment semantics:
all reads occur before all writes. This allows us to perform analyses similar to those in
static single assignment languages. Parallel assignment is an important part of Kanor’s
semantics, as it guarantees there are no dependencies within a communication block.
Parallel assignment makes it much easier to write programs whose communication pat-
terns contain cycles, such as circular shift. Values destined for the same location are
accumulated using the reduction operator. However, it is erroneous to make multiple
writes to the same location using Kanor’s assignment operator (<<=); the semantics of
overlapping assignments is undefined.

4.1 Evaluation Rules

Kanor is a language for explicit communication: the programmer specifies the send-
ing and receiving processes, the data to be sent, and where the data should be stored
upon receipt. To make specifying this information easy, Kanor’s comprehension syn-
tax allows programmers to build sets of variable bindings (that is, environments) using
generators and filters. Consider this communication, similar to the first one presented
in Section 2, annotated to show information explicitly provided by the programmer:

A[j]|{z}
storage

location

@ i|{z}
receiver

rank

<<=|{z}
reduction

operator

B[i]|{z}
data

@ j|{z}
sender

rank

where i in world,|         {z         }
generator

j in {0...i},|        {z        }
generator

i% 2 == 0|        {z        }
f ilter

It may seem that this information is su�cient to fully specify the communication, given
that Kanor’s parallel assignment semantics allows the order in which messages are sent
to be left unspecified. However, this is not the case; it is also necessary to specify where

and in which environment each of these sub-expressions should be evaluated.
An important note about terminology: when we say that an expression e is evaluated

on process p in some environment env, we are referring to the semantics of Kanor,
rather than its implementation. As an optimization, the Kanor implementation may use a
completely di↵erent evaluation strategy, so long as the program behaves as if expression
e were evaluated in env on process p. (On a related note, side-e↵ecting expressions
within a communication block should be avoided, as their behavior is unspecified.)
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occur in a large program—a programmer might initially write a program using floats,
then change it to use doubles. If the programmer misses a float, the program will likely
produce incorrect results.

Instead, the programmer should be able to write something like:

double b = 0;

float a = 1.0;

@communicate { b@recv rank <<= a@send rank }

and let the compiler and runtime ensure the float value is implicitly converted to double,
preserving the intended behavior for compatible data types. When the data types are
incompatible, the code should fail to compile, rather than behaving incorrectly at run-
time.

Kanor has all the desirable properties described above—indeed, the @communicate

blocks above are correct, running Kanor code.

3 Exploiting Communication Knowledge

For a declarative language for communication to be e�cient, it is essential to exploit all
available information about each communication pattern. Kanor’s design is informed
by a multi-level classification of communications, based on each process’s knowledge
of the global communication pattern. These patterns are a refinement of those our group
identified previously [7].

Global Knowledge Each process can determine the entire communication pattern. This
global knowledge may enable tree-based communication with logarithmic rather
than linear overhead. An advantage of Kanor is that it allows the compiler to gener-
ate tree-based communication as an optimization, without forcing the programmer
to write special-case code for e�ciency.

Corresponding Knowledge Each process knows only a subset of the complete com-
munication topology, but has complete knowledge of the communication in which
it will be participating.

Sender Knowledge Senders know only the destinations they will send to; receivers do
not know which senders they will receive from. The sender knowledge case requires
the receiver to perform a termination protocol. The Kanor runtime uses the Non-
blocking Barrier eXchange (NBX) protocol [8], which allows receiver processes to
receive an unknown amount of data with minimal overhead.

Receiver Knowledge Receivers know only the senders they will receive from; senders
do not know which receivers they will send to. This case requires the receiver to
notify the sender processes from which it wishes to receive data. After this noti-
fication, communication then becomes equivalent to the corresponding knowledge
case.

These categories do not cover all possible applications or communication patterns.
For example, some communications might fit a third-party knowledge pattern. How-
ever, these categories cover the majority of today’s parallel applications [15], and thus

good performance (Section 6). It should be possible for the compiler to infer this hint
in many cases; when in doubt, the compiler can use the default sender hint.

A remote reference, of the form e0@e1, can appear only within a reduction. The
right-hand-side of a remote reference must evaluate to a processor rank; the left-hand-
side must evaluate to a data item (on the sender) or a location for data to be stored (on
the receiver). The rules for evaluating e0 and e1 are critical to the design of Kanor, and
are described in detail in Section 4.1.

