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Design Principles
• Users must think in parallel (creativity)

• but not be encumbered with optimizations that can be 
automated, or proving synchronization correctness

• Compiler focuses on what it can do (mechanics)

• not creative tasks, such as determining data 
distributions, or creating new parallel algorithms

• Incremental deployment

• not a new programming language

• more of a coordination language (DSL)

• Formal semantics

• provable correctness
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Overview of Our Solution
• Declarative approach to parallel programming

• focus on what, not how

• partitioned address space

• Code generation

• data movement

• GPU kernel splitting

• Compiler optimizations

• data locality

• GPU memory hierarchy (including registers)
Torsten Hoefler, Jeremiah Willcock, Arun Chauhan, and Andrew Lumsdaine. The Case for Collective Pattern Specification. In Proceedings of the First Workshop on 
Advances in Message Passing (AMP), 2010. Held in conjunction with the ACM SIGPLAN International Conference on Programming Language Design and 
Implementation (PLDI).
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Declarative Approach
• Originally motivated by Block-synchronous Parallel 

(BSP) programs, especially for collective 
communication

• alternate between computation and communication

• communication optimization breaks the structure
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Declarative Approach
• Originally motivated by Block-synchronous Parallel 

(BSP) programs, especially for collective 
communication

• alternate between computation and communication

• communication optimization breaks the structure

• Extend to non BSP-style applications
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Kanor for Clusters

occur in a large program—a programmer might initially write a program using floats,
then change it to use doubles. If the programmer misses a float, the program will likely
produce incorrect results.

Instead, the programmer should be able to write something like:

double b = 0;

float a = 1.0;

@communicate { b@recv rank <<= a@send rank }

and let the compiler and runtime ensure the float value is implicitly converted to double,
preserving the intended behavior for compatible data types. When the data types are
incompatible, the code should fail to compile, rather than behaving incorrectly at run-
time.

Kanor has all the desirable properties described above—indeed, the @communicate

blocks above are correct, running Kanor code.

3 Exploiting Communication Knowledge

For a declarative language for communication to be e�cient, it is essential to exploit all
available information about each communication pattern. Kanor’s design is informed
by a multi-level classification of communications, based on each process’s knowledge
of the global communication pattern. These patterns are a refinement of those our group
identified previously [7].

Global Knowledge Each process can determine the entire communication pattern. This
global knowledge may enable tree-based communication with logarithmic rather
than linear overhead. An advantage of Kanor is that it allows the compiler to gener-
ate tree-based communication as an optimization, without forcing the programmer
to write special-case code for e�ciency.

Corresponding Knowledge Each process knows only a subset of the complete com-
munication topology, but has complete knowledge of the communication in which
it will be participating.

Sender Knowledge Senders know only the destinations they will send to; receivers do
not know which senders they will receive from. The sender knowledge case requires
the receiver to perform a termination protocol. The Kanor runtime uses the Non-
blocking Barrier eXchange (NBX) protocol [8], which allows receiver processes to
receive an unknown amount of data with minimal overhead.

Receiver Knowledge Receivers know only the senders they will receive from; senders
do not know which receivers they will send to. This case requires the receiver to
notify the sender processes from which it wishes to receive data. After this noti-
fication, communication then becomes equivalent to the corresponding knowledge
case.

These categories do not cover all possible applications or communication patterns.
For example, some communications might fit a third-party knowledge pattern. How-
ever, these categories cover the majority of today’s parallel applications [15], and thus

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A Declarative Language for Explicit 
Communication. In Proceedings of the Thirteenth International Symposium on the Practical Aspects of Declarative Languages (PADL), 2011. Held in conjunction with 
the ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL).
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case.
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For example, some communications might fit a third-party knowledge pattern. How-
ever, these categories cover the majority of today’s parallel applications [15], and thus

good performance (Section 6). It should be possible for the compiler to infer this hint
in many cases; when in doubt, the compiler can use the default sender hint.

A remote reference, of the form e0@e1, can appear only within a reduction. The
right-hand-side of a remote reference must evaluate to a processor rank; the left-hand-
side must evaluate to a data item (on the sender) or a location for data to be stored (on
the receiver). The rules for evaluating e0 and e1 are critical to the design of Kanor, and
are described in detail in Section 4.1.

