Scheduling Constrained Dynamic Applications on Clusters

Arun Chauhan

joint work with Kathleen Knobe Jim Rehg Nikhil Rishiyur Umakishore Ramachandran

October 11, 1999

Context: user's view

- Free Standing Smart Kiosk
- Automatically detects approaching customers
- Animated face exhibits natural gaze behavior
- Interacts through synthesized voice and touch-screen

October 11, 1999

Context: programmer's view

- Multi-media applications
 - \Rightarrow streaming data
- Interactive
 - \Rightarrow response time (latency)
- Needs to be compelling
 - \Rightarrow natural gaze behavior (people tracking)
- Kiosk has other background apps

 \Rightarrow dynamic environment

October 11, 1999

October 11, 1999

October 11, 1999

October 11, 1999

October 11, 1999

Closer look at Tracker

October 11, 1999

Characteristics

- Downstream tasks are more compute intensive
- Tasks "sample" the stream at varying rates
- Fundamental ability to sample at varying rates provided by Space-Time Memory

October 11, 1999

Characteristics

- Downstream tasks are more compute intensive
- Tasks "sample" the stream at varying rates
- Fundamental ability to sample at varying rates provided by Space-Time Memory

Raises scheduling questions

Metrics

Kiosk must be compelling and interactive

- low latency per frame
- avoid "dead" periods
- Good use of resources
 - good throughput
- Use off-the-shelf OS and hardware

Metrics

Kiosk must be compelling and interactive

- Iow latency per frame
- avoid "dead" periods
- Good use of resources
 - good throughput
- Use off-the-shelf OS and hardware

Do this in a dynamic environment

Constrained Dynamism

- The system changes among a small number of states
 - run-time environment, e.g., number of processors available, or load
 - input dependent
- State changes are infrequent
- State changes are detectable

Generic Thread Scheduler

October 11, 1999

Generic Thread Scheduler Processors Processors Time Time T2 T2 **T**3 **T**3 T2 Latency **T4 T**3 **T**4 T2 T2 **T**3 **T**3 **T**2 **T**3 **T**4 T2 **T**2 **T**3 T2 **T**3 T2 **T**3 **T**4 T2 **T**2 **T**3 **T5 T**3 **T**5 **T**2 **T**4 Latency **T**4 **T**3 T2 **T5** T2 **T**3 **T**5 **T**5 T5

October 11, 1999

Better Schedules

October 11, 1999

Better Schedules

October 11, 1999

How does this work?

- Compute optimal schedules for each state
 - input: execution time, communication time
 - compute: minimal latency, single iteration schedule for minimal latency, and finally multiple iteration schedule
- Detect the current state at run-time and choose the best schedule

Why does this work?

- Alternatives
 - Do nothing!
 - Control rate of frame generation
 - Control the size of inter-task "channels"
- A limited number of states is the key

October 11, 1999

Comparison

October 11, 1999

Benefits

- No extra work (good resource utilization)
- Reduces "live" time (smaller space req.)
- Simplifies garbage collection
- Implicitly solves flow control

Benefits

- No extra work (good resource utilization)
- Reduces "live" time (smaller space req.)
- Simplifies garbage collection
- Implicitly solves flow control

Works on off-the-shelf systems

Data Decomposition

	Total Models		
	1	8	
Partitions	MP=1	MP=8	MP=1
FP=1	0.876	1.857	6.850
FP=4	0.275	2.155	2.033

- Number of input models defines a state
- Small number of states ⇒ constrained dynamism

October 11, 1999

Conclusion

- A class of applications exhibits the property of "constrained dynamism"
- The property enables state-based approach to obtain good schedules in the face of dynamic environment
- Constrained Dynamism also helps in other aspects of application tuning, like, parallelization strategy