Our fundamental unit of communication is the generalized reduction construct, of
the form:

e0@e1 << op << e2@e3 where e4

From left-to-right, the reduction comprises four major parts: receiver remote reference,
reduction operator, sender remote reference, and qualifier. The variable op must evalu-
ate to a reduction function (described below); e4 is the qualifier of the set comprehen-
sion. Because the majority of communication statements simply move data, we allow
transfer statements, which are merely syntactic sugar for reductions using a special
operator that performs assignment. A transfer of the form:

e0@e1 <<= e2@e3 where e4

is equivalent to:
e0@e1 << assign << e2@e3 where e4

The qualifier portion of a reduction uses comprehension syntax, which expresses
the “control structure” of a communication pattern more succinctly than conditionals
or loops. Comprehensions allow declarative specification using concepts and notation
many programmers are already familiar with. The body of the comprehension contains
generator expressions and filter expressions. Generator expressions are of the form

x0, . . . , xn

in e

where x0 through x

n

are variables to be bound, and e is an expression that must eval-
uate to a set S. When the comprehension is evaluated, the variables x0 through x

n

are
independently assigned values from the set S, in e↵ect forming a Cartesian product.
A filter expression is an arbitrary Boolean expression, which may reference variables
bound in any generators that appear before it. Each filter expression is evaluated once
for each generator assignment of variables that are in scope. If every filter expression
evaluates to true for a given set of variable assignments, the sender and receiver remote
references are evaluated with those variable bindings and a message is sent; otherwise,
the remote references are not evaluated for those bindings. Details of these evaluation
rules are given in Section 4.1.

Once a message is received, the receiver updates the values within the storage loca-
tion by means of a reduction operator op. The operator has the signature:

op(e0 : ref ⌧0, e2 : ⌧1)

where e0 represents the storage address to be updated, and e2 represents the message’s
data. The reduction operator is called once per message received. As is explained in
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independently assigned values from the set S, in e↵ect forming a Cartesian product.
A filter expression is an arbitrary Boolean expression, which may reference variables
bound in any generators that appear before it. Each filter expression is evaluated once
for each generator assignment of variables that are in scope. If every filter expression
evaluates to true for a given set of variable assignments, the sender and receiver remote
references are evaluated with those variable bindings and a message is sent; otherwise,
the remote references are not evaluated for those bindings. Details of these evaluation
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Once a message is received, the receiver updates the values within the storage loca-
tion by means of a reduction operator op. The operator has the signature:

op(e0 : ref ⌧0, e2 : ⌧1)

where e0 represents the storage address to be updated, and e2 represents the message’s
data. The reduction operator is called once per message received. As is explained in

Section 4.1, the operator expression is evaluated, and the resulting operator applied, on
the receiving process. Here is a simple reduction operator written in C++, which updates
the storage location with the sum of the values received:

template<typename T>
void sum(T &left, T right) {

left += right;

}

We assume user-defined reduction operators are both commutative and associative.
The behavior of non-commutative or non-associative reduction operators is undefined.

The order of evaluation is unspecified between e1, e2, and e3 on the sender and
between e0 and op on the receiver. The operator op is call-by-value, and is applied only
after all of its arguments have been evaluated.

The dependency chain within a Kanor communication can only be of length one:
no read can depend upon another read. Kanor also uses parallel assignment semantics:
all reads occur before all writes. This allows us to perform analyses similar to those in
static single assignment languages. Parallel assignment is an important part of Kanor’s
semantics, as it guarantees there are no dependencies within a communication block.
Parallel assignment makes it much easier to write programs whose communication pat-
terns contain cycles, such as circular shift. Values destined for the same location are
accumulated using the reduction operator. However, it is erroneous to make multiple
writes to the same location using Kanor’s assignment operator (<<=); the semantics of
overlapping assignments is undefined.

4.1 Evaluation Rules

Kanor is a language for explicit communication: the programmer specifies the send-
ing and receiving processes, the data to be sent, and where the data should be stored
upon receipt. To make specifying this information easy, Kanor’s comprehension syn-
tax allows programmers to build sets of variable bindings (that is, environments) using
generators and filters. Consider this communication, similar to the first one presented
in Section 2, annotated to show information explicitly provided by the programmer:

A[j]|{z}
storage

location

@ i|{z}
receiver

rank

<<=|{z}
reduction

operator

B[i]|{z}
data

@ j|{z}
sender

rank

where i in world,|         {z         }
generator

j in {0...i},|        {z        }
generator

i% 2 == 0|        {z        }
f ilter

It may seem that this information is su�cient to fully specify the communication, given
that Kanor’s parallel assignment semantics allows the order in which messages are sent
to be left unspecified. However, this is not the case; it is also necessary to specify where

and in which environment each of these sub-expressions should be evaluated.
An important note about terminology: when we say that an expression e is evaluated

on process p in some environment env, we are referring to the semantics of Kanor,
rather than its implementation. As an optimization, the Kanor implementation may use a
completely di↵erent evaluation strategy, so long as the program behaves as if expression
e were evaluated in env on process p. (On a related note, side-e↵ecting expressions
within a communication block should be avoided, as their behavior is unspecified.)