Our fundamental unit of communication is the generalized reduction construct, of
the form:

e0@e1 << op << e2@e3 where e4

From left-to-right, the reduction comprises four major parts: receiver remote reference,
reduction operator, sender remote reference, and qualifier. The variable op must evalu-
ate to a reduction function (described below); e4 is the qualifier of the set comprehen-
sion. Because the majority of communication statements simply move data, we allow
transfer statements, which are merely syntactic sugar for reductions using a special
operator that performs assignment. A transfer of the form:

e0@e1 <<= e2@e3 where e4

is equivalent to:
e0@e1 << assign << e2@e3 where e4

The qualifier portion of a reduction uses comprehension syntax, which expresses
the “control structure” of a communication pattern more succinctly than conditionals
or loops. Comprehensions allow declarative specification using concepts and notation
many programmers are already familiar with. The body of the comprehension contains
generator expressions and filter expressions. Generator expressions are of the form

x0, . . . , xn

in e

where x0 through x

n

are variables to be bound, and e is an expression that must eval-
uate to a set S. When the comprehension is evaluated, the variables x0 through x

n

are
independently assigned values from the set S, in e↵ect forming a Cartesian product.
A filter expression is an arbitrary Boolean expression, which may reference variables
bound in any generators that appear before it. Each filter expression is evaluated once
for each generator assignment of variables that are in scope. If every filter expression
evaluates to true for a given set of variable assignments, the sender and receiver remote
references are evaluated with those variable bindings and a message is sent; otherwise,
the remote references are not evaluated for those bindings. Details of these evaluation
rules are given in Section 4.1.

Once a message is received, the receiver updates the values within the storage loca-
tion by means of a reduction operator op. The operator has the signature:

op(e0 : ref ⌧0, e2 : ⌧1)

where e0 represents the storage address to be updated, and e2 represents the message’s
data. The reduction operator is called once per message received. As is explained in
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Section 4.1, the operator expression is evaluated, and the resulting operator applied, on
the receiving process. Here is a simple reduction operator written in C++, which updates
the storage location with the sum of the values received:

template<typename T>
void sum(T &left, T right) {

left += right;

}

We assume user-defined reduction operators are both commutative and associative.
The behavior of non-commutative or non-associative reduction operators is undefined.

The order of evaluation is unspecified between e1, e2, and e3 on the sender and
between e0 and op on the receiver. The operator op is call-by-value, and is applied only
after all of its arguments have been evaluated.

The dependency chain within a Kanor communication can only be of length one:
no read can depend upon another read. Kanor also uses parallel assignment semantics:
all reads occur before all writes. This allows us to perform analyses similar to those in
static single assignment languages. Parallel assignment is an important part of Kanor’s
semantics, as it guarantees there are no dependencies within a communication block.
Parallel assignment makes it much easier to write programs whose communication pat-
terns contain cycles, such as circular shift. Values destined for the same location are
accumulated using the reduction operator. However, it is erroneous to make multiple
writes to the same location using Kanor’s assignment operator (<<=); the semantics of
overlapping assignments is undefined.

4.1 Evaluation Rules

Kanor is a language for explicit communication: the programmer specifies the send-
ing and receiving processes, the data to be sent, and where the data should be stored
upon receipt. To make specifying this information easy, Kanor’s comprehension syn-
tax allows programmers to build sets of variable bindings (that is, environments) using
generators and filters. Consider this communication, similar to the first one presented
in Section 2, annotated to show information explicitly provided by the programmer:

A[j]|{z}
storage

location

@ i|{z}
receiver

rank

<<=|{z}
reduction

operator

B[i]|{z}
data

@ j|{z}
sender

rank

where i in world,|         {z         }
generator

j in {0...i},|        {z        }
generator

i% 2 == 0|        {z        }
f ilter

It may seem that this information is su�cient to fully specify the communication, given
that Kanor’s parallel assignment semantics allows the order in which messages are sent
to be left unspecified. However, this is not the case; it is also necessary to specify where

and in which environment each of these sub-expressions should be evaluated.
An important note about terminology: when we say that an expression e is evaluated

on process p in some environment env, we are referring to the semantics of Kanor,
rather than its implementation. As an optimization, the Kanor implementation may use a
completely di↵erent evaluation strategy, so long as the program behaves as if expression
e were evaluated in env on process p. (On a related note, side-e↵ecting expressions
within a communication block should be avoided, as their behavior is unspecified.)

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A Declarative Language for Explicit 
Communication. In Proceedings of the Thirteenth International Symposium on the Practical Aspects of Declarative Languages (PADL), 2011. Held in conjunction with 
the ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL).



Arun Chauhan, Declarative parallel programming for GPUs, ParCo 2011

Kanor for Clusters
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and let the compiler and runtime ensure the float value is implicitly converted to double,
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incompatible, the code should fail to compile, rather than behaving incorrectly at run-
time.

Kanor has all the desirable properties described above—indeed, the @communicate

blocks above are correct, running Kanor code.
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by a multi-level classification of communications, based on each process’s knowledge
of the global communication pattern. These patterns are a refinement of those our group
identified previously [7].

Global Knowledge Each process can determine the entire communication pattern. This
global knowledge may enable tree-based communication with logarithmic rather
than linear overhead. An advantage of Kanor is that it allows the compiler to gener-
ate tree-based communication as an optimization, without forcing the programmer
to write special-case code for e�ciency.

Corresponding Knowledge Each process knows only a subset of the complete com-
munication topology, but has complete knowledge of the communication in which
it will be participating.

Sender Knowledge Senders know only the destinations they will send to; receivers do
not know which senders they will receive from. The sender knowledge case requires
the receiver to perform a termination protocol. The Kanor runtime uses the Non-
blocking Barrier eXchange (NBX) protocol [8], which allows receiver processes to
receive an unknown amount of data with minimal overhead.

Receiver Knowledge Receivers know only the senders they will receive from; senders
do not know which receivers they will send to. This case requires the receiver to
notify the sender processes from which it wishes to receive data. After this noti-
fication, communication then becomes equivalent to the corresponding knowledge
case.

These categories do not cover all possible applications or communication patterns.
For example, some communications might fit a third-party knowledge pattern. How-
ever, these categories cover the majority of today’s parallel applications [15], and thus

good performance (Section 6). It should be possible for the compiler to infer this hint
in many cases; when in doubt, the compiler can use the default sender hint.

A remote reference, of the form e0@e1, can appear only within a reduction. The
right-hand-side of a remote reference must evaluate to a processor rank; the left-hand-
side must evaluate to a data item (on the sender) or a location for data to be stored (on
the receiver). The rules for evaluating e0 and e1 are critical to the design of Kanor, and
are described in detail in Section 4.1.

Our fundamental unit of communication is the generalized reduction construct, of
the form:

e0@e1 << op << e2@e3 where e4

From left-to-right, the reduction comprises four major parts: receiver remote reference,
reduction operator, sender remote reference, and qualifier. The variable op must evalu-
ate to a reduction function (described below); e4 is the qualifier of the set comprehen-
sion. Because the majority of communication statements simply move data, we allow
transfer statements, which are merely syntactic sugar for reductions using a special
operator that performs assignment. A transfer of the form:

e0@e1 <<= e2@e3 where e4

is equivalent to:
e0@e1 << assign << e2@e3 where e4

The qualifier portion of a reduction uses comprehension syntax, which expresses
the “control structure” of a communication pattern more succinctly than conditionals
or loops. Comprehensions allow declarative specification using concepts and notation
many programmers are already familiar with. The body of the comprehension contains
generator expressions and filter expressions. Generator expressions are of the form

x0, . . . , xn

in e

where x0 through x

n

are variables to be bound, and e is an expression that must eval-
uate to a set S. When the comprehension is evaluated, the variables x0 through x

n

are
independently assigned values from the set S, in e↵ect forming a Cartesian product.
A filter expression is an arbitrary Boolean expression, which may reference variables
bound in any generators that appear before it. Each filter expression is evaluated once
for each generator assignment of variables that are in scope. If every filter expression
evaluates to true for a given set of variable assignments, the sender and receiver remote
references are evaluated with those variable bindings and a message is sent; otherwise,
the remote references are not evaluated for those bindings. Details of these evaluation
rules are given in Section 4.1.