Source-level compiler (using ROSE)

standard C++ code
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Software Pipelining
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1 do {
2 /

*

Local matrix expanded by shadow columns/rows to store remote values

*

/

3 @communicate {xlocal[M]@(x,y-1) <<= xlocal[1]@(x,y) where x, y in {0...N-1}}
4 @communicate {xlocal[M]@(x,y-1) <<= xlocal[1]@(x,y) where x, y in {0...N-1}}
5 @communicate {xlocal[M]@(x,y-1) <<= xlocal[1]@(x,y) where x, y in {0...N-1}}
6 @communicate {xlocal[M]@(x,y-1) <<= xlocal[1]@(x,y) where x, y in {0...N-1}}
7 compute_interior_and_diffnorm(xlocal, &gdiffnorm);
8 // all-reduce

9 @communicate {gdiffnorm@dest_rank << sum << diffnorm@src_rank
10 where dest_rank, src_rank in {0...N-1};}
11 gdiffnorm = sqrt( gdiffnorm );
12 itcnt++;
13 } while(diffnorm > 1.0e-2 && itcnt < 100);

C
h
ol
es
ky

1 for (int curr_col = 0; curr_col < MATSIZE; curr_col++) {
2 if (owns(myid, curr_col)) {
3 // If I own the current column then compute

4 for (int k = 0, k < curr_col; k++) { // previous columns

5 for (int i = curr_col, i < MATSIZE; i++) { // rows of current column

6 A[i][j] -= temp_cols[i][k] * temp_cols[j][k];
7 }
8 }
9 A[curr_col][curr_col] = sqrt(A[curr_col][curr_col]);

10 for (int k = curr_col + 1; k < MATSIZE; k++) { // update current column

11 A[k][curr_col] /= A[curr_col][curr_col];
12 }
13 }
14 @communicate {temp_cols[][x]@(x+i) <<= A[][curr_col]@x
15 where x in {0...N-1} and i in {1...(N-1-x)} and owns(x, curr_col)}
16 }

S
w
ee
p
3D

1 for (int i = 0; i < OCTANTS; i++) {
2 for (int j = 0; j < ANGLES; j++) {
3 // loop though the diagonals, N is the number of processors

4 for (int diag = 0; diag < 2 * N + 1; diag++) {
5 if ((myid.x + myid.y) == diag) { compute(); } /

*

wave front

*

/

6 @communicate {temp_s@(x, y+1) <<= A[lastrow]@(x, y)
7 where x, y in {0...N-1} and x + y = diag;}
8 @communicate {temp_e@(x + 1, y) <<= A[][lastcol]@(x, y)
9 where x, y in {0...N-1} and x + y = diag;}

10 }}}
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1 for (int i = 0; i < OCTANTS; i++) {
2 for (int j = 0; j < ANGLES; j++) {
3 for (int s = 0; s < min(SIZE, s + BLOCK_SIZE); s+=BLOCK_SIZE) {
4 // loop though the diagonals, N is the number of processors

5 for (int diag = 0; diag < 2 * N + 1; diag++) {
6 if ((myid.x + myid.y) == diag) { strip_mined_compute(); }
7 @communicate {temp_s@(x, y+1) <<= A[lastrow]@(x, y)
8 where x, y in {0...N-1} and x + y = diag;}
9 @communicate {temp_e@(x + 1, y) <<= A[][lastcol]@(x, y)

10 where x, y in {0...N-1} and x + y = diag;}
11 }}}}

Figure 2: Jacobi, Sweep3D, and Cholesky kernels in Kanor, and Sweep3D pipelined.
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are represented as pointers. Our kernel blocks, on the other hand, indicate syntactically
which portions of code should run on the GPU if possible, and thus imply what data
must be on the GPU. In the most naïve sense, all the data needed by a kernel is moved
to the GPU upon entering a kernel expression and the data is moved back afterwards. In
practice, however, the compiler may use dataflow analysis to eliminate unnecessary data
movement. Freeing the programmer from worrying about these details also lowers the
potential for errors that arise from, for example, dereferencing a device pointer from the
host or vice-versa.

We have designed kernels so that they are expressions that return values. This deci-
sion improves expressiveness and compositionality. Using kernels as expressions allows
the programmer to rewrite the example in Figure 2 as Z = kernel(x : X, y : Y) { x + y }.
Kernel expressions are similar to the map operator in functional programming languages.

__global__ void a dd_k e r n e l ( i n t s i z e , f l o a t ∗X, f l o a t ∗Y, f l o a t ∗Z)
{
i n t i = t h r e a d I d x . x ;
i f ( i < s i z e ) { Z[ i ] = X[ i ] + Y[ i ] ; }

}

void v e c t o r _ a dd ( i n t s i z e , f l o a t ∗X, f l o a t ∗Y, f l o a t ∗Z)
{
f l o a t ∗dX , ∗dY , ∗dZ ;
cudaMal loc (&dX , s i z e ∗ s i z e o f ( f l o a t ) ) ;
cudaMal loc (&dY , s i z e ∗ s i z e o f ( f l o a t ) ) ;
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add_ke r ne l <<<1 , s i z e >>>( s i z e , dX , dY , dZ ) ;

cudaMemcpy (Z , dZ , s i z e ∗ s i z e o f ( f l o a t ) , cudaMemcpyDeviceToHost ) ;
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cudaFree ( dY ) ;
cudaFree ( dZ ) ;

}

Figure 1. CUDA code for adding two vectors.

void v e c t o r _ a dd ( vec t o r < f l o a t > X, vec t o r < f l o a t > Y, vec t o r < f l o a t > Z)
{
kerne l ( x : X, y : Y, z : Z ) { z = x + y ; }

}

Figure 2. Harlan code for adding two vectors.
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Figure 2. Harlan code for adding two vectors.void	  vector_add	  (vector<float>	  X,	  vector	  <float>	  Y,	  vector<float>	  Z)
{
	  	  kernel	  (x	  :	  X,	  y	  :	  Y,	  z	  :	  Z)	  {	  z	  =	  x	  +	  y;	  };
}
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z	  =	  +/kernel	  (x	  :	  X,	  y	  :	  Y)	  {	  x	  *	  y	  };

Eric Holk, William Byrd, Nilesh Mahajan, Jeremiah Willcock, Arun Chauhan, and Andrew Lumsdaine. Declarative 
Parallel Programming for GPUs. In Proceedings of the International Conference on Parallel Computing (ParCo), 2011.
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Reductions

z	  =	  +/kernel	  (x	  :	  X,	  y	  :	  Y)	  {	  x	  *	  y	  };

Asynchronous kernels

handle	  =	  async	  kernel	  (x	  :	  X,	  y	  :	  Y)	  {	  x	  *	  y	  };
//	  other	  concurrent	  kernels	  of	  program	  code	  here
z	  =	  +/wait(handle);

Eric Holk, William Byrd, Nilesh Mahajan, Jeremiah Willcock, Arun Chauhan, and Andrew Lumsdaine. Declarative 
Parallel Programming for GPUs. In Proceedings of the International Conference on Parallel Computing (ParCo), 2011.
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z	  =	  +/kernel	  (x	  :	  X,	  y	  :	  Y)	  {	  x	  *	  y	  };

Asynchronous kernels

handle	  =	  async	  kernel	  (x	  :	  X,	  y	  :	  Y)	  {	  x	  *	  y	  };
//	  other	  concurrent	  kernels	  of	  program	  code	  here
z	  =	  +/wait(handle);

Nested kernels

total	  =	  +/kernel	  (row	  :	  Rows)	  {	  +/kernel	  (x	  :	  row);	  };

Eric Holk, William Byrd, Nilesh Mahajan, Jeremiah Willcock, Arun Chauhan, and Andrew Lumsdaine. Declarative 
Parallel Programming for GPUs. In Proceedings of the International Conference on Parallel Computing (ParCo), 2011.
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Scalable Speculative Parallelism on Clusters

Devarshi Ghoshal, Sreesudhan R Ramkumar, and Arun Chauhan. Distributed Speculative Parallelization using Checkpoint 
Restart. In Proceedings of the International Conference on Computational Science (ICCS), 2011
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An alternative approach to implementing speculation in software is to use transactional memory [7]. This approach
provides a simpler programming model than thread-level speculation. However, software transactional memory con-
tinues to su↵er in performance relative to thread level parallelism and is an active area of research.

We introduce a third approach to implementing software-based speculation, using checkpoint/restart (CR). CR is
a technique that finds wide application in fault tolerant computing [8]. To the best of our knowledge it has not been
applied to software-level speculative parallelization before. Even though CR has been known for several decades now,
the push toward exascale computing has resulted in increased research activity on fault tolerance recently as hardware
fault rates are expected to greatly increase with exascale machines. The result is a thrust toward e�cient implemen-
tation of fault tolerance libraries and even incorporating fault tolerance directly within MPI [9, 10]. With advances
in fault tolerance technology, and specifically CR, it has become possible to consider CR as a way to duplicate and
unroll processes dynamically for speculative parallelization. CR provides a semantically cleaner mechanism for spec-
ulation than approaches that require intervention by the kernel. More importantly, they provide a path to distributed
speculation over clusters, and using a hybrid model, have the potential to reach the performance a↵orded by shared
memory speculative systems.