Once a message is received, the receiver updates the values within the storage loca-
tion by means of a reduction operator op. The operator has the signature:

op(e0 : ref ⌧0, e2 : ⌧1)

where e0 represents the storage address to be updated, and e2 represents the message’s
data. The reduction operator is called once per message received. As is explained in
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Section 4.1, the operator expression is evaluated, and the resulting operator applied, on
the receiving process. Here is a simple reduction operator written in C++, which updates
the storage location with the sum of the values received:

template<typename T>
void sum(T &left, T right) {

left += right;

}

We assume user-defined reduction operators are both commutative and associative.
The behavior of non-commutative or non-associative reduction operators is undefined.

The order of evaluation is unspecified between e1, e2, and e3 on the sender and
between e0 and op on the receiver. The operator op is call-by-value, and is applied only
after all of its arguments have been evaluated.

The dependency chain within a Kanor communication can only be of length one:
no read can depend upon another read. Kanor also uses parallel assignment semantics:
all reads occur before all writes. This allows us to perform analyses similar to those in
static single assignment languages. Parallel assignment is an important part of Kanor’s
semantics, as it guarantees there are no dependencies within a communication block.
Parallel assignment makes it much easier to write programs whose communication pat-
terns contain cycles, such as circular shift. Values destined for the same location are
accumulated using the reduction operator. However, it is erroneous to make multiple
writes to the same location using Kanor’s assignment operator (<<=); the semantics of
overlapping assignments is undefined.

4.1 Evaluation Rules

Kanor is a language for explicit communication: the programmer specifies the send-
ing and receiving processes, the data to be sent, and where the data should be stored
upon receipt. To make specifying this information easy, Kanor’s comprehension syn-
tax allows programmers to build sets of variable bindings (that is, environments) using
generators and filters. Consider this communication, similar to the first one presented
in Section 2, annotated to show information explicitly provided by the programmer:

A[j]|{z}
storage

location

@ i|{z}
receiver

rank

<<=|{z}
reduction

operator

B[i]|{z}
data

@ j|{z}
sender

rank

where i in world,|         {z         }
generator

j in {0...i},|        {z        }
generator

i% 2 == 0|        {z        }
f ilter

It may seem that this information is su�cient to fully specify the communication, given
that Kanor’s parallel assignment semantics allows the order in which messages are sent
to be left unspecified. However, this is not the case; it is also necessary to specify where

and in which environment each of these sub-expressions should be evaluated.
An important note about terminology: when we say that an expression e is evaluated

on process p in some environment env, we are referring to the semantics of Kanor,
rather than its implementation. As an optimization, the Kanor implementation may use a
completely di↵erent evaluation strategy, so long as the program behaves as if expression
e were evaluated in env on process p. (On a related note, side-e↵ecting expressions
within a communication block should be avoided, as their behavior is unspecified.)

Source-level compiler (using ROSE)

standard C++ code

Eric Holk, William E. Byrd, Jeremiah Willcock, Torsten Hoefler, Arun Chauhan, and Andrew Lumsdaine. Kanor: A Declarative Language for Explicit 
Communication. In Proceedings of the Thirteenth International Symposium on the Practical Aspects of Declarative Languages (PADL), 2011. Held in conjunction with 
the ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL).
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Distributed Memory Targets
• Generate MPI

• Recognize collectives that map to MPI collectives

• Optimize communication

• computation-communication overlap

• communication coalescing
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Shared Memory Targets
• Use partitioned address space

• Leverage shared memory for communication

• Eliminate buffer copying

• identify opportunities for aliasing

• insert synchronization for correctness

• optimize at run time to eliminate synchronization 
overheads

Fangzhou Jiao, Nilesh Mahajan, Jeremiah Willcock, Arun Chauhan, and Andrew Lumsdaine. Partial Globalization of Partitioned Address Space for Zero-copy 
Communication with Shared Memory. In Proceedings of the 18th International Conference on High Performance Computing (HiPC), 2011. To appear.
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Optimizing for Shared Memory

@communicate{x@i <<= x@0}, where i > 0

... = x

... = x

x = ...

x = ...

... = x

x = ...

... = x

E

Fig. 2. CFG of a hypothetical example showing writes into a globalized
variable within complex control flow. Dotted path is possible only with
unstructured control-flow, such as goto.

Theorem 1. If the locking set belongs to a critical section
then the partitioned address space semantics are maintained.