In this paper we use the CR library called DMTCP (Distributed MultiThreaded CheckPointing), from Northeastern
University [11] to implement a system, that we call FastForward, which allows speculative parallelization not only
within a single shared memory node, but across nodes in a distributed environment. Further, our implementation
lets us leverage the high speed interconnect networks, if available, for process migration and exchanging data for
the validation step. We present the design of our system and evaluate it by measuring the various overheads within
FastForward through a sequence of micro-benchmarks. We have also implemented a source-level C compiler to
simplify the task of specifying speculation in most common cases.

2. Design

FastForward has two main components, a simple application programming interface (API) that makes speculation
available within a standard C program, and a run time system. FastForward is designed to operate at the user level,
without requiring any kernel patches or modules, for maximum portability. This decision puts some constraints on
the possible implementation strategies. For example, it precludes an implementation based on modifying operating
system interrupt handlers.

2.1. The API

/ / sa fe code

/ / code where s p e c u l a t i o n p o s s i b l e ( code r e g i o n A)

/ / sa fe code

/ / code where s p e c u l a t i o n p o s s i b l e ( code r e g i o n s B)

+
F F i n i t ( ) ;

/ / sa fe code

i f ( F F f o r k ( ) == FF VERIFIER ) {
/ / sa fe v e r s i o n o f the code r e g i o n A

} e l s e { / / FF SPECULATOR
/ / unsafe v e r s i o n o f the code r e g i o n A

}
F F c r e a t e v a l i d a t i o n t h r e a d ( ) ;

/ / sa fe code

i f ( F F f o r k ( ) == FF VERIFIER ) {
/ / sa fe v e r s i o n o f the code r e g i o n B

} e l s e { / / FF SPECULATOR
/ / unsafe v e r s i o n o f the code r e g i o n B

}
F F c r e a t e v a l i d a t i o n t h r e a d ( ) ;

Figure 1: An abstract representation of the API for FastForward.

The first step in optimizing a program using FastFor-
ward is to identify sections in the code that will use spec-
ulation. Each such code section is enclosed within a con-
ditional statement, as shown in Figure 1. Logically, the
process is forked and one of the two processes is marked a
verifier and the other a speculator. Normally, the specula-
tor will finish earlier than the verifier, which executes the
original safe version of the code. The speculator then cre-
ates a separate thread to validate the results against those
produced by the verifier, and continues on. After the veri-
fier finishes it also creates a validation thread that coordi-
nates with the validation thread created by the speculator.
Performing the validation in a separate thread ensures that
both the speculator and the verifier can continue computa-
tions without waiting for the validation to finish, as long
as su�cient number of cores are available. As soon as
the validation finishes one of the speculator or the verifier
processes will be terminated based on the outcome. If the
validation succeeds then the verifier is terminated and the
speculator is now designated to be safe. Otherwise, the
speculator is terminated.
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The actual validation may be performed on either end, i.e., either on the thread created by the verifier or the
speculator, based on a configuration parameter passed to FF Fork. All the details of forking, validator thread creation,
and data transfer are hidden inside the API. Notice that in order to gain any real performance over the original code
there must be at least two regions of code that can be executed speculatively, or at least a speculative region followed
by a non-speculative (safe) region. This lets the latency of the verification process be hidden by concurrently executing
the verifier for first speculative region with the second speculative region or the non-speculated region.

The validation is performed by comparing results of the region that is computed speculatively. A simple method
to automate the validation step is to compare only the set of live variables at the end of the speculated region. In our
current implementation this can be done either through our source-level compiler or through a callback function writ-
ten by the user, for complicated cases that compiler may not be able to handle. Using an explicit comparison callback
function a↵ords a high level of flexibility in implementing the comparison operation. Thus, recursive pointer-based
data structures could be easily compared using the knowledge of the data structures. For example, if a dynamically
allocated data structure was created within the code region that is being speculated on then a simple byte comparison
for validation may be misleading since pointer addresses are unlikely to match across the verifier and the speculator.
Similarly, the comparison operation could be made to tolerate small di↵erences. If speculation involves changing the
order of floating point operations the results might vary within an acceptable margin of error. This requires algorith-
mic knowledge that a compiler is unlikely to have. In such cases a special callback function could be specified by the
user for particular data structures or variables.

2.2. The Runtime System

 













































(a) FastForward on a single node.

 




 























(b) FastForward on multiple nodes.

Figure 2: Intra-node and inter-node implementations of FastForward. Validation threads
are not shown in the inter-node case for the sake of clarity. Also omitted are the compo-
nents of the checkpoint/restart library, DMTCP. In reality, the processes must be started
through the DMTCP proxies and a DMTCP coordinator must run on each node where
speculators could be launched.

Figure 2 shows the architecture of the
runtime system of FastForward. Two dif-
ferent strategies are used for intra-node
and inter-node implementations. When
speculating within a node new processes
are created using standard fork system
call with copy-on-write semantics, as
shown in Figure 2(a). The fork system
call turns out to have a low overhead.

For inter-node, or distributed spec-
ulation, we use the DMTCP library to
checkpoint the running process and then
transfer the checkpointed image to the
remote node to start the duplicate pro-
cess. In e↵ect, this implements a re-
mote fork. FastForward makes use of a
helper MPI application to implement the
distributed speculation, as Figure 2(b)
shows. The checkpoint data are trans-
ferred using NFS that operates over GigE
on our system1. The MPI helper process
listens on a pipe. As soon as it receives
an indication that the checkpoint data is
being written, it starts the process of con-
tacting the directory server and request-
ing for an available node. Thus, three ac-

tivities progress concurrently: (a) writing of the checkpoint; (b) execution of the next speculative region; and (c) pro-
tocol for requesting an available remote node for remote-fork. As soon as the checkpoint is ready, the MPI helper
sends a message to its peer on an available node to restart the process, thus finishing the remote-fork. The same

1DMTCP checkpoints to the filesystem, which is only sharable over GigE. In future, we plan to checkpoint to memory, thus bypassing NFS.
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MPI processes are also used to communicate data for validation once the speculative region finishes (not shown in
Figure 2(b)).

Using the MPI helper has two advantages. First, it lets FastForward use high speed interconnection networks
that might be available on a high-speed cluster and leverage MPI optimizations for data transfer. Second, it solves a
practical problem on batch allocated clusters by enabling controlled remote process creation through the MPI helper.

We have implemented both inter-node and intra-node versions of FastForward. We have also implemented intra-
node versions using sockets as well as shared memory transports for data communication for comparison. Section 5
experimentally compares the di↵erent communication mechanisms that have been implemented.

2.3. Multi-level Speculation

  



































































 


 

Figure 3: An example of multi-level speculation.

An important aspect of FastForward is its support of multi-level
speculation. We believe that the ability to continue speculating with-
out waiting for the last verification results is critical in obtaining ef-
ficiency in speculative parallelism, as Section 4 explains. For this
purpose, FastForward implements a protocol to keep track of which
nodes (MPI ranks) are currently available for computing. It uses a
directory-based approach, where node 0 serves as the directory that
keeps track of the available nodes. Thus, FF fork contacts node 0 to
request an available node and transmits the checkpoint data directly
to the available node. Since the destination node expects checkpoint
data to arrive from the requester, this allows us to use MPI’s e�cient
two-way communication primitives.

Figure 3 illustrates the progression of the protocol with an ex-
ample. Node 1 speculates twice. For each speculation it forks o↵ a
verifier to check the results against its speculated region. To find an
idle node, the speculator node contacts the directory server, which
responds with the number of the idle node. The directory service
also sends a message to the idle node informing it of the node that
will be sending it the checkpoint data. Notice that the creation of the
checkpoint and other bookkeeping can often be completely over-
lapped, thus minimizing the bookkeeping overheads. The protocol
is implemented by the helper process on each node that allows the
main computation to proceed concurrently. The helper process will
likely get scheduled on a separate core, if there is one available on
the node. With a slight modification, the protocol can be adapted to
allow for multiple processes on each node, which would be useful
to exploit multiple cores on each node.

Figure 4: The state tran-
sitions for a node.

A node can be in one of three states: idle, speculating, or verifying. Figure 4 shows
the state transition diagram. Additionally, the directory server maintains a record of which
nodes are available. We have omitted the states of the directory server for the sake of clarity.

A more sophisticated hierarchical directory service is possible to implement in order to
achieve greater scalability, which we leave for future work.

Note that at any point of time there is at most one node that is in speculating state.
All other nodes are in either verifying or idle states. We do not distinguish between non-
speculative computing and computing done for verifying speculative computation—a node
is in the verifying state in both cases. The exact node performing speculation can change
over the course of the application. The system does not allow more than a specified number
of concurrent verifiers. The “throttling” is implemented simply by delaying the acknowl-
edgement from the directory server until a node becomes available, e↵ectively delaying the
completion of FF fork.

The comparison of results could be performed either on the speculator or the verifier. If
the speculation is expected to succeed in most cases then it would be more useful to perform
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Figure 4: The state tran-
sitions for a node.