Proof: Any path from a local write to read passes only
through nodes in the locking set, by definition. Since all
these nodes belong to a critical section, only one process can
write into, and read from, the globalized variable at a time.
Therefore, each process sees exactly the same values for all
the variables that it would see under a strict partitioned address
space execution.

Theorem 1 indicates that is the compiler should ensure that
a process holds a mutex while executing any node in the
locking set. In the absence of any more information about
which control flow edges may or may not be taken at runtime,
this defines the minimal set of CFG nodes over which the
mutex must be held. However, such a region of code may have
multiple entries and exits. The compiler must ensure that the
lock is acquired and released exactly once, no matter which
path is taken through the locking set. At the same time, to
minimize serialization, we would like to avoid holding locks
for any longer than necessary. Next, we describe a strategy
that achieves both.

Suppose that W
↵

denotes the set of CFG nodes that contain
writes to a variable ↵. Similarly, suppose that R

↵

denotes
the set of CFG nodes that read the variable ↵. The locking
set is then denoted by L

↵

. It is tempting to compute L
↵

as
the intersection of nodes that are reachable from W

↵

and the
nodes that can reach R

↵

. However, this has several problems
as illustrated by Fig. 3. In each example, grey colored boxes
are not part of the locking set. As before, the circle marked
E represents the exit node. The globalized variable is x is the
first two examples and A in the third example.

In the leftmost example, since x is written again, the first
write to x cannot reach the second read. Thus, the grey box
in the middle represents a statement that should not be part

of the locking set. A simple intersection based approach, as
suggested above, would erroneously add that node into the
locking set.

In the second example, there is a loop carried dependency
due to reuse of x, but each iteration defines a new value that
get used in the next one. Notice that the first iteration uses
the “global” value of x that comes from the communication
statement. Thus, the middle grey box represents a statement
during which a local value of x is never live.

Before we discuss the final example, we review the termi-
nology related to data dependencies. A data dependence exists
from a statement S1 to S2 if: 1) S1 and S2 access a common
memory location, M ; 2) at least one of the accesses to M is
a write; and 3) there is a control flow path from S1 to S2. S1

is said to be the source, and S2 the sink, of the dependence.
If S1 and S2 are inside a loop, and the accesses to M occur
on different iterations then the dependence is called a loop-
carried dependence. Inside a loop-nest, the loop that causes
the dependence is said to carry the dependence. The level of
the loop-carried dependence is the level of the loop that carries
the dependence, the outermost loop being at level 1, as in
Fig. 3. Any dependence that is not carried by a loop is called
a loop-independent dependence. The dependence distance of
a loop-carried dependence is the number of iterations that
separate the source of the dependence from the sink.

The rightmost example in Fig. 3 illustrates the subtle prob-
lems that arrays can cause. There is a loop-carried dependence
that is carried by the j-loop, which is at level 2. We use
the convention that a statement that is not inside any loop is
considered to be at level 0. In this case, all CFG nodes that are
at level greater than or equal to those that carry the dependence
are part of the locking set.

Finally, we note that a read that has no incoming dependen-
cies should cause no locking, since that indicates read of the
global (communicated) value. Similarly, a write without out-
going dependencies should cause no locking. In the rightmost
example of Fig. 3, this could happen if the i-loop went from
1 to N and the reference to A[i,j+2,k] was replaced by,
say, A[N+1,j+2,k].

In order to take such subtleties into account, we make
use of data dependence analysis, which is a well-established
technique in compilers [9]. We will use the term looping back-
edge to refer to the critical edge from the last statement in a
loop-body to the head node of the loop. In a depth-first search
starting from the head node this edge can be detected as a
back edge to the head node. We assume that there is a unique
last node of the loop-body so that if there are statements that
allow the rest of the loop body to be skipped for the curent
iteration, such as continue or next, they cause jumps to
this unique last node, instead of directly to the head node.

Fig. 1 shows the helper algorithm PATHS that computes the
set of all nodes lying on any path from s to t.

Theorem 2. Algorithm 1 computes the set of all nodes that
lie on any path from node s to t in time O(|E|+ |V |).