A node can be in one of three states: idle, speculating, or verifying. Figure 4 shows
the state transition diagram. Additionally, the directory server maintains a record of which
nodes are available. We have omitted the states of the directory server for the sake of clarity.

A more sophisticated hierarchical directory service is possible to implement in order to
achieve greater scalability, which we leave for future work.

Note that at any point of time there is at most one node that is in speculating state.
All other nodes are in either verifying or idle states. We do not distinguish between non-
speculative computing and computing done for verifying speculative computation—a node
is in the verifying state in both cases. The exact node performing speculation can change
over the course of the application. The system does not allow more than a specified number
of concurrent verifiers. The “throttling” is implemented simply by delaying the acknowl-
edgement from the directory server until a node becomes available, e↵ectively delaying the
completion of FF fork.

The comparison of results could be performed either on the speculator or the verifier. If
the speculation is expected to succeed in most cases then it would be more useful to perform
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the comparison on the verifier. Similarly, if the speculation is expected to fail in a majority of cases then the result
comparison is better done on the speculator. However, the latter case is likely to be rare. Nevertheless, FastForward
lets the result comparison be done on either, through a tunable parameter.

3. Implementation Status

We have implemented FastForward in C++ using DMTCP and MPI. FastForward allows a tunable number of
concurrent verifiers, and lets the speculation migrate across nodes. FastForward currently implements a flat directory
server. DMTPC checkpointing is invoked through the API, however the restart must happen using a command, via a
helper script. The MPI helpers implement the protocol to manage the runtime. Figure 5 shows the pseudocode for the
protocol.

int verifier = 0; // number of verifiers
RANK children[v]; // v = maximum number of verifiers
int num_children=0; // current number of children
PROC_KIND whoami; // enum {VERIFIER=0, SPECULATOR}
PROC_KIND comparator: // (it’s a constant)
RANK co_checker; // for result checking

function FF_fork ()
{

child_rank = create_checkpoint();
if (restarted_program) {

whoami == 1 - whoami; // switch roles in CHILD
co_checker = parent_rank(); // parent’s rank
do_computation();
check_results();

} else {
co_checker = child_rank; // child’s rank
children[num_children++] = child_rank;
do_computation();
check_results();

}
}

function do_computation ()
{
if (whoami == VERIFIER) {
do_verifier_computation();

} else {
do_speculative_computation();

}
}

function check_results ()
{
if (whoami == comparator) {

receive_verification_data_from (co_checker);
outcome = perform_comparison ();
send_outcome_to (co_checker);

} else { // whoami != comparator
send_verification_data_to (co_checker);
outcome = receive_outcome_from (co_checker);

}
if (outcome)

// the results are correct
if (whoami == VERIFIER) release_this_node_and_exit();

} else {
// the results are incorrect
if (whoami == SPECULATOR) {

kill_all_children();
release_this_node_and_exit();

}
}

}

function kill_all_children ()
{
for (i=0; i < num_children; i++)

send_kill_signal_to (children[i]);
num_children = 0;

}

Figure 5: Pseudocode for the FastForward protocol.

We have also implemented a preliminary source-level
compiler that combines live-variable analysis with infor-
mation flow analysis to determine which variables need to
be verified at the end of a potentially speculative region.
The compiler also lets the speculative regions be specified
more cleanly using #pragma directives. In a large number
of cases—those that do not have indirect array references
or pointer-base aliasing—the compiler can automatically
generate code for comparing the outcome of speculator and
the verifier. The compiler discards temporaries that might
be used within speculative or non-speculative versions of
the region, and compares only those values that would ac-
tually get used in later parts of the program. We also note
that the compiler does not automatically generate specu-
lative versions of code, which is outside the scope of this
paper.

4. Analysis

In order to estimate an upper bound on the amount of
performance improvement that we can expect on our sys-
tem suppose that there are k regions of code that can be
speculated upon for each non-speculative region. Suppose
that each region of code takes time T to finish, and each
speculative execution of that code is s times faster. Fur-
ther, suppose that speculation succeeds with a probability p

each time a speculative computation is performed. For one
non-speculative and k speculative regions, the total run-
ning time of the original code is T (k + 1). For speculation-
enabled computation, the running time is given by,

T + pk

T

s

+ (1 � p)kT

ignoring the overheads of remote process creation and re-
sult verification. Thus, the maximum speedup, S , of the
system with speculation is given by:

S =
T (k + 1)

T + pk

T

s

+ (1 � p)kT

=
k + 1

k + 1 + pk( 1
s

� 1)
(1)

Equation 1 can be used to make some key observations.