Proof: Lines 7–8 mark all nodes reachable from s “red”,

Fangzhou Jiao, Nilesh Mahajan, Jeremiah Willcock, Arun Chauhan, and Andrew Lumsdaine. Partial Globalization of Partitioned Address Space for Zero-copy 
Communication with Shared Memory. In Proceedings of the 18th International Conference on High Performance Computing (HiPC), 2011. To appear.
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Harlan for GPUs

are represented as pointers. Our kernel blocks, on the other hand, indicate syntactically
which portions of code should run on the GPU if possible, and thus imply what data
must be on the GPU. In the most naïve sense, all the data needed by a kernel is moved
to the GPU upon entering a kernel expression and the data is moved back afterwards. In
practice, however, the compiler may use dataflow analysis to eliminate unnecessary data
movement. Freeing the programmer from worrying about these details also lowers the
potential for errors that arise from, for example, dereferencing a device pointer from the
host or vice-versa.

We have designed kernels so that they are expressions that return values. This deci-
sion improves expressiveness and compositionality. Using kernels as expressions allows
the programmer to rewrite the example in Figure 2 as Z = kernel(x : X, y : Y) { x + y }.
Kernel expressions are similar to the map operator in functional programming languages.

__global__ void a dd_k e r n e l ( i n t s i z e , f l o a t ∗X, f l o a t ∗Y, f l o a t ∗Z)
{
i n t i = t h r e a d I d x . x ;
i f ( i < s i z e ) { Z[ i ] = X[ i ] + Y[ i ] ; }

}

void v e c t o r _ a dd ( i n t s i z e , f l o a t ∗X, f l o a t ∗Y, f l o a t ∗Z)
{
f l o a t ∗dX , ∗dY , ∗dZ ;
cudaMal loc (&dX , s i z e ∗ s i z e o f ( f l o a t ) ) ;
cudaMal loc (&dY , s i z e ∗ s i z e o f ( f l o a t ) ) ;
cudaMal loc (&dZ , s i z e ∗ s i z e o f ( f l o a t ) ) ;

cudaMemcpy (dX , X, s i z e ∗ s i z e o f ( f l o a t ) , cudaMemcpyHostToDevice ) ;
cudaMemcpy (dY , Y, s i z e ∗ s i z e o f ( f l o a t ) , cudaMemcpyHostToDevice ) ;

add_ke r ne l <<<1 , s i z e >>>( s i z e , dX , dY , dZ ) ;

cudaMemcpy (Z , dZ , s i z e ∗ s i z e o f ( f l o a t ) , cudaMemcpyDeviceToHost ) ;

cudaF ree ( dX ) ;
cudaFree ( dY ) ;
cudaFree ( dZ ) ;

}

Figure 1. CUDA code for adding two vectors.

void v e c t o r _ a dd ( vec t o r < f l o a t > X, vec t o r < f l o a t > Y, vec t o r < f l o a t > Z)
{
kerne l ( x : X, y : Y, z : Z ) { z = x + y ; }

}

Figure 2. Harlan code for adding two vectors.
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Harlan for GPUs
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void v e c t o r _ a dd ( vec t o r < f l o a t > X, vec t o r < f l o a t > Y, vec t o r < f l o a t > Z)
{
kerne l ( x : X, y : Y, z : Z ) { z = x + y ; }
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Figure 2. Harlan code for adding two vectors.void	  vector_add	  (vector<float>	  X,	  vector	  <float>	  Y,	  vector<float>	  Z)
{
	  	  kernel	  (x	  :	  X,	  y	  :	  Y,	  z	  :	  Z)	  {	  z	  =	  x	  +	  y;	  };
}
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Harlan Features

Reductions

z	  =	  +/kernel	  (x	  :	  X,	  y	  :	  Y)	  {	  x	  *	  y	  };
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Harlan Features

Reductions

z	  =	  +/kernel	  (x	  :	  X,	  y	  :	  Y)	  {	  x	  *	  y	  };

Asynchronous kernels

handle	  =	  async	  kernel	  (x	  :	  X,	  y	  :	  Y)	  {	  x	  *	  y	  };
//	  other	  concurrent	  kernels	  of	  program	  code	  here
z	  =	  +/wait(handle);
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Harlan Features

Reductions

z	  =	  +/kernel	  (x	  :	  X,	  y	  :	  Y)	  {	  x	  *	  y	  };

Asynchronous kernels

handle	  =	  async	  kernel	  (x	  :	  X,	  y	  :	  Y)	  {	  x	  *	  y	  };
//	  other	  concurrent	  kernels	  of	  program	  code	  here
z	  =	  +/wait(handle);

Nested kernels

total	  =	  +/kernel	  (row	  :	  Rows)	  {	  +/kernel	  (x	  :	  row);	  };
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Example 1: Dot Product

//	  dot	  product	  of	  two	  vectors
double	  dotproduct(Vector	  X,	  Vector	  Y)	  {
	  	  	  	  double	  dot	  =	  +/kernel(x	  :	  X,	  y	  :	  Y)	  {	  x	  *	  y	  };
	  	  	  	  return	  dot;
}
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Example 2: Dense Matrix Multiply
//	  dense	  matrix-‐matrix	  multiply
Matrix	  matmul	  (Matrix	  A,	  Matrix	  B)	  {
	  	  	  	  //	  this	  block	  does	  a	  transpose;	  it	  could	  go	  in	  a	  library
	  	  	  	  Bt	  =	  kernel(j	  :	  [0	  ..	  length(B[0])])	  {
	  	  	  	  	  	  	  	  kernel(i	  :	  [0	  ..	  length(B)])	  {
	  	  	  	  	  	  	  	  	  	  	  	  B[j][i];
	  	  	  	  	  	  	  	  }
	  	  	  	  };
	  	  	  	  C	  =	  kernel(row	  :	  A)	  {
	  	  	  	  	  	  	  	  kernel(col	  :	  Bt)	  {
	  	  	  	  	  	  	  	  	  	  	  	  +/kernel(a	  :	  row,	  b	  :	  col)	  {
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  a	  *	  b;
	  	  	  	  	  	  	  	  	  	  	  	  }
	  	  	  	  	  	  	  	  }
	  	  	  	  }
	  	  	  	  return	  C;
}



Arun Chauhan, Declarative parallel programming for GPUs, ParCo 2011

Example 3: Sparse Mat-Vec Product

//	  sparse	  matrix-‐vector	  product	  (CSR)	  
Vector	  spmv(CSR_i	  Ai,	  CSR_v	  Av,	  Vector	  X)	  {
	  	  	  	  Vector	  Y	  =	  kernel(is	  :	  Ai,	  vs	  :	  Av)	  {
	  	  	  	  	  	  	  	  +/kernel(i	  :	  is,	  v	  :	  vs)	  {	  v	  *	  X[i];	  }
	  	  	  	  };
	  	  	  	  return	  Y;
}
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Combining Kanor and Harlan

kernel	  (x	  :	  X,	  y	  :	  Y,	  z	  :	  Z)	  {	  z	  =	  x	  *	  y;	  }
@communicate	  {
	  	  Y[i]@r	  <<=	  Z[i]@((r+1)	  &	  NUM_NODES)
	  	  where	  r	  in	  world,
	  	  	  	  	  	  	  	  i	  in	  0...length(Y)
}
kernel	  (x	  :	  X,	  y	  :	  Y,	  z	  :	  Z)	  {	  z	  =	  x	  *	  y;	  }
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Code Generation
• Data transfers between CPU and device memory

• hide or minimize data movement latency

• Kernel splitting

• to accommodate the limitations of GPUs
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Optimizations
• Data movement

• account for data locality

• only move live data needed

• Kernel splitting

• smaller kernels might increase concurrency

• Scheduling concurrent kernels

• Scheduling reduction

• Mapping variables within GPU memory hierarchy

• Optimizing thread count
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Experiments
Platform:

2.8 GHz Quad-Core Intel Xeon

8GB 1066 MHz DDR3 RAM

ATI Radeon HD 5770 1024MB

Mac OS X Lion 10.7.1
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Vector Dot Product
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Vector Sum
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Dot Product (CPU)
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Concluding Remarks
• Declarative approach to parallelism

• focus on what, now how

• divide the work between user and software according 
to their strengths

• Variety of parallel platforms

• Kanor: declarative parallelism for clusters

• Harlan: declarative parallelism for GPUs

• Combination: declarative parallelism for GPU clusters

• Optimizations through a combination of compiler 
analysis, smart run time system, and auto-tuning
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Questions?
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Neighbor Communication

kernel(x	  :	  X,	  y	  :	  Y)	  {
	  	  y	  =	  0.25	  *	  (x.east	  +	  x.west	  +	  x.north	  +	  x.south);
}