Ghoshal, Ramkumar, Chauhan / Procedia Computer Science 00 (2011) 1–10 5

the comparison on the verifier. Similarly, if the speculation is expected to fail in a majority of cases then the result
comparison is better done on the speculator. However, the latter case is likely to be rare. Nevertheless, FastForward
lets the result comparison be done on either, through a tunable parameter.

3. Implementation Status

We have implemented FastForward in C++ using DMTCP and MPI. FastForward allows a tunable number of
concurrent verifiers, and lets the speculation migrate across nodes. FastForward currently implements a flat directory
server. DMTPC checkpointing is invoked through the API, however the restart must happen using a command, via a
helper script. The MPI helpers implement the protocol to manage the runtime. Figure 5 shows the pseudocode for the
protocol.

int verifier = 0; // number of verifiers
RANK children[v]; // v = maximum number of verifiers
int num_children=0; // current number of children
PROC_KIND whoami; // enum {VERIFIER=0, SPECULATOR}
PROC_KIND comparator: // (it’s a constant)
RANK co_checker; // for result checking

function FF_fork ()
{

child_rank = create_checkpoint();
if (restarted_program) {

whoami == 1 - whoami; // switch roles in CHILD
co_checker = parent_rank(); // parent’s rank
do_computation();
check_results();

} else {
co_checker = child_rank; // child’s rank
children[num_children++] = child_rank;
do_computation();
check_results();

}
}

function do_computation ()
{
if (whoami == VERIFIER) {
do_verifier_computation();

} else {
do_speculative_computation();

}
}

function check_results ()
{
if (whoami == comparator) {

receive_verification_data_from (co_checker);
outcome = perform_comparison ();
send_outcome_to (co_checker);

} else { // whoami != comparator
send_verification_data_to (co_checker);
outcome = receive_outcome_from (co_checker);

}
if (outcome)

// the results are correct
if (whoami == VERIFIER) release_this_node_and_exit();

} else {
// the results are incorrect
if (whoami == SPECULATOR) {

kill_all_children();
release_this_node_and_exit();

}
}

}

function kill_all_children ()
{
for (i=0; i < num_children; i++)

send_kill_signal_to (children[i]);
num_children = 0;

}

Figure 5: Pseudocode for the FastForward protocol.

We have also implemented a preliminary source-level
compiler that combines live-variable analysis with infor-
mation flow analysis to determine which variables need to
be verified at the end of a potentially speculative region.
The compiler also lets the speculative regions be specified
more cleanly using #pragma directives. In a large number
of cases—those that do not have indirect array references
or pointer-base aliasing—the compiler can automatically
generate code for comparing the outcome of speculator and
the verifier. The compiler discards temporaries that might
be used within speculative or non-speculative versions of
the region, and compares only those values that would ac-
tually get used in later parts of the program. We also note
that the compiler does not automatically generate specu-
lative versions of code, which is outside the scope of this
paper.

4. Analysis

In order to estimate an upper bound on the amount of
performance improvement that we can expect on our sys-
tem suppose that there are k regions of code that can be
speculated upon for each non-speculative region. Suppose
that each region of code takes time T to finish, and each
speculative execution of that code is s times faster. Fur-
ther, suppose that speculation succeeds with a probability p

each time a speculative computation is performed. For one
non-speculative and k speculative regions, the total run-
ning time of the original code is T (k + 1). For speculation-
enabled computation, the running time is given by,

T + pk

T

s

+ (1 � p)kT

ignoring the overheads of remote process creation and re-
sult verification. Thus, the maximum speedup, S , of the
system with speculation is given by:

S =
T (k + 1)

T + pk

T

s

+ (1 � p)kT

=
k + 1

k + 1 + pk( 1
s

� 1)
(1)

Equation 1 can be used to make some key observations.

T = time of execution of original program
p = probability that speculation succeeds
k = number of simultaneous speculations
s = speedup of speculatively parallelized code over the original sequential code
S = overall speedup of the program

Running time of code, with speculation = 

Overall speedup,

S ≤ k+1 (strict upper bound, as s → ∞)
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What next?
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The Maze of Parallel Programming
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Concluding Remarks

• Effectively programming modern computers 
requires leveraging parallelism at multiple levels

• There is no silver bullet of parallel programming 
(and there may never be)

• Tool (compiler developers, OS developers, 
architects) need to recognize the different needs 
of (parallel) programmers

• Parallel programming needs to become an 
integrated core of computer science education

• every future programmer is a parallel programmer
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Questions?
http://www.cs.indiana.edu/~achauhan/

Google: arun indiana

http://www.cs.indiana.edu/~achauhan
http://www.cs.indiana.edu/~achauhan

